
 0101

010101 10

010

010101 10

01010

010101 10101

0

0

0

Scope
Traditionally, fl exible computer languages allow to write
a program in short time but the program then runs slow-
er at the end-user. Inversely, rather static languages run
faster but are tedious to write programs in. Today, the
most used fl exible and productive computer languages
are hard to get to run fast, particularly on small devices.
During its EU project phase 2004-2007 Pypy challenged
this compromise between fl exibility and speed. Using the
platform developed in Pypy, language interpreters can
now be written at a higher level of abstraction. Pypy au-
tomatically produces effi cient versions of such language
interpreters for hardware and virtual target environ-
ments. Concrete examples include a full Python Inter-
preter, whose further development is partially funded by
the Google Open Source Center – Google itself being a
strong user of Python. Pypy also showcases a new way of
combining agile open-source development and contrac-
tual research. It has developed methods and tools that
support similar projects in the future.

Advances
Traditionally, language interpreters are written in a target
platform language such as C, Java or C#. One of the goals
of the «all-encompassing» environments, like the .NET
framework and the Java virtual machine, is to provide
standardized and higher level functionality in order to
support language implementers in writing language im-
plementations. Pypy took a more ambitious approach.
We defi ned a subset of the high-level language Python
in which we implement languages as simple interpreters
with few references to and dependencies on lower level
details. Our translation framework then produces a con-
crete virtual machine for the platform of our choice by
inserting appropriate lower level aspects. Th e result can
be customized by selecting other feature and platform
confi gurations. For example, one can rather easily get a
customized Python version for embedded environments
such as mobile phones or one for enabling gamers to pro-
gram parts of a massive multiplayer game such as Second
Life, as Pypy also provides new ways for securing and
sandboxing the execution of a program.

Positioning in global context
Pypy’s Python Interpreter on the one hand competes with
other existing Python implementations, on the other
hand there is good collaboration between the developers
of these Python implementations. Pypy is widely recog-
nized as following a more ambitious and far reaching ap-
proach. Aft er its next release end of the year 2008 we ex-
pect main developers and companies to make use of the
new Python implementation. Pypy is very well equipped

to be adapted to new platforms, to be used in education
and to give new answers to security questions.

Contribution to standardization
and interoperability issues
Pypy does not contribute to formal standardization proc-
esses. However, Pypy’s Python implementation is practi-
cally interoperable and compatible with many environ-
ments. Each night, around 12 000 automatic tests ensure
that it remains robust and compatible to the mainline
Python implementation.

Target users / sectors in business
and society
Potential users are developers and companies who have
special needs for using productive dynamic computer
languages.

Pypy, as an Open Source project, does not only consist of
the EU consortium but also of a growing community of
interested developers, scientists and contributors around
it. Since its start – before, during and aft er it received EU
funding – Pypy has been carried forward by this commu-
nity, with its own interests and contributions.

Pypy’s sprint-driven development approach pioneered
a new hybrid model for combining the contractual ob-
ligations of the EU Sixth Framework research funding
with the Open Source culture, and the creation of a Pypy
community that can sustain itself beyond the funding
period. Nineteen week-long intense physical meetings
(«sprints») in various international locations were the
key factor for successful project development and for in-
tegrating and mentoring new contributors. Pypy’s hybrid
mix of distributed agile and plan-driven development
practices has become a research topic of its own. It may
serve as a blueprint for integrating EU funded research
with Open Source engineering.

Overall benefi ts for business and
society
Pypy increases productivity of soft ware development. It
allows to bring dynamic computer languages to environ-
ments where it previously wasn’t available. It provides
more robust and secure execution of programs. It pro-
vides new methodologies for effi cient soft ware develop-
ment. Th ese advantages will, in the long run, render soft -
ware better and more aff ordable.

PYPY

01 10101

0101

101 10101

0101

01 10101

Examples of use
Pypy’s Python implementation is on the tipping point of being complete and practical enough to
become used by a wider developer community. Since a few weeks it is now possible to run exist-
ing Python applications such as Django (a popular web application framework) on top of our
robust and fast Interpreter. Our implementation provides means to run untrusted programs in a
very trusted way. We thus expect Web application and game companies with a particular need for
running user-provided programs in their environments to look into using our Python Interpreter
in the near future.

Another strong use case arises in the context of targeting small devices such as mobile phones.
Here Pypy can provide a Python implementation that suits memory and power consumption
requirements very well – without having to manually modify the language implementation.

Our popular testing tool is used from many hundred projects and companies, independently
from the rest of the project. Off ering extensions, giving tutorials and teaching about development
processes arise as business scenarios.

Achievements
Th e Pypy project produced three major exploitable results:

• Th e Pypy computer language implementation platform: Pypy supports multiple diff erent
dynamic languages, with Python, JavaScript and Prolog currently implemented. Pervasive use
of metaprograming and advanced methods for translation and just-in-time optimizations pro-
vide high performance on a number of backend systems. Th ere is support both for low level
backends like C/POSIX and LLVM (Low Level Virtual Machine) as well as high level ones,
including CLI/.NET, Smalltalk and JVM.

• Th e fl exible Python interpreter: Th e most mature interpreter written in the Pypy implemen-
tation platform is a fully compliant interpreter for the Python 2.4 language. It is more fl exible
and open to language research and enhancements than any pre-existing implementation of
Python, supporting novel features that give programmers better solutions to existing problems
(security, distribution, parallelism, logic programming, etc.). Th e interpreter is available under
the MIT Open Source License.

• Th e py.test testing framework is an advanced and fl exible testing tool written in the Python
programming language. Compared to other unit testing frameworks for Python, it requires
much less boiler plate code, gives better control over the testing process and makes use of
idioms that are closer to the Python programming philosophy. It provides cross-platform and
distributed testing extensions.

All results are published under the MIT Open Source License. Read more on Pypy at
http://codespeak.net/pypy/dist/pypy/doc/home.html.

title
Research a highky fl exible and
modular language platform and
implementing it by leveraging the
open source python language and
community

contract number


type of project
Specifi c Targeted Research Project

contact point
Stephan Busemann Burt
DEUTSCHES FORSCHUNGSZENTRUM
FUER KUENSTLICHE INTELLIGENZ
GMBH, DE
e-mail: Stephan.Busemann@dfki.de

project website and partner list
http://codespeak.net/pypy/dist/
pypy/doc/

EC contribution
   €

start date
//

duration


