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Deliverable Number: D3.2.2

Title of Deliverable: Signalling/routing strategies and outage properties in
Ad-hoc MIMO networks
Workpackage: WP-3
Nature: R
Dissemination level: PU
Editor: Ari Hottinen
Authors: see list inside
Contractual Date of Deliverable: Feb. 28, 2009
Actual Date of Delivery: Feb. 19, 2009

Abstract:

We consider signalling aspects of distributed beamforming in a relay network and
propose new signalling schemes based on relay weight perturbations. Next, we
study coalition formation in a cooperative (virtual) MIMO network and propose
efficient optimization approach as means to determine cooperative users. Similar
optimization approaches are used also in device cooperation in relay networks.
Furthermore, we establish the DM tradeoff curve for multi-antenna multi-user relay
network under the assumption that relays employ unitary transformations. Finally,
we propose and study compact models for the evaluation of scaling laws in large
random (ad-hoc) networks.
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8092 Zürich, Switzerland

Maxime Guillaud
FTW, Telecommunications Research Center
Vienna, Austria

Giuseppa Alfano
DELEN, Politecnico of Torino
Torino, Italy

Antonia Tulino
DIET,Federico II University
Napoli, Italy

Tiina Heikkinen
Dept. Computer Science, University of Helsinki
Helsinki, Finland

5



Executive Summary

This deliverable focuses on signalling, routing (cooperation), and outage
aspects of ad-hoc MIMO networks.

Chapter 1 contributes to signalling mechanisms for distributed beamform-
ing with multiple half-duplex amplify-and-forward relays. In the proposed
method, distributed beamforming applies deterministic perturbations and
scalable (1-bit) feedback from the destination to the relays and does not
require, in contrast to previous work, CSI knowledge at the relays. Simula-
tion results confirm that the proposed techniques closely approach optimum
performance and have satisfactory tracking properties in time-varying envi-
ronments.

Chapter 2 continues the work the previous Chapter, and considers multi-
plicative perturbations as opposed to additive perturbations. Multiplicative
perturbations are based on Givens rotations and adapt the beamforming
weights while guaranteeing a sum power constraint for the relays. This
perturbation scheme is shown to be computationally efficient and easy to
design, thus allowing for low-complexity relay nodes. An adaptation of the
Givens rotation angle allows to approach optimum performance arbitrarily
close. Numerical simulations demonstrate noticeable performance gains over
additive perturbation schemes that have been exclusively considered up to
now.

Chapter 3 studies optimal user pairing in a point-to-multipoint MIMO
channel. The optimal user subsets (in terms of sum mutual information) are
determined for multiplexing N users in N slots. In each slot at most two
users are concurrently transmitting. The brute-force complexity of the subset
selection problem is shown to require N !! evaluations, while the complexity
of the proposed (yet optimal) method is only O(N3).

Chapter 4 considers methods for determining user or device coalitions for
collaborative signal transmission in ah-hoc relay systems. We restrict the
work to a multiuser system, in which one or two devices are allowed transmit
simultaneously in an uplink channel, using another device as a amplify-and-
forward relay node. The problem is to determine for N total number of users,
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the collaboration subsets comprising at most two devices, that are allowed to
transmit simultaneously (one as source, the other as relay), under specified
constraints on power and channel usage. The optimal pairing strategy is
equivalent to a combinatorial optimization problem.

Chapter 5 analyzes fading relay networks, where L users with M -antenna
each communicate with an N -antenna destination terminal through a set of
half-duplex relays using a half-duplex relaying protocol with linear processing
at the relay level. We derive the diversity multiplexing tradeoff curve under
the assumption that relays employ unitary transformations. We observe that
the benefit (in terms of diversity gain) of having K relay terminals is shared
by all the users in the system. We further note that cooperation at the relay
level cannot improve performance any further.

Chapter 6 extends work in the analysis of large random wireless ad hoc
networks, where the underlying node distribution is almost ubiquitously
assumed to be the homogeneous Poisson point process. Despite the nice
analytical properties of such model, the spatial randomness has been, how-
ever, mainly exploited for connectivity and interference analysis, but has
not yet been taken into account explicitly in the scaling laws evaluation.
We move here a first step toward the evaluation of an upper bound on the
aggregate throughput when the additional randomness due to the spatial
node distribution is taken into account, together with the presence of power
attenuation and random phase changes. This could be seen as a first attempt
to connect some overoptimistic results based on stochastic channel model to
more realistic analysis, relying on electromagnetic propagation arguments.

Finally, in Chapter 7, we propose and study a compact model for the
evaluation of scaling laws in random wireless networks. The model allows
the information-theoretic characterization of both point-to-point as well as
distributed communications. It is analyzed under several assumptions about
spatial correlation and the utilized channel state information and transmis-
sion schemes.



Chapter 1

Perturbation-based Distributed
Beamforming for Wireless
Relay Networks

P. Fertl, A. Hottinen and G. Matz

This chapter deals with distributed beamforming techniques for wireless
networks with half-duplex amplify-and-forward relays. Existing schemes
optimize the beamforming weights based on the assumption that channel
state information (CSI) is available at the relays. We propose to use adaptive
beamforming based on deterministic perturbations and limited feedback (1-
bit) from the destination to the relays in order to avoid CSI at the relays. Two
scalable perturbation schemes are considered and practical implementation
aspects are addressed. Simulation results confirm that the proposed tech-
niques closely approach optimum performance and have satisfactory tracking
properties in time-varying environments.

1.1 Introduction

1.1.1 Background

Terminal cooperation in wireless networks has been recognized as a means
to form virtual arrays that can realize spatial diversity in a distributed
fashion. An important special case is distributed beamforming with half-
duplex amplify-and-forward (AF) relays. The coherent AF scheme in [15]
requires local channel phase information at the relays to achieve coherent
phase combining with equal power at all relays. Beamforming with non-
uniform power allocation (PA) under a sum power constraint [37][29] and
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under individual relay power constraints [34] offers significant performance
gains. However, optimal beamforming with PA places strong requirements
regarding channel state information (CSI) at the relays. For centralized
arrays with co-located antennas, this requirement has been circumvented
by adaptive gradient beamforming techniques that iteratively adjust the
beamforming weights using stochastic vector perturbations and limited feed-
back from the destination [9]. A related approach based on deterministic
perturbations is presented in [48]. In a similar spirit, feedback-assisted
distributed beamforming with phase perturbation in wireless networks was
considered in [41] and extended to the multiuser context in [56]. However,
both methods do not assume a relay setup and do not address distributed
PA.

1.1.2 Contribution and Organization

We consider perturbation-based beamforming (PB-BF) with 1-bit feedback
in a relay network. Under the assumption of a sum power constraint, the
relays use the feedback bit to adapt their beamforming weights in order to
maximize either the signal-to-noise ratio (SNR) or the received signal power
at the destination. This approach does not require any CSI at the relays. Two
different perturbation schemes are investigated, both of which are based on
deterministic perturbation sets to avoid extensive signaling/feedback over-
head. Within this context, we present a scalable protocol, discuss implemen-
tation aspects, and provide numerical performance comparisons. Simulation
results corroborate that our approach can satisfactorily track time-varying
channels in non-static environments. We note that in the context of wireless
ad-hoc networks a related idea was touched upon in [38] without explicitly
addressing the important practical problem of weight exchange.

The rest of the Chapter is organized as follows. Section 2.2 introduces
the system model and Section 1.3 proposes perturbation-based distributed
beamforming with 1-bit feedback. A comparison with optimum batch solu-
tions is provided in Section 1.4. Section 1.5 discusses simulation results and
conclusions are provided in Section 2.5.

1.2 System Model

We consider a perfectly synchronized wireless network with single antenna
nodes where a single source S communicates with a single destinationD via R
half-duplex relays Ri, i = 1, . . . , R (cf. Fig. 2.1). The half-duplex constraint
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necessitates a two-hop protocol. In the first hop, S transmits the signal
√

Pss
to the relays which receive

xi =
√

Pshis + wi, i = 1, . . . , R . (1.1)

Here, s is the transmit symbol normalized as E{|s|2} = 1 (E{·} denotes
expectation), Ps denotes the average transmit power of S, hi is the complex
coefficient of the flat fading “backward” channel1 between S and Ri, and
wi ∼ CN (0, N0) denotes i.i.d. complex Gaussian noise. In the AF scenario
considered, the second hop amounts to each relay transmitting a complex
scaled version of the signal it has received, i.e.,

ri = α∗i λi xi , with λi ,
√

P

Ps|hi|2 + N0

. (1.2)

Here, complex conjugation (superscript ∗) of the beamforming weights αi

will simplify notation later on, and λi is a power normalization factor such
that the average relay power is E{|ri|2|hi}= |αi|2P . The destination receives
y =

∑R
i=1 giri + v, where gi denotes the complex coefficient of the “forward”

channel between Ri and D, and v ∼ CN (0, N0) is complex Gaussian noise.
Inserting (2.1) and (2.2) yields the compound channel model2

y = ξs + η, with ξ , αHh̄, η , αHḠw + v. (1.3)

Here, h̄, [h̄1 . . . h̄R]T with h̄i ,higiλi

√
Ps, Ḡ,diag(ḡ1, . . . , ḡR) with ḡi ,giλi,

and w, [w1 . . . wR]T . Since the weight vector α, [α1 . . . αR]T enters also the
noise part in (2.3), it demands careful design to prevent noise amplification.

From (2.3), the average power corresponding to the signal part of y and
the SNR at D are respectively obtained as

PD(α) , E
{
|ξs|2

∣∣∣h̄
}

= αHh̄h̄Hα =
∣∣∣αHh̄

∣∣∣
2
, (1.4)

ρ(α) ,
E

{
|ξs|2

∣∣∣h̄
}

E
{
|η|2

∣∣∣Ḡ
} =

1

N0

αHh̄h̄Hα

1 + αHḠḠHα
. (1.5)

In the following, we will use γ(α) as generic notation for our objective
function, which can either be PD(α) or ρ(α). The beamforming vector α
can be batch designed to maximize γ(α) subject to a specific relay power
constraint. We resort to two types of power constraints: Constraining the

1Note that our discussion does not presume specific channel statistics.
2Superscript T (H) denotes (Hermitian) transposition; diag(x1, . . . , xm) is the m ×m

diagonal matrix with diagonal elements x1, . . . , xm.
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Feedback

hR

..
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h2
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D
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gR

g2

RR

R1

R2

Figure 1.1: Wireless relay network with feedback.

complex beamforming weights to |αi|2 =1 (this amounts essentially to phase-
matching at the relays [41]) ensures identical per-relay power E{|ri|2|hi}=P .

In contrast, the total sum power constraint E
{ ∑R

i=1 |ri|2|h1, . . . , hR

}
= P

requires that the beamforming vector has unit Euclidean norm, ‖α‖2 = 1.
However, such batch designs entail stringent requirements regarding the CSI
available to the relays (via direct estimation or feedback, cf. Section 1.4).

1.3 Adaptive Perturbation-based Beamform-

ing

1.3.1 Transmission Principle

To avoid CSI at the relays, we study distributed beamforming using feedback-
assisted adaptive weight perturbation. The idea underlying this approach
is to maximize the objective function γ(α) by adjusting the beamforming
weights at the relays in an iterative manner using limited feedback (see
Fig. 2.1). For co-located arrays with centralized processing similar ideas have
been proposed in [9][48].

Transmission happens in frames consisting of a training interval Tp and
a data interval Td. The relays use different beamforming weights to forward
the training and data parts of each frame received from S to D according to
(2.2). The idea is to apply the currently best beamforming vector, denoted
αk (k is the frame index), to the data while using a perturbed version α̃k of
the beamforming vector for the training portion. The destination evaluates
the effectiveness of the perturbed weights and checks whether or not the
perturbation improved the objective function γ(αk). It then provides the
relays with one bit of feedback to indicate which beamforming vector shall
be used to forward the data of the next frame.
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In the proposed scheme, the weights α̃k are obtained by an additive
perturbation from the data beamforming vector αk. While in a centralized
setup the perturbation vectors can be chosen randomly for each frame, our
distributed setup necessitates a deterministic vector set, collected in a R×N
matrix Q = [q0 . . .qN−1], from which the perturbation vector is picked in a
cyclic fashion (cf. Section 1.3.4).

In the following, we present two variants of the proposed PB-BF scheme
and describe the individual steps in more detail. For this discussion, we
assume that all channel coefficients remain constant during the weight adap-
tation process.

1.3.2 Take/Reject (T/R) Perturbation

The perturbed weights for the kth frame are computed as

α̃′
k = αk + µqk mod N , (1.6)

where µ is a step-size parameter determining the adaptation rate, followed by
proper normalization, i.e., α̃k = α̃′

k/‖α̃′
k‖ in case of a sum power constraint

and α̃k,i = α̃′k,i/|α̃′k,i| for a per-relay power constraint. The weights α̃k

are applied to the training sequence received at the relays, which is then
forwarded to D. At D, the known training sequence and the receive signal are
used to evaluate the performance of α̃k within Tp according to the objective
function, i.e., γ̃k = γ(α̃k). Recall that γ(·) represents either the received
signal power PD(·) in (1.4) or the SNR ρ(·) in (2.4). The actual estimation
of these quantities will be addressed in Section 1.3.5.

The destination then compares γ̃k to the performance γk =γ(αk) achieved
with the beamforming vectors αk that up to this point performed best. If
γ̃k ≤ γk, α̃k does not perform better than αk and hence the relays should stick
with αk for the data in the next transmission frame (“reject” α̃k). Otherwise
(γ̃k > γk), the beamforming vector α̃k improves on αk and should thus be
used in the next frame to transmit the data (“take” α̃k). This rationale can
be implemented be letting D provide the relays with a single bit of feedback,
given by

ck = u(γ̃k−γk),

where u(.) denotes the unit step function. Depending on the feedback bit,
the relays update the data beamforming vector for the next frame as

αk+1 =





αk, if ck = 0,

α̃k, if ck = 1.
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The vector αk+1 will be the basis for the next perturbation according to
(1.6). The destination performs the corresponding update γk+1 =max{γ̃k, γk}.
This process continues in an iterative manner. During the first frame, the
perturbation scheme is initialized with α̃0 =α0 and γ0 =0.

1.3.3 Plus/Minus (P/M) Perturbation

T/R perturbation has the advantage that performance never deteriorates,
i.e., γ(αk+1)≥ γ(αk). On the other hand, in many cases the perturbation
(1.6) will not yield an improvement, which entails αk+1 =αk and hence slow
adaptation. We next discuss an alternative perturbations scheme with faster
adaptation rate. Here, the training interval Tp is split into two halves T +

p

and T −
p for which different perturbed beamforming vectors are used, i.e.,3

α̃+
k =

αk + µqk mod N

‖αk+µqk mod N‖ , α̃−
k =

αk − µqk mod N

‖αk−µqk mod N‖ . (1.7)

The destination D then measures the performance of α̃+
k and α̃−

k by evalu-
ating the objective function according to γ̃+

k =γ(α̃+
k ) and γ̃−k =γ(α̃−

k ) within
T +

p and T −
p , respectively. While in principle we could pick the beamforming

weights corresponding to the maximum of γ̃+
k , γ̃−k , and γk = γ(αk) (the

performance of the current data beamforming vector), 1-bit feedback can
only support binary choices. Hence, αk will be discarded in any case. D
broadcasts the feedback bit ck = u(γ̃−k− γ̃+

k ) to the relays, indicating whether
the “plus” perturbation α̃+

k or the “minus” perturbation α̃−
k performs better.

In the next frame, the relays use the beamforming vector

αk+1 =





α̃+
k , if ck = 0,

α̃−
k , if ck = 1.

Although P/M perturbation shows typically faster adaptation than T/R,
sometimes both perturbations in (1.7) deteriorate the performance with re-
spect to γk. Thus, P/M performance may fluctuate continually. Furthermore,
only half of the training interval can be used to estimate each of γ̃+

k and γ̃−k .

1.3.4 Perturbation Set

Vector normalization of the weights in (1.6) and (1.7) ensures that the sum
power constraint is satisfied, but requires that each relay knows all elements of

3These expressions are valid for the sum power constraint. With a per-relay power
constraint, weight normalization has to be performed element-wise.
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the beamforming vector. Hence, a stochastic gradient algorithm with random
perturbation vectors (as in [9]) cannot be applied to relay networks, since it
would require to exchange all weights among the relays, thus imposing a
tremendous signaling overhead. Rather, we propose to use a matrix Q of
deterministic perturbation vectors (cf. [48]) known to each relay. This allows
each relay to keep track of all beamforming weights and to perform vector
normalization locally. Reasonable choices for the deterministic perturbation
matrix are Q = [F, jF] (i.e., N = 2R vectors) for P/M perturbation and
Q = [F, jF,−F,−jF] (N = 4R) for T/R perturbation; here, F is an R×R
unitary matrix, e.g., the discrete Fourier transform (DFT) matrix.

Note that with the per-relay power constraint, element-wise normalization
does not require knowledge of all weights at each relay, thus allowing also for
stochastic perturbations.

1.3.5 Channel, Power, and SNR Estimation

We next discuss the estimation of the receive signal power PD(α) in (1.4)
and the SNR ρ(α) in (2.4) which are used as performance measures, as well
as the estimation of the compound channel ξ in (2.3) required for coherent
detection.

In the following, we omit the frame index k and denote the pilot sequence
within a transmission frame as sp[n], n ∈ T ′. The destination can then
compute the maximum likelihood (ML) estimate of the compound channel
as

ξ̂ =

∑
n∈T ′ y[n]s∗p[n]

∑
n∈T ′ |sp[n]|2 . (1.8)

Using (1.8), the ML estimates of receive signal power and SNR can be
obtained as

P̂D = |ξ̂|2, ρ̂ =
|ξ̂|2

1
|T ′|

∑
n∈T ′

∣∣∣y[n]− ξ̂sp[n]
∣∣∣
2 . (1.9)

For T/R perturbation, (1.8) and (1.9) are evaluated using T ′=Tp. After
each weight update the destination stores the channel estimate and uses it
for detection of the subsequent frames till the next update occurs. With
P/M, (1.8) and (1.9) are calculated twice in each frame with T ′ = T +

p and
T ′ = T −

p . The channel estimate corresponding to the better beamforming
vector is then kept for data detection in the next frame. Alternatively, an
approximate ML estimate for the channel coefficient ξ can be obtained by
evaluating (1.8) over the whole training interval (T ′ = Tp) within the same
frame (cf. [9]), provided that the step-size µ is chosen sufficiently small and
|T +

p |= |T −
p |.
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1.3.6 Birth and Death of Relays

Our deterministic perturbation approach is scalable in that it can be easily
adapted to deal with the situation where relays enter (“birth”) or leave
(“death”) the network, even in the case of a sum power constraint. We
assume that the maximum number of relays is Rmax, of which R≤Rmax are
active and can exchange information with D but not with each other. In
essence, the destination and each relay keep track of all the active relays.
The relays can then compute the required vector norm locally. Additionally,
all relays know their “identity” (index i), which is fixed and enables them
to pick their corresponding beamforming weight. If a relay Ri0 drops out,
it informs D which in turn broadcasts the relay index i0 to the remaining
relays using log2(Rmax) bits. These relays then exclude the corresponding
beamforming/perturbation weight from the update process. If a new relay
enters the system, it contacts D which in turn broadcasts Rmax bits to
indicate to all relays (also to the new one) which relays are active. Since the
new relay cannot know the current weights of the other relays, the weight
adaptation process needs to be re-initialized in this case.

In the case of a per-relay power constraint, element-wise weight normal-
ization allows that the relays only need to track their own weights. This
renders a birth-and-death protocol particularly easy, since relays can enter
or leave the system completely arbitrarily without informing the other relays.

1.4 Comparison with Optimal Beamforming

We next compare optimal batch beamforming designs with adaptive PB-BF.
The former requires each relay having either local CSI (i.e., each relay’s
own back- and forward channel) or global CSI (i.e., all channels) available,
whereas PB-BF exploits limited feedback to avoid CSI at the relays.

1.4.1 Optimal Batch Designs

Equal Gain Combining (EGC). Maximizing PD(α) or ρ(α) under a per-relay
power constraint yields the beamforming weights αi = h̄i/|h̄i| = higi/|higi|
that amount to coherent combining [15]. This scheme requires that each
relay knows the phase of its backward and forward channel.

Power Maximization under Sum Power Constraint (P-SP). Optimizing
PD(α) in (1.4) under a sum power constraint amounts to maximizing |αHh̄|
subject to ‖α‖2 = 1. Via the Cauchy-Schwarz inequality, the solution is
obtained as αi = h̄i/‖h̄‖ requiring global CSI at Ri. Alternatively, if global
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CSI is available at D, each relay needs only local CSI and feedback of
‖h̄‖ from D. This shows that the relays optimally allocate their transmit
power to match the current local fading coefficients while performing coherent
combining.

SNR Maximization under Sum Power Constraint (S-SP). The beamform-
ing vector α can also be chosen to maximize the SNR ρ(α) in (2.4) [37][29].
Under the sum power constraint ‖α‖2 = 1 this can be shown to lead to a
generalized eigenvalue problem whose solution is given by [29]

α =
(IR + ḠḠH)−1h̄

‖(IR + ḠḠH)−1h̄‖ . (1.10)

Again this essentially requires either global CSI at the relays or local CSI
with feedback of ‖(IR + ḠḠH)−1h̄‖ from D. In contrast to P-SP, (1.10) also
accounts for noise amplification.

1.4.2 Comparison with PB-BF Schemes

It can be shown that ρ(α) and PD(α) have only one global maximum (unique
up to phase ambiguity) under both power constraints and this maximum
is achieved by the corresponding optimal batch design. The proposed PB-
BF schemes aim to maximize ρ(α) or PD(α), and indeed approach their
optimal counterparts (cf. Section 1.5). EGC can be approximated by PB-
BF using element-wise normalization and the objective function γ(α) chosen
as received signal power (cf. (1.9)). P-SP and S-SP performance can be
approached using γ(α) = PD(α) and γ(α) = ρ(α) as objective function,
respectively, and vector normalization of the beamforming weights. The PB-
BF schemes can be implemented via T/R or P/M perturbation.

1.5 Simulation Results

We next investigate a network with R = 3 relays via numerical simulations;
we will refer to the PB-BF schemes by adding the prefix ‘PB-’ to the cor-
responding batch design. For a fair comparison, all schemes use the same
total relay power P̄ (in (2.2) we thus have P = P̄ /R under a per-relay power
constraint and P = P̄ under a sum power constraint). The source S transmits
BPSK symbols with transmit power Ps = P̄ and the destination D employs
an ML detector. We further assume error- and delay-free 1-bit feedback, and
employ a deterministic perturbation set based on a 3× 3 DFT matrix.
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1.5.1 Idealized Scenario

In this scenario, all channels are static i.i.d. Rayleigh fading including path
loss effects, i.e., hi, gi ∼ CN (0, d−2

i ) with di = 1, 3, 5. Each relay perfectly
knows its backward channel (used in (2.2)), and D has perfect knowledge
of the compound channel ξ and the performance measures PD(α) and ρ(α).
Unless stated otherwise, P̄ /N0 =18dB.

Convergence Behavior. For the case of PB-S-SP using P/M and T/R
perturbation with step size µ=0.1 and µ=0.3, Fig. 1.2(a) shows the evolution
of the receive SNR ρk = ρ(αk) (normalized by the maximum receive SNR)
versus the frame index k for one channel realization. It is seen that with T/R
ρk is nondecreasing and reaches almost optimal performance; a larger step
size results in faster convergence but also in a larger gap to the optimum.
Similar observations apply to P/M, which converges significantly faster than
T/R, but features continual fluctuations whose amplitude increases with the
step size.

For a systematic assessment of the convergence rate of PB-S-SP (with
µ = 0.1), Fig. 1.2(b) shows the empirical cumulative distribution function
(cdf) of the normalized SNR gap that remains after a certain number of
frames (shown as curve labels). The cdfs were obtained with 105 fading
realizations. P/M converges considerably faster than T/R. To achieve an
SNR gap of less than 4.3% in 91% of the cases, P/M and T/R respectively
require 40 and 70 iterations. However, after a large number of frames, T/R on
average features a considerably smaller SNR gap than P/M. Our simulations
also revealed that a larger number of relays entails slower convergence; for
space reasons, the corresponding curves can not be shown here.

BER Performance. Fig. 1.2(c) plots bit-error rate (BER) versus nominal
SNR P̄ /N0 (in dB) for the batch designed beamforming schemes EGC, P-SP,
S-SP, and their perturbation-based counterparts. In each simulation run, the
first 60 frame were not taken into account for the BER evaluation to ensure
that the PB-BF schemes have converged (again µ = 0.1). As a reference,
we include an AF scheme that uses uniform PA and no coherent combining
(labeled ’no BF’).

It can be seen that all PB-BF performance curves are almost indistin-
guishable from those of their corresponding batch designs and offer significant
gains over the no-BF case (e.g., 8 dB SNR improvement at a BER of 10−2).
SNR optimization (PB-S-SP) is seen to outperform power optimization (PB-
P-SP) at high SNR. In fact, PB-S-SP and S-SP are the only schemes to
achieve a diversity larger than 1. Power optimization under a sum power
constraint (PB-P-SP) and under a per-relay power constraint (PB-EGC)
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perform almost identically; in fact, PB-P-SP appears to suffer from noise
amplification at high SNR.

1.5.2 Realistic Scenario

We next use independent, time-varying flat fading channels with Jakes Doppler
profile and the same path loss model as above. Furthermore, the destination
uses (1.8) and (1.9) to estimate the compound channel, the received signal
power, and the instantaneous SNR. To this end, each transmission frame
contains |Tp|= 10 pilot symbols in addition to |Td|= 40 data symbols. The
normalization in (2.2) is achieved by measuring the receive power at the
relays during one frame.

We analyze the tracking capabilities of P/M perturbation (with µ = 0.1
and µ = 0.5) in terms of BER versus normalized Doppler frequency (i.e.,
Doppler in Hertz times frame length in seconds) for P̄ /N0 = 22dB (see Fig.
1.3). In general, the BER degrades with increasing Doppler. At high Doppler
frequencies the relay weights cannot be adapted fast enough to the channel
variations (note that in practice, the feedback delay will add on top of this).
Moreover, if there are channel variations within a frame, the compound
channel and the objective function cannot be estimated accurately. Even
at low Doppler, there is an order of magnitude BER penalty for PB-S-SP (cf.
Fig. 1.3 with µ=0.1 and Fig. 1.2(c) at P̄ /N0 =22dB).

We observe that at at low Doppler frequencies a small step size (µ=0.1)
performs better whereas at higher Doppler frequencies a larger step size (µ=
0.5) is advantageous since it allows quicker adjustment of the relay weights.
Note that with µ=0.1, PB-S-SP looses its entire performance advantage over
PB-P-SP at high Doppler frequencies.

In time-varying scenarios, T/R suffers from the fact that the beamforming
weights are not updated when the channel quality gets worse. This can be
circumvented by building a forgetting factor into the performance measure
γk.

1.6 Conclusion

We have investigated scalable perturbation-based distributed beamforming
protocols in wireless relay networks that exploit 1-bit feedback to approach
the optimal beamforming weights in an adaptive manner while avoiding CSI
at the relay nodes. We used a deterministic perturbation set to optimize
either received signal power or SNR at the destination under per-relay or
sum power constraints. The best performance was observed with SNR as
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objective function under a sum power constraint. At high SNR, equal gain
combining appears to be preferable over power optimization under a sum-
power constraint. In time-varying environments, the proposed perturbation
scheme require a careful choice of the step-size parameter and the transmis-
sion frame length.
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Figure 1.2: PB-BF performance for idealized scenario with static channels in
a 3-relay network: (a) example for SNR evolution at D (P̄ /N0 = 18 dB), (b)
cdf of the SNR gap after a fixed number of frames (P̄ /N0 = 18 dB, µ = 0.1),
and (c) BER versus nominal SNR (µ = 0.1).
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Chapter 2

A Multiplicative Weight
Perturbation Scheme for
Distributed Beamforming in
Wireless Relay Networks with
1-bit Feedback

P. Fertl, A. Hottinen and G. Matz

This Chapter uses a perturbation-based distributed beamforming with 1-
bit feedback for wireless amplify-and-forward relay networks. We propose to
use multiplicative perturbations based on Givens rotations to adapt the beam-
forming weights while guaranteeing a sum power constraint for the relays.
This perturbation scheme is shown to be computationally efficient and easy
to design, thus allowing for low-complexity relay nodes. An adaptation of the
Givens rotation angle allows to approach optimum performance arbitrarily
close. Numerical simulations demonstrate noticeable performance gains over
additive perturbation schemes that have been exclusively considered up to
now.

2.1 Introduction

Motivation. Distributed beamforming with half-duplex amplify-and-forward
(AF) relays has recently attracted much attention due to its ability to exploit
spatial diversity in a distributed fashion [37][29][34]. However, this approach

22



WP-3 23

imposes stringent requirements on the availability of channel state informa-
tion (CSI) at the relay nodes; either global CSI (i.e., all channels) or local
CSI (i.e., each relay’s own backward and forward channel) is required. The
requirement for CSI at the relays can be avoided by using feedback from
the destination to the relays in order to adaptively adjust the beamforming
weights. Perturbation-based beamforming (PB-BF) is a well known example
for such an approach, applicable to centralized arrays with co-located anten-
nas [9][48]. In [18], we proposed deterministic, additive vector perturbations
and 1-bit feedback to extend PB-BF to relay networks. This scheme has the
potential to approach optimum performance without any CSI at the relays.
However, to satisfy a sum power constraint each update of the beamforming
weights involves a vector normalization at each relay.

Contributions and Organization. In this Chapter, we propose multi-
plicative perturbations in terms of elementary Givens rotations [23] for PB-
BF in wireless relay networks. The relays receive 1-bit feedback from the
destination to adapt their beamforming weights with the goal of maximizing
the signal-to-noise ratio (SNR) at the destination. Our multiplicative pertur-
bation scheme has the advantage that it inherently maintains constant sum
power and has a computational complexity at each relay which is independent
of the number of relays in the network. This is in striking contrast to
additive vector perturbation techniques (cf. [18]). We further show how the
adaptation behavior of our proposed scheme can be controlled in an intuitive
manner and provide numerical results that illustrate the performance of our
method in comparison to additive PB-BF.

The rest of the paper is organized as follows. Section 2.2 provides the
background for distributed beamforming in relay networks. The proposed
multiplicative perturbation scheme is introduced and discussed in detail in
Section 2.3. Simulation results are shown in Section 2.4. Finally, conclusions
are given in Section 2.5.

2.2 Network Beamforming

System Model. We consider a half-duplex wireless relay network with
single antenna nodes where a single source S communicates with a single
destination D via R amplify-and-forward relays Ri, i = 1, . . . , R (cf. Fig. 2.1).
There is no direct link between S and D, and we assume perfect synchroniza-
tion among the nodes. The half-duplex constraint necessitates transmission
in two hops. In the first hop, S transmits the signal

√
Ps s to the relays which

receive
xi =

√
Ps his + wi. (2.1)
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Figure 2.1: Wireless relay network with feedback.

Here, s is the transmit symbol normalized as E{|s|2} = 1 (E{·} denotes
expectation), Ps denotes the average transmit power of the source S, hi is the
complex fading coefficient of the “backward” channel1, and wi ∼CN (0, N0)
denotes i.i.d. circularly complex Gaussian noise. In the second hop, each
relay applies a complex beamforming weight αi to the signal it has received
and forwards

ri = λi α
∗
i xi , (2.2)

to the destination D; here, Pxi
=E{|xi|2|hi} is the average receive power at re-

layRi and complex conjugation (superscript ∗) will simplify notation later on.

Throughout this paper, we assume a sum power constraint
∑R

i=1 E
{
|ri|2|hi

}
=

P . With the power normalization in (2.2), this requires the beamforming vec-
tor α = (α1 . . . αR)T to have unit Euclidean norm, ‖α‖=1. The destination
receives y =

∑R
i=1 giri + v, where gi denotes the complex fading coefficient

of the “forward” channel between Ri and D and v∼CN (0, N0) is circularly
complex Gaussian noise. Combining this with (2.1) and (2.2) yields the
compound channel model2

y = ξs + η, with ξ , αHh̄, η , αHḠw + v. (2.3)

In this expression, h̄,(h̄1 . . . h̄R)T with h̄i ,higi

√
PsP/Pxi

, Ḡ,diag(ḡ1, . . . , ḡR)

with ḡi ,gi

√
P/Pxi

, and w,(w1 . . . wR)T . Note that the beamforming vector

α not only affects the effective channel gain ξ in (2.3) but also the noise η.
The receive SNR at the destination D can be obtained from (2.3) as (I is

the identity matrix)

ρ(α) ,
E

{
|ξs|2

∣∣∣h̄
}

E
{
|η|2

∣∣∣Ḡ
} =

1

N0

|αHh̄|2
‖(I + ḠḠH)1/2α‖2

. (2.4)

1Note that we do not assume a specific channel statistics.
2Superscript T (H) denotes (Hermitian) transposition; diag(x1, . . . , xm) is the m ×m

diagonal matrix with diagonal elements x1, . . . , xm.
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Note that the SNR is invariant to a common phase factor, i.e., ρ(α) =
ρ(ejψα). Up to this phase ambiguity, ρ(α) can be shown to have a unique
global maximum ρmax (and no local maxima). The beamforming weights α
can be designed to maximize the received SNR ρ(α) in (2.4) subject to the
sum power constraint ‖α‖2 = 1. This leads to the optimum beamforming
vector [37][29]

αopt =
(I + ḠḠH)−1h̄

‖(I + ḠḠH)−1h̄‖ , (2.5)

which is unique up to a phase factor. However, calculating the optimum
beamforming weights can be shown to require either global CSI at all relays
or local CSI for each relay and global CSI at D with feedback of a scalar
normalization factor to the relays.

Perturbation-based Beamforming. Motivated by beamforming tech-
niques for co-located arrays [9][48], we proposed distributed BF for relay
networks based on additive weight perturbations in [18]. These techniques
circumvent the need for CSI at the relays and allow to approach the maximum
of the objective function3 γ(α).

We next briefly review the transmission principle, termed take/reject
(T/R) perturbation (see [18] for more details). The idea is to approximate the
optimum beamforming vector αopt by iteratively updating the beamforming
weights at the relays according to 1-bit feedback provided by the destination.
To this end, the source transmits frames that consist of two training blocks
B̃(p)

k and B(p)
k , and a data block Td (k is the frame index). The relays forward

these frames according to (2.2), using the currently best beamforming vector

(denoted αk) for B(p)
k and Td, while using a perturbed version α̃k for the

training portion B̃(p)
k . Up to now, only the following additive perturbations

have been considered (cf. [18]):

α̃k =
αk + µqk mod Ñ

‖αk + µqk mod Ñ‖
. (2.6)

Here, µ is a step-size parameter and qn denotes the additive perturbation
vector taken cyclically from a deterministic R×Ñ matrix (q0 . . .qÑ−1) with

Ñ ≥4R [18]. Note that (2.6) involves a normalization which is necessary to
satisfy the sum power constraint and requires that all beamforming weights
are tracked at each relay. This implies that the computation of (2.6) in
general needs 10R real flops and one square root operation per relay.

3Note that the receive power PD(α) , E
{|ξs|2∣∣h̄}

= |αH h̄|2 can as well be used as
objective function (cf. [18]).
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The destination evaluates the effectiveness of the beamforming weights
αk and α̃k with regard to the objective function γ(α) within B(p)

k and

B̃(p)
k , respectively. It then provides a single bit ck of feedback to the relays,

indicating which weights perform better, i.e., ck = 0 if γ(αk) ≥ γ(α̃k) and
ck =1 if γ(αk) < γ(α̃k). The relays update the beamforming vector αk+1 to
be used in the next frame according to αk+1 =αk (“reject” α̃k) if ck =0 and
αk+1 =α̃k (“take” α̃k) if ck =1. The new vector αk+1 will then be the basis
for the next perturbation and the whole process continues in an iterative
manner. The first frame is initialized by setting γ0 = 0 and α̃0 = α0, where
α0 can be an arbitrary vector with ‖α0‖2 =1.

2.3 Proposed Perturbation Scheme

Beamforming Manifold. This section proposes to replace (2.6) with a
multiplicative weight perturbation scheme. This is motivated by the fact that
the sum power constraint ‖α‖2 =1 implies that the real-valued representation
(Re{αT} Im{αT})T of admissible beamforming vectors lies on a (2R−1)-
dimensional hypersphere in the 2R-dimensional (real) Euclidean space. In
addition, the phase invariance of our objective function means that there are
disjoint one-dimensional equivalence classes of beamforming vectors within
which the SNR γ(α) remains constant. It is sufficient to consider only one
representative of each equivalence class, which reduces the number of degrees
of freedom by one. Without loss of generality, we choose this representative
to be α′=e−jarg(αR)α such that Re{α′R} = |αR| ≥ 0 and Im{α′R} = 0. In the
following, we thus restrict to the beamforming vectors

a =
(

Re{αT} Im{α1} . . . Im{αR−1}
)T

which have length R̄ = 2R−1 but, due to the constraint ‖a‖2 = 1, lie on a
(2R−2)-dimensional hyper-hemisphere H. Note that

α =
(
a1 . . . aR)T + j

(
aR+1 . . . a2R−1 0)T .

Rewriting the cost function γ(α) in terms of a reveals that it has a unique
global maximum on H, i.e., without phase ambiguity.

As compared to the Euclidean perspective underlying (2.6), we have
reduced the problem dimension by two. Furthermore, (2.6) is intended to
approximate Euclidean-space steepest ascent (gradient) techniques but does
not account for the manifold structure of the hypersphere (this necessitates
the renormalization). Specifically, the natural notion of a translation on the
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hypersphere is rotation, amounting to multiplication by a matrix F belonging
to the special orthogonal group SO(R̄) [25], defined by FTF=I and det(F)=1.

Multiplicative Perturbation. In the light of the foregoing discussion we
propose to replace the additive perturbation (2.6) with

α̃′
k = Fk mod N ak , (2.7)

where Fn ∈ SO(R̄) denotes orthogonal matrices cyclically taken from an
appropriately chosen set I , {F0, . . . ,FN−1} of size |I| = N . The set I is
known to all relays so that each relay can keep track of all beamforming
weights. Note that by construction ‖α̃′

k‖=‖ak‖=1. Particularly simple and
useful examples for orthogonal matrices are Givens rotations [23] by an angle
φ∈(−π, π] within the (l,m)-plane (with l 6=m):

Γlm(φ) = (el em)

(
c s
−s c

)
(el em)T +

[
I− (el em)(el em)T

]
, (2.8)

where c = cos(φ), s = sin(φ), and el denotes the lth canonical unit vector.
Applying Γlm(φ) to a vector performs a clockwise rotation of the lth and
mth element by the angle φ (first term in (2.8)), while all other elements
remain unaffected (last term in (2.8)).

For any given initial vector a0, there is an orthogonal matrix F′ that
rotates a0 into the optimum beamforming vector aopt in one step. This
matrix can be factored into R̄−1 Givens rotations [23] as

F′ =
R̄−1∏

l=1

Γl,l+1(φl), (2.9)

with properly chosen angles φl. In our distributed beamforming setup, the
angles φl and hence F′ is not available. Nonetheless, it appears promising
to perform the multiplicative perturbation (2.7) using a set I consisting of
appropriately chosen Givens rotations.

Givens Perturbations. We next show that perturbations based on Givens
rotations have the advantage of being intuitive, computationally efficient,
and simple to design.

Intuition. As argued previously, rotations are the natural translation
on the hyper-(hemi)sphere H and thus more intuitive than additive pertur-
bations. Specifically, additive perturbations can have arbitrary orientation
relative to H, thereby hindering an interpretation of the parameter µ in
(2.6) as step size. In the extreme case where qk mod Ñ =αk, the perturbation
is orthogonal to H at αk, resulting in α̃k = αk, i.e., no perturbation at
all. In contrast, the angle of the Givens rotation gives a clear indication of



28 MASCOT D3.2.2

the amount of perturbation on H. Fig. 2.2 illustrates this behavior in two
dimensions. Starting from the initial vector a0, the Givens perturbations
continually rotate the beamforming vector (marked with bullets) closer to the
optimum weights aopt while retaining the sum power constraint. In contrast,
additive perturbations (marked with crosses) suffer from strongly varying
step sizes (e.g., in the first perturbation) and require normalization.

Design. The action of Givens rotations is geometrically intuitive and
simplifies the design of the set I. In particular, any Givens rotation Γlm(φ)
is completely specified in terms of the index pair (l, m) and the angle φ.
Thus, instead of specifying the set I in terms of N orthogonal matrices of
dimension R̄×R̄, it is sufficient to specify the corresponding N index pairs
and angles. For the moment, we consider a fixed choice of the rotation
angle. Then, there are R̄(R̄−1)/2 different index pairs and corresponding
rotation planes in total. However, following (2.9), the minimum number of
rotation planes is given by R̄−1 (in this case, each index has to occur at
least once in the list). For our T/R scheme, we have to allow for clockwise
and counter-clockwise rotations within each rotation plane, yielding a set
I of maximum size N = R̄(R̄−1) and minimum size N = 2(R̄−1). Note
that counter-clockwise rotations can be achieved by swapping indices, i.e.,
Γml(φ)=Γlm(−φ). Choosing a large perturbation set increases the chance of
picking a rotation plane that allows a perturbation within the direction of the
steepest gradient; however, it potentially requires more trials until the “right”
rotation plane is getting used. With small N , each rotation plane is tested
more frequently but certain rotations not available within the perturbation
set can only be approximated over several iterations.

Complexity. Any Givens rotation involves only two elements of ak, i.e.,
ãk,l =c ak,l−s ak,m, ãk,m =s ak,l+c ak,m, and ãk,i =ak,i for i 6= l, m. This means
that the beamforming weights of at most two relays are updated within each
iteration, with each update requiring only 6 flops per relay. In contrast to
additive perturbation, the complexity per relay of our multiplicative pertur-
bation scheme thus is independent of the number of relays. Furthermore,
similarities between our perturbation scheme and CORDIC algorithms [62]
can be exploited to reduce complexity even further via appropriate choice of
the rotation angle.

Angle Adaptation. In the following, we present a modification of our
Givens rotations based perturbation scheme which is motivated by the fact
that the method will get stuck as soon as the angular distance between the
current beamforming vector ak and the optimum vector aopt is less than the
fixed angle φ. In this case none of the available rotations further improves the
objective function. An obvious way to evade this deadlock is a reduction of
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Figure 2.2: Example for perturbations in two dimensions under a unit-length
constraint (bullets: multiplicative, crosses: additive).

the rotation angle. Specifically, we propose that all relays count the number
of successive Givens perturbations that have been rejected by the destination
because they did not improve γ(α); this essentially amounts to accumulating
the number of successive feedback bits equal to zero. Whenever this number
is larger than a certain integer M ≤N , all relays switch to a smaller angle
(e.g., according to φ← γ φ, γ < 1). It may be advantageous to shrink the
rotation angle even before all available rotations have been rejected. Note
that the perturbation index set I remains unchanged, however. It follows
from the properties of the objective function that our Givens perturbation
scheme with angle adaptation asymptotically achieves optimum performance.
Yet, the convergence speed depends on the specific choice of initial angle,
angle reduction, and M .

2.4 Simulation Results

We next study the performance of the multiplicative perturbation scheme
with angle adaptation via numerical simulations and provide a comparison
with the additive PB-BF scheme proposed in [18]. In our simulations, all
channels were chosen static i.i.d. Rayleigh fading. The source S transmitted
BPSK symbols with power Ps =P . The destination D had perfect knowledge
of the compound channel ξ to perform ML detection. We further ensured
exact evaluation of the objective funcion (in practice, the SNR is estimated
at the destination using the training blocks, cf. [18]) and error-free 1-bit
feedback. All results shown were obtained using 105 fading realizations.
Unless stated otherwise, we chose an initial rotation angle of φ=45◦, an angle
reduction factor of γ =0.25, and M equal to the size of the perturbation set
for the multiplicative scheme. For the additive scheme, we used a constant
step-size µ = 0.5 and a perturbation set of size Ñ = 4R based on a discrete
Fourier transform matrix (cf. [18]).

Convergence Behavior. We first study the convergence rate for a network
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Figure 2.3: Illustration of PB-BF performance: (a) cdf of the normalized SNR
gap after a fixed number of frames (R = 3, P/N0 = 14 dB), (b) convergence
time (in frames) versus target SNR (P/N0 =14 dB) for different network sizes,
and (c) BER versus nominal SNR (R=3, 4).

of R=3 relays at nominal SNR P/N0 =14dB. Fig. 2.3(a) shows the empirical

cumulative distribution function (cdf) of the normalized SNR gap ρmax−γ(αk)
ρmax

that remains after a fixed number of transmission frames (shown as curve
labels). Results are shown for additive perturbation and for Givens pertur-
bations with perturbation sets4 of minimum size N = 2(R̄−1) = 8 (labeled
’minGivens’) and of maximum size N = R̄(R̄−1) = 20 (’maxGivens’). We
note that no noticeable improvements are observed for additive perturbations
beyond 40 transmission frames (iterations). It is seen that initially (after 10
iterations) minGivens performs best; here, rapid improvement is achieved
since only a few rotations have to be checked. However, if a small SNR
gap has to be ensured with high probability, maxGivens is preferable. For

4Here, we chose the sets such that all the different rotations planes first undergo
clockwise and then counter-clockwise rotations.
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example, to achieve a normalized SNR gap less than 11% in 90% of the cases,
minGivens and maxGivens require 40 and 80 iterations, respectively. After
120 frames, an SNR gap less than 5% is achieved in 99% of the cases with
maxGivens but only in 85% of the cases with minGivens. With additive
perturbations, initial convergence is poorer than with minGivens and the
SNR gap after many iterations is larger than with maxGivens.

Network Size. Next, we analyze the impact of the network size (i.e., number
of relays R) on the convergence of PB-BF with minGivens perturbations
(N = 2(R̄−1)) from the perspective of rapidly achieving a certain target
SNR at the destination given that P/N0 = 14dB (note that the sum relay
power is independent of the network size). Fig. 2.3(b) shows the convergence
time versus target SNR. Here, we define convergence time as the minimum
number of frames required to achieve the target SNR in 98% of the cases.
Obviously, the achievable SNR is higher for larger R due to increasing array
gain (i.e., about 7.5 dB for R = 3 and about 15 dB for R = 10). However,
very large convergence times are implied if the target SNR approaches the
SNR limit. It is further seen that the curves for different R intersect, and
hence, for a given target SNR there is an optimum network size minimizing
the convergence time. For example, 7 dB target SNR can most rapidly be
obtained using R=5 relays whereas the optimum number of relays to achieve
10 dB is R=10.

BER Performance. Bit error rate (BER) versus nominal SNR P/N0 for
the case of R = 3 and R = 4 relays is shown in Fig. 2.3(c). Since close-to-
optimum performance is desired, we here use maxGivens (20 and 42 rotation
planes, respectively) and compare the results with additive perturbation. As
ultimate benchmarks, we also include the results for optimum beamforming
using the weights in (2.5) (labeled ’optimum-BF’) and a scheme without

beamforming (‘no-BF’), i.e., uniform power allocation αi =
√

P/R and no
coherent combining. For each fading realization, we excluded the initial
convergence phase (first 60 frames) from the BER evaluation. It can be seen
that the angle adaptation allows maxGivens to closely approach optimum
performance and to outperform additive PB-BF in the high-SNR regime (e.g.,
0.8 dB SNR gain at a BER of 10−4 for R=3), even though the complexity of
maxGivens is smaller than that of additive perturbations. Also, the curves
show that our scheme is able to fully exploit the spatial diversity offered by
cooperative relaying and offers significant gains over the no-BF case (e.g.,
13 dB SNR improvement at a BER of 10−2 for R=3).
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2.5 Conclusion

We have proposed to use multiplicative perturbations based on Givens rota-
tions for distributed beamforming in wireless relay networks with 1-bit feed-
back. These perturbations are much better matched to the non-Euclidean
manifold underlying the problem setup than additive perturbations consid-
ered previously. It further allows direct step-size control in terms of rotation
angles and is computationally very efficient. In fact, the per-relay complexity
is independent of the network size. Numerical simulations showed that our
scheme approaches optimum performance arbitrarily close at a satisfactory
convergence speed.



Chapter 3

Optimal user pairing for
multiuser MIMO

E. Viterbo and A. Hottinen

In this chapter we show how the capacity of the uplink of a multiuser
system can be increased by a scheduling strategy, which pairs the transmis-
sion of users in different time/frequency/code slots according to the channel
quality. The optimal scheduling strategy is equivalent to a combinatorial
optimization problem. We show how this problem can be solved efficiently
by using the Hungarian method. We then show that, by using the proposed
scheduling scheme, the performance of Minimum Mean Square Error detec-
tion approaches the one of Maximum Likelihood detection, as the number of
users increases.

3.1 Introduction

A multiuser multiple-input-multiple output (MU-MIMO) system consists of
K user with nt antennas each communicating to a base station with nr receive
antennas. Since each user faces a different channel condition, in different
time/frequency/code (TFC) slots it is possible to improve the overall system
capacity by multiuser scheduling. This technique attempts to increase the
system capacity by smartly allocating the channel to different subgroups of
users. A general introduction to this topic can be found in [5]. Among the
most popular multiuser scheduling schemes we have opportunistic scheduling
and best subset selection. All scheduling schemes are confronted with the
fairness issue that forces to sacrifice the overall network optimality, in order
to guarantee to all users a minimum service requirement.

33
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In this contribution we will focus on a scheduling scheme based on user
pairing and assume as objective function the total instantaneous mutual
information between users and the base station when both ML and MMSE
receivers are considered. We first show that the combinatorial optimization
problem, which yields an optimal scheduling, can be solved efficiently by
using the Hungarian method [35][36][44]. We then show that, by using
the proposed scheduling scheme, the performance of Minimum Mean Square
Error (MMSE) detection approaches the one of Maximum Likelihood (ML)
detection, as the number of users increases.

3.2 System Model

In this section, we describe the multiuser system model and we state the
scheduling problem based on user pairing as a combinatorial optimization
problem.

Considering the uplink channel, we assume that the users are multiplexed
in the code domain, i.e., all user’s signals overlap both in time and in
frequency within a channel use. For K users we have

y =
K∑

k=1

H(k)x(k) + z (3.1)

where x(k) ∈ Cnt is the transmitted column vector from user k, H(k) ∈ Cnr×nt

the channel coefficient matrix, z ∈ Cnr the white Gaussian noise vector
distributed as Nc(0, Inr). Let P be the total transmitted power by each user
(i.e., P = E[‖x(k)‖2]), then we define SNR = P .

We assume the transmitter does not know the channel (open loop) and
the receiver has knowledge of each user channel matrix. Furthermore, we
assume that a power control scheme is used to compensate the path-loss, so
that the average received power from each user is balanced and equal to P .

Let us rewrite (3.1) in equivalent matrix form

y =
[
H(1)| · · · |H(K)

]



x(1)

...
x(K)


 + z = HX + z (3.2)

where we assume that the joint channel nr×Knt matrix H is constant during
the channel use and X is the joint input vector of length Knt.

Assuming the receiver performs ML detection the mutual information per
user (conditioned by the channel realization) for channel (3.2) is given by

IML(X;y|H) =
1

K
log2

(
det

(
Inr +

P

Knt

HH†
))

(3.3)
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Due to the high complexity of ML detection, the simpler MMSE receiver
is generally adopted, and in this case we have

IMMSE(X;y|H) =
1

K

Knt∑

j=1

log2

(
1 + h†jA

−1
j hj

)
(3.4)

where hj are the column vectors of H and

Aj =
Knt

P
Inr +

Knt∑

i=1,i 6=j

h†ihi .

The above expressions represent a measure of the per-user throughput, given
that the system is occupying a total bandwidth B.

The above scheme requires a K user multiuser detection which can be
still rather complex for large numbers of users and transmit antennas. For
this reason it is common to consider joint TDMA/FDMA/CDMA/SDMA
schemes to reduce the number of simultaneous users by allocating them in
different TFC slots within a frame. Since the channel matrices for the users
are different and determine how the users signals interfere at the receiver,
scheduling the users that simultaneously transmit in the same TFC slot, can
improve the total system throughput.

3.2.1 Pairing users

Let us first consider the case where K is even and users are paired to transmit
simultaneously in the same TFC slot. The total number of TFC slots (or
channel orthogonal resources) is then N = K/2 and we assume the total
occupied bandwidth is still B. Fairness is provided by the fact that all users
access the channel exactly once, within a frame of N TFC slots. We let H(k)

denote the channel for user k and assume it is constant over the entire frame.
In this case we have that the received signal in the n-th TFC slot is

y(n) = H(k1)x(k1) + H(k2)x(k2) + z(n) n = 1, . . . , N (3.5)

where k1 6= k2. Note that the multiuser detection now handles only two
overlapping users per TFC slot and thus even multiuser ML detection could
become viable.

We denote by π a particular pairing configuration, within the set of all
configurations Π. The number of ways to choose N disjoint pairs of items
from 2N items is ([1])

|Π| = (2N − 1)!! = (2N − 1)(2N − 3) · · · 3 1 .
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For example, with K = 4 users we have three configurations

Π = {{(12), (34)}, {(13)(24)}, {(14)(23)}}

Given (3.5), the per-user mutual information between X and Y = (y(1)T , . . . ,y(N)T )T ,
given a pairing configuration π, is

IML(X;Y|H, π) = (3.6)

1

N

(N)∑

(k1,k2)∈π

log2

(
det(Inr +

P

2nt

H(k1,k2)H(k1,k2)†)
)

where H(k1,k2) = [H(k1)|H(k2)]. Similarly

IMMSE(X;Y|H, π) = (3.7)

1

N

(N)∑

(k1,k2)∈π

2nt∑

j=1

log2

(
1 + h

(k1,k2)
j

†
A

(k1,k2)
j

−1
h

(k1,k2)
j

)

where h
(k1,k2)
j are the 2nt columns of H(k1,k2) and

A
(k1,k2)
j =

2nt

P
Inr +

2nt∑

i=1,i 6=j

h
(k1,k2)
i

†
h

(k1,k2)
i .

Both (3.6) and (3.7) can be written as additive objective functions to be
maximized over the choice of π ∈ Π

max
π∈Π

(N)∑

(k1,k2)∈π

fk1,k2(π) (3.8)

Selecting the pairing configuration that maximizes the above mutual in-
formation can become a formidable task even for a small number of users due
to the exponential complexity of an exhaustive search. For example, for K =
2, 4, 6, 8, 10, 16 we have a number of configurations |Π| = 1, 3, 15, 105, 945, 2027025.
We will show in Sec. 3.2.4 how this problem can be solved in polynomial time
using a technique known as Hungarian method.

3.2.2 Both single users and paired users

We now consider the case where we allow some users to transmit alone and
some others to be paired in the TFC slots. The total number of users is
K = 2Npair +Nsing, where Npair is the number of pairs of users that transmit
simultaneously in a TFC slot and Nsing is the number of users that transmit
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alone. In this case the total number of TFC slots used in one transmission
frame would be N = Npair + Nsing and the total number of configurations Π
is much larger than before, namely:

|Π| =
bK/2c∑

k=0

K!

(K − 2k)! 2k k!

This number corresponds to the number of partitions of a set of K distin-
guishable elements into sets of size 1 and 2 or equivalently to the number of
K×K symmetric permutation matrices [2]. For example, for K = 2, 4, 6, 8, 16
we have |Π| = 2, 10, 76, 764, 46206736 and with K = 4 users we have the
following 10 configurations

Π = {{(12)(34)}, {(13)(24)}, {(14)(23)},
{(1)(2)(34)}, {(1)(3)(24)}, {(1)(4)(23)},
{(12)(3)(4)}, {(13)(2)(4)}, {(14)(2)(3)},
{(1)(2)(3)(4)}}

In this case the optimization problem becomes

max
π∈Π





1

Npair(π)

(Npair(π))∑

(k1,k2)∈π

f
(pair)
k1,k2

(π) +

1

Nsing(π)

(Nsing(π))∑

(k3)∈π

f
(sing)
k3

(π)



 (3.9)

We can think of the single users (k3) as paired with themselves, i.e., (k3, k3).
Unfortunately, this problem cannot be solved by the Hungarian method, since
the objective function is not a sum of terms only depending on one pair due
to the factors 1

Npair(π)
and 1

Nsing(π)
(see Section 3.2.4 for details). Due to the

exponential complexity required to solve 3.9 we are motivated to consider
the new scheduling scheme of the following section.

3.2.3 New scheduling scheme

In order to have the same total bandwidth for all configurations with different
Npair and Nsing, we assume that the Npair paired users access two TFC slots,
essentially doubling their rate. As a compensation, the Nsing unpaired users,
that only use one TFC slot, are allowed to double their transmit power. This
will produce comparable out-of-cell interfering power during all TFC slots.
Now the total number of TFC slots used in one transmission frame would
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be N = 2Npair + Nsing = K. By transmitting with double power, unpaired
users can employ a higher order modulation in order to double their spectral
efficiency and compensate for their use of only one TFC slot.

Let us now show how a pairing configuration π = {πpair, πsing} can be
mapped to a permutation σ of K elements of the form

σ :

(
1 2 · · · K

σ(1) σ(2) · · · σ(K)

)
. (3.10)

Let the pairs (k1, k2) ∈ πpair correspond to the two columns of (4.7) (k1, k2 =
σ(k1))

T and (k2, k1 = σ(k2))
T , while the unpaired users (k3) ∈ πsing corre-

spond to the fixed elements of the permutation, i.e., columns of (4.7) of the
type (k3, k3)

T . For example

π = {(1, 5)(2, 4)(3)} ⇒ σ :

(
1 2 3 4 5
5 4 3 2 1

)

Clearly, under the assumptions of the Sections 3.2.1 and 3.2.2 this will limit
the permutations σ to have at most cycles of length 2 of the type (k1, k2),
[16].

In this new scenario we can further expand the possible pairing configu-
rations to include any user permutation σ, i.e., we will consider K pairs of
users (k, σ(k)). For example we can have

π = {(1, 5)(2, 4)(3, 3)(4, 5)(5, 2)}
⇒ σ :

(
1 2 3 4 5
5 4 3 1 2

)

which is a permutation with a cycle (1, 5, 2, 4) of length 4.
The optimization problem can now be written as

max
σ∈SK

(K)∑

(k,σ(k))

f(k,σ(k)) (3.11)

where SK denotes the group of all permutations (symmetric group).

3.2.4 Solving the combinatorial optimization problem

Here, we show how the above combinatorial optimization problems (3.8) and
(3.11) can be solved in polynomial time O(n3) using a technique known as the
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Hungarian method commonly used to solve the so called assignment problem
[35][36][44].

Assignment problem: Given a weighted complete bipartite graph G =
(X ∪ Y ; X × Y ), where edge xy has weight w(xy), find a matching M from
X to Y with maximum weight.

In a common application, X could be a set of workers, Y could be a set
of jobs, and w(xy) could be the profit made by assigning worker x to job y.
By adding virtual jobs or workers with 0 profitability, we may assume that
X and Y have the same size, n, and can be written as X = {x1; x2; . . . , xn}
and Y = {y1, y2, . . . , yn}.

Mathematically, the problem can be stated as follows: given an n × n
matrix W = [wk,`] = [w(xky`)], find a permutation σ ∈ Sn of n elements for
which

n∑

k=1

w(xkyσ(k))

is a maximum. This form coincides with (3.11) when w(xkyσ(k)) = f(k,σ(k)).
In order to solve the problem (3.8) in the case of even K, where no users

are allowed to be unpaired it is enough to initialize the matrix W with zero
entries on the diagonal and symmetric entries wk1,k2 = wk2,k1 = f(k1,k2). The
final solution is found by taking only the pairs (k, σ(k)), for k = 1, . . . , K/2.

3.3 Simulation results

In this section we show some examples of the gains provided by the proposed
scheduling schemes in Sec. 3.2.1 and Sec. 3.2.3. In our results we evaluate
system capacity as the average over the channel realizations of the mutual
information.

We assume nt = nr = 2. Figure 3.1 shows capacity expressed in bits
per channel use (bpcu) as a function of the number of users, when all the
users are paired as for (3.8). Both ML and MMSE receivers are compared
when the scheduling is optimized and when it is based on a fixed random
assignment. The single user (SU) case is plotted for reference and coincides
for MMSE and ML detection. Similar results are shown in Fig. 3.2 for the
case (3.11).

The following observations are in order in both cases.

• There is a substantial capacity gain over the single user case, thanks
to the spatial multiplexing of the users.

• The gain of optimal scheduling increases for increasing number of users
(for K = 2 there is obviously no difference).
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Figure 3.1: Paired users only at SNR = 16dB. Note that ML and MMSE
single user curves fully overlap.

• The gain of optimal scheduling is larger for MMSE receiver since ML
can handle better ill-conditioned situations.

• For large K the MMSE seems to approach the ML capacity.

3.4 Conclusion

In this Chapter we have proposed a new signalling scheme based on the
optimal scheduling of pairs of users. This particular scheme provides capacity
gains using a polynomial time algorithm to compute optimum scheduling. In
particular, it enables to improve the performance of the suboptimal MMSE
receiver and to approach, for large number of users, the performance of the
ML receiver which has a higher complexity.
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Chapter 4

Device collaboration in ad-hoc
MIMO networks

A. Hottinen, T. Heikkinen, and E. Viterbo

In this Chapter we consider methods for determining device coalitions for
collaborative signal transmission, where different devices act as relay nodes
to peers. The problem is to determine for R total number of users and
R transmission slots the subsets of at most two devices that are allowed
to transmit simultaneously. The subset selection problem is shown to be
equivalent to an assignment problem. We consider both optimal assignment
and greedy assignment and demonstrate the performance benefit due to
device cooperation with simulations in a network model that models path
loss between devices.

4.1 Introduction

In future networks different devices could potentially help each other in signal
transmission, using each others hardware in an opportunistic way. Amplify-
forward (AF) relaying is a potential candidate for such systems, since with
AF, the relaying node need not know all transport parameters of the source
node (as it does not decode the signal). On the other hand, AF relays are
known to enhance also noise. Therefore, a randomly selected AF device can
amplify noise to the extent that it has detrimental effect on network capacity.

In a practical network there are typically multiple AF-relaying devices
and a limited number of orthogonal subchannels (time-frequency slots). The
device population needs to be divided into subsets of active devices for each

42
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transmission subchannel. In addition, the roles (if a device acts as source
or as a relay) for each device in each subset and channel use need to be
determined.

Related subset selection and scheduling problems have appeared in uplink
MU-MIMO [8], relay scheduling [32][30], and in sensor networks [50]. Here,
the subset selection problem considered from a MIMO relay network view-
point, where a source and a co-channel relay jointly form a MIMO channel
to a common destination node.

In the current application, we allow at most two devices to collaborate in a
given channel use. We use sum-throughput (mutual information) of a MIMO
relay channel as a performance measure when determining cooperative user
coalitions. Unpaired devices are also allowed, if deemed beneficial. Unpaired
devices transmit directly to the destination node (no relaying). A paired
device transmits a part of its signal to a peer device during one channel use.
In the next channel use, the paired devices transmit simultaneously to the
destination node.

4.2 System Model

4.2.1 Relay model

We have a population of R devices each with one transmit antenna. Signal
transmission is divided into two hops. In the first hop a source is allowed to
communicate with the selected K < R peers. In the second transmission hop
the source and the selected peers transmit simultaneously to the destination
node, which is assumed to have Nr ≥ K receive antennas. The second hop
channel is a Multiple Input Multiple Output (MIMO) channel. Formally, the
signal model follows that of a MIMO relay network.

During the first hop, the source device transmits signal vector x with
power P1 through a K × K first hop channel F, where K designates the
number of active devices in the second hop channel. The off-diagonal terms
of F (i.e. |fk,n|2, n 6= k) designate interference power due to source n at relay
k input. Obviously, interference power vanishes for all relays if matrix F is
diagonal. In this case, each device receives and retransmits a fraction 1/K
of signal vector x during the second hop.

The Nr×K second hop MIMO channel from the (selected) K devices to
the destination is given by H. During the second hop, each of the K devices
multiply the signal with a relay-specific weighting coefficient wk to satisfy a
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transmit power constraint at relay. We let

wk =

√√√√ P2/K∑K
n=1 |fk,n|2 + σ2

k

(4.1)

where σ2
k designates noise power at kth relay and P2 is the desired sum

transmit power over all K relay nodes. Note that if interference terms and
noise power vanish, the relay only modifies the transmit power of the original
signal. In the second hop channel, for notational simplicity, the original
source device is modelled a special AF relay with zero noise and interference
power at relay input.

We collect the relay weights into a diagonal matrix

Λ = diag(w1, ..., wK).

The destination receives

y = HΛFx + HΛnr + nd

where the elements of complex Gaussian vector

nr = (n1, ..., nK)T

designate noise with variance σ2
k at k’th relay node, and elements of

nd = (n1, ..., nNr)
T

designate complex Gaussian noise in each destination antenna. We assume
that noise power is identical in each receiver antenna, i.e each has variance
σ2

d. The mutual information with i.i.d. Gaussian sources (in terms of bits-
per-channel-use (bpcu)) for the considered signal model is [63]

α =
1

2
log2 det(I + HΛFF†Λ†H†C−1

nn), (4.2)

where the noise correlation matrix is

Cnn = (σ2
dI + HΛdiag(σ2

1, ..., σ
2
K)Λ†H†).

Factor 1/2 in model (4.2) is due to two-hop relaying.
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4.2.2 Subset selection

We consider a special case of the subset selection problem to reduce compu-
tational burden of the optimization algorithm. Instead of allowing arbitrary-
sized subsets, we determine identities of only K ≤ 2 second-hop devices for
each channel use. We assume that each of the R devices is a source in exactly
one of R channel uses. Assuming that Nr = 2, each second hop MIMO
channel supports K ≤ 2 simultaneously transmitting devices. Moreover,
each of the devices acts as a relay exactly once in the R channel uses, to
incorporate a notion of fairness to relay selection. That is, we determine for
R sources and R transmission slots the distinct ordered subsets of at most
two devices. We first describe the optimal (in system throughput sense)
algorithm used for subset selection and then summarize the reference cases,
greedy subset selection and random subset selection.

Since, K ≤ 2, we need to compute the mutual information αr1,r2 when
device r1 ∈ {1, ..., R} is the source device and device r2 ∈ {1, ..., R} is the
relay device. In general, αr1,r2 6= αr2,r1 since F,H and Λ matrices also depend
on these indices (omitted to simplify notation). When r1 = r2 (K = 1), the
source transmits directly to destination with double power.

Optimal selection: Consider the selection of devices over R channel uses
(via the following linear programming problem ([35]):

arg max
(zr1,r2)

R∑
r2

R∑
r1

αr1,r2zr1,r2 (4.3)

subject to

R∑

r1=1

zr1,r2 = 1,∀r2 (4.4)

∑
r2

zr1,r2 = 1,∀r1, (4.5)

zr1,r2 ≥ 0,∀r1, r2, (4.6)

The variables zr1,r2 , solved from above problem, dictate which devices become
active source and relay nodes in each of the R slots. The model implicitly
assumes all assignments involve either direct transmission or device pairing.
When considering matrix (zr1,r2), the solution to problem (4.3)-(4.6) dictates
that there is exactly one non-zero element in each row and column, thus
ensuring that all nodes act as sources equal number of times. When two
nodes are active, either node may take the role of a source, while the other
functions as a relay node. Whenever the zr1,r2 = 1, and r1 < r2, r1 acts as
source and r2 relays. This convention results from the way the indices in
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eq. 4.3 are enumerated. When zr1,r2 = 1, with r1 = r2, only the direct link
is activated, and relaying is disabled. Recall that problem (4.3)-(4.6) and
the resulting permutation matrix can be solved efficiently (with polynomial
complexity) applying transportation algorithm [35].

Naturally, considerably simpler subset selection algorithms exist:

Random selection: In random subset selection, the matrix (zr1,r2) is de-
fined as a random permutation matrix.

Greedy selection: In the first iteration of a Greedy subset selection the
column and row indices of the largest element of (αr1,r2) determine an element
of the solution matrix. Then, the elements of these rows and columns are
set to zero and maximum indices are sought in the following iteration from
the modified matrix. This guarantees that the indices are unique for each
iteration and that after R iterations a permutation matrix emerges.

4.3 Numerical results

We study the arising collaboration patterns in a simple two-dimensional
network. The R devices are placed randomly (uniformly) on a 20 × 20
rectangular area (meter units) with lower-left corner at coordinate (0, 25).
The destination position is (30, 50). We assume K = 2, Nr = 2, so that only
device pairing or direct transmission is allowed. The 2×2 network matrices F
and H are computed using a simple path-loss model as follows: the distance
between nodes r1 and r2 is dr1,r2 meters and the first-hop link matrix is set
to

F = diag(1,
√

P 1/d
2.3/2
r1,r2

)

when devices r1 and r2, r1 6= r2 are paired. The transmit power P1 = 27 dB.
For direct transmission (r1 = r2) the path-loss model is obviously neither
applicable or relevant due to the weighting method given in eq. 1. Thus, to
model direct transmission in the relay framework, we set F = diag(1, 1).

Due to applied weighting, the total second-hop transmit power is identical
for direct and paired transmission. The second-hop matrix is of form

H = diag(
√

P 2/d
2.3/2
r1,d ,

√
P 2/d

2.3/2
r2,d )H̃,

where dr1,d and dr2,d is the distance device r1 and r2 and the destination node,
respectively, and P2 is the transmit power on second hop. We set P2 = 31.7
dB. Matrix H̃ is an i.i.d. complex Gaussian-distributed MIMO matrix, where
each element has unit power.
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Figure 4.1: Example of device collaboration patterns for optimal subset
selection with R = 16. Destination is located on top-right corner, marked
with character ’¤’. Collaboration patterns include 4 cycles of length 2, 1
cycle of length 3, and one cycle of length 5.

4.3.1 Collaboration patterns

The optimization schemes in previous section each determine a permutation
of matrix of dimension R. The non-zero value on the rth row of the permu-
tation matrix is mapped to element σ(r), i.e. zr,σ(r) = 1 in terms of notation
in section 2.2. We say that devices (r, σ(r)) form a collaboration pair. The
permutation matrices arising from optimal, greedy or random subset selection
can each be mapped to a permutation σ of R elements of the form

σ :

(
1 2 · · · R

σ(1) σ(2) · · · σ(R)

)
. (4.7)

If r = σ(r), device r is unpaired. The unpaired devices correspond to the
fixed elements of the permutation. In our relay model, this corresponds to
the case, where a device transmits directly to the destination node.

If two devices, say r1 and r2, use each other as their respective relays,
these devices form a pair (r1, r2). If in addition, r2 uses r1 as a relay,
the corresponding permutation includes columns (4.7) (r1, r2 = σ(r1))

T and
(r2, r1 = σ(r2))

T .
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Figure 4.2: Example of device collaboration patterns for greedy subset
selection with R = 16. Destination is located on top-right corner, marked
with character ’¤’. Collaboration patterns include 1 cycle of length 1 (no
relaying), 4 cycles of length 2, and 1 cycle of length 7.

In terms of [16][8], unpaired devices correspond to cycles of length 1, while
paired users that use each other as relays correspond to cycles of length 2.
Naturally, an arbitrary permutation σ, e.g.

σ :

(
1 2 3 4 5
5 2 3 1 4

)

can have longer cycles. Above we have a cycle (1, 5, 4) of length 3. In the
relay model, device 1 uses devices 5 as relay in the first channel use, device 2
is unpaired in the second channel use, and so on. The collaboration pattern
is thus {(1, 5)(2, 2)(3, 3)(4, 1)(5, 4)} in 5 channel uses, and it includes two
unpaired users.

We first illustrate the emerging cooperation patterns using one realization
of device locations and channels. In Fig. 4.1 the optimal device collaboration
patterns for each transmission slot are computed by solving problem (4.3)-
(4.6). In Fig. 4.2 the same is done for greedy heuristics. In both figures,
the destination receiver is located on top-right corner with character ’¤’. In
the two figures a line is drawn between two devices cooperative devices. For
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cycles of length 2, the two devices act as source and relay nodes for each
other in alternate channel uses. For cycles with length 3 or higher, a device
acts as source and relay for two different devices in separate channel uses.
For example, in Fig. 4.1 a cycle of length 3 appears in top-left corner. It
takes three channel uses to serve all three devices.

4.3.2 Performance

Fig. 4.3 depicts the ergodic performance (average mutual information)
for four different subset selection schemes (optimal, greedy, random, di-
rect/no pairing) with R ∈ {2, 4, 8, 12, 16} single-antenna devices and one
dual-antenna destination node. The results are averaged for each R over
1000 device locations each with independently generated MIMO channel. For
optimal subset selection, the device collaboration patterns for each are com-
puted from problem (4.3)-(4.6) and related mutual information is recorded.
The mutual information arising from optimal subsets are shown in figures
with legend ’Optimal’. For comparison, we also depict the performance with
random subsets - these results are associated with legend ’Random’. The
following observations are in order:

• Channel-aware subset selection provides a substantial capacity gain
over both direct transmission and random device pairing, thanks to
its ability to select network-optimal MIMO relays for the second-hop
channel.

• The gain due to optimal subset increases with increasing number of
devices. This is in part due to the fact that network is denser and
cooperation occurs with devices that are closer.

4.4 Conclusions

We have considered device cooperation as means to form relay-based MIMO
uplink. In the considered scheme optimal device collaboration patters (device
subsets) are computed (up to pairs) using optimal and greedy matching
algorithms. The subset selection algorithms determine which of the R devices
should be paired and which should transmit directly to the destination in R
channel uses. We demonstrated the performance gain (in terms sum mutual
information) with simulations. It is observed that the device subsets have
cyclic structure. If the cycle length is three, three devices need to form
a coalition when forming source-relay pairs. A topic for future work is to
consider subset selection from the point of view of cooperative game theory.
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Figure 4.3: Average mutual information (I) at destination node with different
number of devices (R) and different pairing schemes. Direct transmission is
depicted as reference.

4.5 Conclusions

We have considered device cooperation as means to form relay-based MIMO
uplink. In the considered scheme optimal device collaboration patters are
computed (up to pairs, so far) using matching (assignment) algorithms. We
demonstrated the performance gain (in terms sum capacity) with simulations,
and remarked that optimal device subsets tend to have cyclic structure.



Chapter 5

Diversity-Multiplexing Tradeoff
in Multi-User Relay Channels

Cemal Akçaba and Helmut Bölcskei

We analyze fading relay networks, where L users with M -antenna each
communicate with an N -antenna destination terminal through a set of half-
duplex relays using a half-duplex relaying protocol with linear processing at
the relay level. We derive the diversity multiplexing tradeoff curve under the
assumption that relays employ unitary transformations. We observe that the
benefit (in terms of diversity gain) of having K relay terminals is shared by
all the users in the system. We further note that cooperation at the relay
level cannot improve performance any further.

5.1 Introduction

Previous work and contributions

We analyze fading relay networks, where L users with M -antenna each com-
municate with an N -antenna destination terminal through a set of K half-
duplex single-antenna relays using a half-duplex relaying protocol with linear
processing at the relay level (see Fig. 5.1). The contributions in this Chapter
can be summarized as follows:

• Our work leads to a characterization of the DMT of the multi-access
relay channel for half-duplex relaying protocols1.

1Half-duplex relaying protocols refer to protocols where cooperation takes place over
equal-duration receive and transmit phases. No cooperating terminal is allowed to transmit
during the receive phase, and to receive during the transmit phase.

51
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Figure 5.1: System depiction.

• We demonstrate that using relays as active scatterers have the benefit
of increasing the diversity gain even when the number of destination
antennas is kept fixed. The relays do not need channel state information
to reap diversity benefits, and using an appropriate unitary matrix at
each relay suffices to have the diversity effect.

• Each user benefits (equally) from having relays in the network.

• The relays do not need to be aware of the number of users in the
network. Likewise, the users need not to be aware of the number of
relays. The destination terminal however needs to track all the channels
in the network.

Notation

The superscripts T,H and ∗ stand for transpose, conjugate transpose, and
conjugation, respectively. xi represents the ith element of the column vector
x, and Xi,j stands for the element in the ith row and jth column of the matrix
X. X ◦Y denot es the Hadamard product of the matrices X and Y. rankX
stands for the rank of X. Tr(X), ‖X‖F , and λi(X) (i = 0, 1, . . . , N−1) denote
the trace, the Frobenius norm, and the ith eigenvalue (sorted in descending
order) of X, respectively. For N × N positive semi-definite matrices A,B,
A Â B means λi (A) > λi (B) (i = 0, 1, . . . , N − 1), A º B is similarly
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defined. IN is the N ×N identity matrix. 0 denotes the all zeros matrix of
appropriate size. We say that the square matrices X and Y are orthogonal
if 〈X,Y〉 = Tr

(
XYH

)
= 0. All logarithms are to the base 2 and (a)+ =

max(a, 0). diag(a1, . . . , aN) denotes the N × N diagonal matrix with ai on
diagonal entry i. The N × N discrete Fourier transform (DFT) matrix, F,

has entries Fln = 1√
N

e−j 2π
N

(l−1)(n−1). X ∼ CN (0, σ2) stands for a circularly

symmetric complex Gaussian random variable (RV) with variance σ2. f(ρ)
.
=

g(ρ) denotes exponential equality in ρ of the functions f(·) and g(·), i.e.,

lim
ρ→∞

log f(ρ)

log ρ
= lim

ρ→∞
log g(ρ)

log ρ
.

The symbols ≥̇, ≤̇, >̇ and <̇ are defined analogously.

5.2 System Model

Assumptions and Signal Model

We assume that communication takes place over T slots. Each source termi-
nal i transmits a T ×M matrix, S(i), via its transmit antennas over T time
slots. Each relay k receives a faded copy of each source transmission

r(k) =
√

ρ
L∑

i=1

S(i)f(i,k) + n(k) (5.1)

where f(i,k) denotes the M×1 vector channel from source i to relay k and n(k)

is complex circularly symmetric white gaussian noise at relay k. The vector
f(i,k) has i.i.d. CN (0, 1) entries with f(i,k)j

representing the fading coefficient

from the jth antenna of source i to relay k and f (i,k) = [f(ik)1 f(ik)2 · · · f(ik)M
]T .

We assume that each T ×M transmit codeword obeys ‖Si‖2
F = TM . Each

relay multiplies its received signal by a T × T unitary matrix Gk (k =
1, 2, . . . , K) and transmits this signal sequentially after adjusting to its aver-
age power constraint2. Each relay has a transmit power constraint of Tρ/K

E{rH
(k)r(k)} (5.2)

= ρE{
L∑

i=1

L∑

j=1

fH
(j,k)S

H
(j)S(i)f(i,k)}+ E{nH

(k)n(k)} (5.3)

2The average power constraint at the relays can be replaced with instantaneous power
constraint without changing the import of our results
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= ρ
L∑

i=1

E{f̃H
(i,k)ΛSH

(i)
S(i)

f̃(i,k)}+ T (5.4)

= ρ
L∑

i=1

E{
M∑

n=1

λn(ΛSH
(i)

S(i)
)}+ T (5.5)

= ρ
L∑

i=1

E{Tr
(
SH

(i)S(i)

)
}+ T (5.6)

= (ρLM + 1)T (5.7)

where step (5.5) follows by the singular value decomposition (SVD) of S(i)S
H
(i)

and unitary invariance in distribution of the Gaussian vector f(i,k). Therefore

each relay scale their received signal by β =
√

ρ
K(ρLM+1)

prior to retransmis-

sion. The received signal at destination is then given by:

YT =
K∑

k=1

βG(k)r(k)g(k)
T + ZT (5.8)

=
K∑

k=1

βG(k)

(√
ρ

L∑

i=1

S(i)f(i,k) + n(k)

)
g(k)

T + ZT

=
√

ρ
K∑

k=1

L∑

i=1

βG(k)S(i)f(i,k)gk
T + Z̃T (5.9)

= β
√

ρ
L∑

i=1

K∑

k=1

G(k)S(i)f(i,k)gk
T + Z̃T

=
√

ρβ
L∑

i=1

XT
(i)H

T
(i) + Z̃T (5.10)

where KM ×N effective channel matrices are defined as

HT
(i) =




f(i,1)g1
T

f(i,2)g2
T

...
f(i,K)gK

T




(5.11)

for (i = 1, 2, . . . , L) and T ×KM effective codewords are given by

XT
i =

[
G(1)S(i) G(2)S(i) · · · G(K)S(i)

]
(5.12)

and the T ×N effective noise term is as follows

Z̃T = β
K∑

k=1

G(k)n(k)g
T
(k) + ZT (5.13)
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and β is the power normalization at relays given above. The effective channel
matrices H(i) are correlated for different values of i, and furthermore they

are also correlated with the effective noise term Z̃. We assume that the
destination operates with full channel state information of all the links in the
network. The receiver left multiplies its received vector at time instance n,
in order to make the effective noise term spatially and temporally white

Y =
√

ρβ
L∑

i=1

H̃(i)X(i) + N (5.14)

where the ith column of H̃ is H̃i = W(HT )i, N is the circularly symmetric
unit variance complex Gaussian noise matrix and W is given by

W = UΛ−
1
2 (5.15)

RZ̃ = UΛUH = (IN + NKNH
K) (5.16)

where NK = [g1 g2 · · ·gK ]. Note that this normalization does not alter the
signal-to-noise ratio, but renders the effective noise term in (5.14) spatially
and temporarily white.

5.3 Overview of Single User Results

With only one user present in the system, the system model is given by

Y =
√

ρβH̃X + N. (5.17)

The mutual information between X and Y given the channel is maximized
by choosing Gaussian codebooks that are i.i.d. over space and time. That
is,

I(Y;X|H̃) =
1

2T

T∑

i=1

log det
(
IN + ρ̃H̃R(i)

xxH̃
H

)
(5.18)

where ρ̃ = ρβ2 and R(i)
xx = E{XiX

H
i }, is maximized by choosing R(i)

xx =
IN . Note that Gaussian codebooks are in general not permitted by the
power constraint on S, however as we are seeking an upper bound on mutual
information, we are allowed to choose an input distribution from a larger
set. Further we point out that certain choices of linear processing matrices
will not permit such a structure on the codebook covariance. For the sake
of obtaining an upper bound, we assume that {Gi} are chosen such that
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R(i)
xx = IN for all i = (1, 2, . . . , T ). Under these assumptions, (5.18) simplifies

to

I(Y;X|H̃) =
1

2
log det

(
IN + ρ̃H̃H̃H

)
(5.19)

Following the framework in [64], we define the probability of outage at
multiplexing gain r and SNR ρ as the probability of mutual information
between the transmit signal x and the received signal y given the channel
matrix falling below the target rate r log ρ, i.e.

PO(ρ, r) = P
[
I(Y;X|H̃) < r log ρ

]
. (5.20)

We need the high SNR behavior of this outage probability in the remainder
of the text.

Theorem 1 (Rao and Hassibi [49]). The outage probability given in (5.20)
satisfies

dM,K,N(r) = − lim
ρ→∞

log PO(ρ, r)

log ρ
(5.21)

= (min(M, N)− 2r)+(K − 2r)+ (5.22)

for r = 0, 1, . . . , min(M,N, K).

Proof. See [49]. The statement of theorem in [49] contains a typo; k in the
statement of the theorem should run from 0. Also justification of the effective
noise cancellation in [49] is missing several important steps which should be
provided; for example as done in [7][Eqns. (53-55) and (79-82)]. The rest of
the proof is by establishing an equivalence to the eigenvalue distribution of
a Wishart matrix.

The DM-tradeoff realized by a family (one at each SNR ρ) of codebooks
Cr with rate R = r log ρ is given by the function

d(r) = − lim
ρ→∞

log Pe(ρ, r)

log ρ

where Pe(ρ, r) is the error probability obtained through maximum likelihood
(ML) decoding. We say that Cr operates at multiplexing gain r. For a given
SNR ρ, the codebook Cr(ρ) ∈ Cr contains ρ2MTr codewords Ŝ. For any two
codewords Ŝ, S̃ ∈ Cr(ρ), we define the codeword difference matrix as

Φ =




∆STGT
(1)

∆STGT
(2)

...
∆STGT

(K)




(5.23)
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where ∆S = Ŝ − S̃. Let η = min(N, MK) and λi denote the ith eigenvalue
of Φ. For the remainder of this section, fix T > MK. First part of the
following theorem is also presented in [49].

Theorem 2 (DMT). For the system described described by (5.20), the opti-
mal DM-tradeoff curve is given by piecewise linear curve joining the points

d∗(r) = (K − 2r)(min(M,N)− 2r), 2r ∈ [0, min(K, M, N)]. (5.24)

Let [G1,G2, . . . ,GK ] be a set of matrices and Cr be a family of codebooks
such that for any codebook Cr(ρ) ∈ Cr and any two codewords S̃, Ŝ ∈ Cr(ρ)
the condition

|λ1|2|λ2|2 · · · |λη|2 >̇ ρ−2r (5.25)

holds. Then the ML decoding error probability satisfies

Pe(ρ, r) = ρ−d∗(r) (5.26)

Proof. The proof is essentially due to [54]. We provide it here for complete-
ness and some insights that are not directly stated in [54]. We start by
calculating the worst case pairwise error probability given the channel

P
[
X̂ → X̃|H̃

]
= Q




√
ρ̃

2
‖H̃Φ‖2


 . (5.27)

The singular value decompositions of the effective channel matrix H̃ and
the codeword difference matrix Φ are given by

H̃ = U1ΨVH
1 (5.28)

Φ = U2ΛVH
2 . (5.29)

Rewriting the pairwise error probability given the channel (5.27) as

P
[
X̂ → X̃|H̃

]
= Q




√
ρ̃

2
‖ΨVH

1 U2Λ‖2


 (5.30)

The worst-case channel aligns the weaker singular values of the channel
matrix with the stronger singular values of the codeword difference matrix.
As given in [54], the worst-case rotation is given by

V1 = U1 (5.31)
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when the singular-values are placed in ascending order in Λ and in descending
order in Ψ. That is

diag(Λ) = [λ1 λ2 · · · λMK ] (5.32)

diag(Ψ) = [ψη ψη−1 · · · ψ1] (5.33)

where η = min(MK, N). Hence, the worst-case pairwise error probability is
given by

P
[
X̂ → X̃|H̃

]
= Q




√√√√ ρ̃

2

η∑

i=1

|ψη+1−i|2|λi|2

 . (5.34)

Next natural question to ask is the following: What is the worst-case
pairwise error probability for channels that are not in outage? The condition
for the effective channel not to be in outage is given by

I(Y;X|H̃) =
η∑

i=1

log(1 + ρ̃|ψi|2) ≥ 2R(1 + ε). (5.35)

Hence, we have to minimize the argument of the Q(·) function in (5.34)
subject to the constraint on the singular values of the channels that are not
in outage (5.35)

min
ψ1,ψ2,...,ψη

ρ̃

2

η∑

i=1

|ψη+1−i|2|λi|2 (5.36)

As done in [54], this problem can be solved using Lagrange multiplier method
and the solution is given by standard water-filling. However, in the proof
provided in [54], it is implicitly assumed that all ψi > 0 (meaning that the
worst effective channel realization has full rank), leading to the solution

P
[
X̂ → X̃|H̃

]
= Q




√√√√1

2

η∑

i=1

(
1

µ
− |λi|2

)+

 (5.37)

where µ satisfies

η∑

i=1

[
log

(
1

µ|λi|2
)]+

= 2R(1 + ε). (5.38)

The goal of a good code is to minimize the worst-case error probability given
in (5.37) or in other words to maximize the argument of Q(·) function in
(5.37)

η∑

i=1

(
1

µ
− |λi|2

)+

. (5.39)
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Next we investigate this quantity. In the following, we say that a singular
value λi is active if

1

µ
≥ |λi|2. (5.40)

For the sake of discussion, assume that only the smallest singular value is
active, i.e.

1

µ
≥ |λ1|2. (5.41)

(5.41) implies two important properties. The first is the value of 1
µ
, which is

given by

1

µ
= 22R(1+ε)|λ1|2. (5.42)

The second implication is the relation between 1
µ

and the second smallest
singular value λ2, which must obey

|λ2|2 >
1

µ
. (5.43)

Next, putting (5.41), (5.41) and (5.42) together, we get

|λ2|2 ≥ 22R(1+ε)|λ1|2 ≥ |λ1|2. (5.44)

The relation (5.44) is for the case when only 1 singular value is active. If
there are k ≤ η singular values that are active, then we have from (5.38) that

k∑

i=1

log

(
1

µ|λi|2
)

= 2R(1 + ε). (5.45)

which can be explicitly solved to give

log
k∏

i=1

(
1

µ|λi|2
)

= 2R(1 + ε) (5.46)

(
1

µk
∏k

i=1 |λi|2
)

= 22R(1+ε) (5.47)

1

µ
=

(
22R(1+ε)

k∏

i=1

|λi|2
) 1

k

. (5.48)
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Hence for any k < η we have

|λk+1|2 ≥
(

22R(1+ε)
k∏

i=1

|λi|2
) 1

k

≥ |λk|2 (5.49)

and for k = η, we have

(
22R(1+ε)

η∏

i=1

|λi|2
) 1

η

≥ |λη|2. (5.50)

Now let us consider the error probability (5.37) that we would like to mini-
mize. We would like to choose the argument of the Q(·) function as large as
possible. In other words, we need to find out how many singular values need
to be active in order to maximize the quantity

k∑

i=1

(
1

µ
− |λi|2

)
. (5.51)

We start by manipulating this expression

k∑

i=1

(
1

µ
− |λi|2

)
=

k

µ
−

k∑

i=1

|λi|2

k

(
22R(1+ε)

k∏

i=1

|λi|2
) 1

k

−
k∑

i=1

|λi|2 (5.52)

where (5.52) follows from (5.48). We define

ζ(k) = k

(
22R(1+ε)

k∏

i=1

|λi|2
) 1

k

−
k∑

i=1

|λi|2. (5.53)

Note further that for two integers k1, k2 ∈ [0, η], if k2 ≥ k1, then

ζ(k2) ≥ ζ(k1). (5.54)

To demonstrate how (5.54) follows, we consider the difference ζ(k2) − ζ(k1)
and show that this difference is always non-negative;

ζ(k2)− ζ(k1) (5.55)

= k2


22R(1+ε)

k2∏

i=1

|λi|2



1
k2

−
k2∑

i=1

|λi|2 − k1


22R(1+ε)

k1∏

i=1

|λi|2



1
k1

+
k1∑

i=1

|λi|2

(5.56)
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≥ k2


22R(1+ε)

k2∏

i=1

|λi|2



1
k2

−
k2∑

i=1

|λi|2 − k1|λk1+1|2 +
k1∑

i=1

|λi|2 (5.57)

= k2


22R(1+ε)

k2∏

i=1

|λi|2



1
k2

−
k2∑

i=k1+1

|λi|2 − k1|λk1+1|2 (5.58)

≥ k2|λk2|2 − (k2 − k1)|λk2|2 − k1|λk1+1|2 (5.59)

≥ k2|λk2|2 − (k2 − k1)|λk2|2 − k1|λk2|2 = 0. (5.60)

Step (5.57) is due to (5.49), (5.57) is obtained by subtracting out common
terms in two sums and (5.59) is due to the RHS of (5.49) (for values of k2 < η)
and (5.50) (for k2 = η).

Therefore the value of k that maximizes the argument of the error function
in (5.37) is k = η. In other words, if we would like to design a good code for
the worst case full rank channel which is not in outage, we need to have a
code difference matrix with η non-zero singular values. Hence, the worst-case
pairwise error probability for a good code given the set of effective channels
that are not in outage is upper bounded by

P
[
X̂ → X̃,Oc

]
= EH̃∈Oc





Q




1√
2

√√√√√η

(
22R(1+ε)

η∏

i=1

|λi|2
) 1

η

−
η∑

i=1

|λi|2






P[Oc]

(5.61)

≤ exp−

1

4


η

(
22R(1+ε)

η∏

i=1

|λi|2
) 1

η

−
η∑

i=1

|λi|2




P[Oc]

(5.62)

≤ exp−

1

4


η

(
22R(1+ε)

η∏

i=1

|λi|2
) 1

η

−
η∑

i=1

|λi|2




 . (5.63)

(5.61) follows by Bayes’ rule, whereas (5.62) follows by dropping the expecta-
tion operator since we are considering the worst channel that is not in outage
and by the inequality Q

(√
x
2

)
≤ exp[−x

4
]. (5.63) is justified since P[Oc] ≤ 1.

By the conditions of the theorem we have that |λ1|2|λ2|2 · · · |λη|2 >̇ ρ−2r,
hence

P
[
X̂ → X̃,Oc

]
≤ exp−

[
1

4

(
ηρ

ε
η −

η∑

i=1

|λi|2
)]

(5.64)

≤ exp−
[
1

4

(
ηρ

ε
η − 4TM

)]
(5.65)

≤̇ exp
[
−1

4
ηρ

ε
η

]
(5.66)
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where (5.65) follows from the power constraint on the transmit codewords,
and (5.66) is due to the exponential growth of ηρ

ε
η compared to the constant

4TM in the limit of high SNR. Since the ML-decoder error probability can
be upper bounded by

Perror(ρ, r) ≤ PO(ρ, r) + ρ2MTrP
[
X̂ → X̃,Oc

]
(5.67)

≤̇ PO(ρ, r) + ρ2MTr exp
[
−1

4
ηρ

ε
η

]
.
= PO(ρ, r). (5.68)

In |λ1|2|λ2|2 · · · |λη|2 >̇ ρ−2r, we have provided a sufficient condition for
the worst case PEP to decay exponentially in SNR. However as pointed out
above, our derivation was valid for a channel matrix that has η eigenvalues.
In order to show that the condition is still sufficient when the efficient channel
matrix is rank deficient, we consider an illustrative example3. Assume that
channel matrix has only one non-zero singular value, i.e.

ψη > 0 and ψi = 0 ∀i ∈ [1, η − 1]. (5.69)

Then the worst case PEP given the channel is

P
[
X̂ → X̃|H̃

]
= Q




√
ρ̃

2
|ψη|2|λ1|2


 . (5.70)

which can be solved explicitly subject to the no outage condition (5.35) to
give

P
[
X̂ → X̃|H̃

]
= Q




√
(22R(1+ε) − 1)|λ1|2

2


 (5.71)

≤ exp

[
−(22R(1+ε) − 1)|λ1|2

4

]
. (5.72)

From which we see that choosing |λ1|2 >̇ 2−2R, suffices for this probability
to decay exponentially in SNR. Put differently, |λ1|2 >̇ ρ−2r is the condition
on the smallest singular value of the code difference matrix. Now in general,
the condition |λ1|2|λ2|2 · · · |λη|2 >̇ ρ−2r does not imply |λ1|2 >̇ ρ−2r. This
implication, i.e.,

|λ1|2|λ2|2 · · · |λη|2 >̇ ρ−r ⇒ |λ1|2 >̇ ρ−2r (5.73)

3Personal communication with P.E. Coronel.
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holds only when we have the additional constraint that

η∑

i=

|λi|2 .
= ρ0. (5.74)

Note that (5.74) guarantees that each eigenvalue of the codeword difference
matrix will grow at most at the same rate with SNR, i.e.

|λi|2 ≤̇ ρ0 ∀i ∈ [1, η]. (5.75)

However, (5.75) and |λ1|2|λ2|2 · · · |λη|2 >̇ ρ−2r together imply |λ1|2 >̇ ρ−2r.
We have now proved conclusively that if |λ1|2|λ2|2 · · · |λη|2 >̇ ρ−2r for every
pair of codewords in every codebook in the family of codebooks, we are
guaranteed to have the ML-decoder error probability decay as fast as the
outage probability. We have also showed that having a power constrained on
the SNR-normalized codebook is also required for these results to hold. This
dependency of the proof on the power constrained is not mentioned in [54].

We have not argued about the optimality of this tradeoff. However, an
application of a cut-set bound [10][6] yields that the outage probability is
lower bounded by

PMIMOM×K(ρ, 2r) + PMIMOK×N(ρ, 2r) ≤ PO(ρ, r) (5.76)

PMIMOmin(M,N)×K(ρ, 2r) ≤̇ PO(ρ, r) (5.77)

PMIMOmin(M,N)×K(ρ, 2r)
.
= PO(ρ, r) (5.78)

where PMIMOm×n(ρ, 2r) is the outage probability of the Rayleigh-fading m×n
MIMO channel [64] after the half-duplex nature of the relaying scheme is
taken into account. (5.76) is due to the cut-set upper bound on the mutual
information, (5.77) is by retaining the slowest decaying (in SNR) proba-
bility in the LHS of (5.76) and finally (5.78) since the SNR exponents of
PMIMOmin(M,N)×K(ρ, 2r) and PO(ρ, r) are equal to the first order. We have
hence showed that

PMIMOmin(M,N)×K(ρ, 2r)
.
= PO(ρ, r) ≤ Pe(ρ, r) ≤̇ PO(ρ, r) (5.79)

Pe(ρ, r)
.
= ρ−(K−2r)+(min(M,N)−2r)+ .

(5.80)

5.4 Multi-User Relay System

Our contribution in this section is the characterization of the achievable
DMT of a multi-user system described by (5.14). The characterization also
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sheds light into the structure of space-time codes that would be achieving the
corresponding DMT. For the remainder of this section, we assume without
loss of generality that T ≥ LMK.

Theorem 3 (DMT for Half-Duplex Protocols). For a multiple access system
operating under a half-duplex protocol with L users of M antenna each, K
single-antenna relays and an N antenna destination, assume that user i is
operating at rate Ri = ri log ρ. The ML-decoder error probability behaves like

Pe(ρ, r) = ρ−d∗(r) (5.81)

where r = (r1, r2, . . . , rL) and

d∗(r) = min
S

d|S|M,K,N

(∑

i∈S
ri

)
(5.82)

with S ⊆ {1, 2, . . . , L} if the normalized codeword difference matrices ΦS for
all pairs of codewords in the family of codebooks satisfy

min(N,|S|MK)∏

j=1

|λj(ΦS)|2 >̇ ρ−2
∑

i∈S ri (5.83)

for every subset S.

Proof. As in [57], we define the outage event as follows for a multiple access
channel. For a multiple access channel with L users, each equipped with M
transmit antennas, and a receiver with N receive antennas the outage event
is defined as

O ,
⋃

S
OS (5.84)

where the union in (5.84) is taken over all subsets S ⊆ {1, 2, . . . , L} and OS
is defined as

OS ,
{
H̃ ∈ CLMK×N : I(Y;CS |CSc ,H = H̃) <

∑

i∈S
Ri

}

where CS contains the input signals from the users in the set S and CSc con-
tains the signals from the users in the complementary set Sc. By subtracting
the signals from the users in Sc and allowing cooperation between the users
in S, we can write

Y =
√

ρβH̃SCS + N (5.85)
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where H̃S contains the fading coefficients for the system where |S| users are
allowed to cooperate. By allowing the users in S to cooperate, the problem
takes a simpler form with |S|M transmit antennas, K relays and N receive
antennas communicating over a half-duplex communication protocol. To get
a lower bound on the outage probability, we can assume CS to have an i.i.d.
Gaussian distribution (as done in the proofs of theorems 1 and 2). Now let
the target data rate for user i be Ri = ri log ρ for i ∈ (1, 2, ..., L). By theorem
1, the outage probability in the limit of high SNR for the system where the
users in the set S are allowed to cooperate satisfies

P[OS ] .
= ρ

−d∗|S|M,K,N
(
∑
i∈S

ri)

. (5.86)

From the definition of outage event in (5.84), we know that

P[O] = P
[⋃

S
OS

]
≤ ∑

S
P[OS ] .

= P[OS∗ ] (5.87)

where S∗ is the subset of {1, 2, . . . , L} with the slowest decay rate of P[OS ],
i.e.,

S∗ = arg min
S

d∗|S|M,K,N

(∑

i∈S
ri

)
. (5.88)

Combining with the fact that P[O] ≥ P[OS∗ ], we must have

P[OS∗ ] ≤ P[O] = P
[⋃

S
OS

]
≤̇ P[OS∗ ] . (5.89)

From (5.89), we conclude

P[O]
.
= P[OS∗ ] . (5.90)

To obtain an upper bound on the error probability, we use the smart union
bound approach [54][13] and analyze the worst case pairwise error probability
(PEP). Consider the error probability of the joint ML decoder. We define
the type S-error event as

ES , {m̂i = mi,∀i ∈ Scand m̂i 6= mi, ∀i ∈ S} (5.91)

where m̂i is the decoded message for user i and the non-empty set S is
S ⊆ {1, . . . , L}. Thus ES is the event that the receiver makes wrong decisions
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on the messages of all the users in the set S, and makes correct decisions on
the rest.

P[Error] = P
[⋃

S
ES

]
≤ ∑

S
P

[
ES

]
(5.92)

Assume without loss of generality that S = {1, 2, . . . , |S|}.
CT = [X̃T

1 X̃T
2 . . . X̃T

|S| X̃
T
|S|+1 . . . X̃T

L]

is the set of effective transmit codewords stacked together.

ET = [X̂T
1 X̂T

2 . . . X̂T
|S| X̂

T
|S|+1 . . . X̂T

L]

is another set of effective transmit codewords. For a type S−type event we
have

CT = [X̃T
1 X̃T

2 . . . X̃T
|S| X̃

T
|S|+1 . . . X̃T

L] (5.93)

ET = [X̂T
1 X̂T

2 . . . X̂T
|S| X̃

T
|S|+1 . . . X̃T

L] (5.94)

where X̃i 6= X̂i for all i = 1, 2, . . . , |S|. Now this event occurs if the receiver
makes a wrong decision in favor of one such effective codeword E

P
[
C → E|H̃

]
= Q




√
ρ̃

2
‖H̃(C− E)‖2


 (5.95)

= Q




√
ρ̃

2
‖H̃S(CS − ES)‖2


 (5.96)

= Q




√
ρ̃

2
‖H̃SΦS‖2


 (5.97)

where H̃S = [H̃1 H̃2 · · · H̃|S|] and ΦS = CS − ES . Now if for every pair of
codewords E and C in every codebook

min(N,|S|MK)∏

j=1

|λj(ΦS)|2 >̇ ρ−2
∑

i∈S ri (5.98)

where are the smallest min(N, |S|MK) singular values of the normalized
codeword difference matrix for every subset S, then analysis from the proof
Theorem 2 guarantees that in the limit of high SNR each P

[
ES

]
decays

according to

P
[
ES

] .
= ρ−d|S|M,K,N(

∑
i∈S ri) (5.99)
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which when put together with (5.92) gives

P[Error] = P
[⋃

S
ES

]
≤ ∑

S
P

[
ES

] .
=

∑

S
ρ−d|S|M,K,N(

∑
i∈S ri) (5.100)

P[Error] ≤̇ ρ−d|S∗|M,K,N(
∑

i∈S∗ ri) (5.101)

where S∗ is given by

S∗ = arg min
S

d∗|S|M,K,N

(∑

i∈S
ri

)
. (5.102)

Putting it together we have

P[O] ≤ P[Error] ≤ ∑

S
P

[
ES

]
(5.103)

ρ−d|S∗|M,K,N(
∑

i∈S∗ ri) ≤̇ P[Error] ≤̇ ρ−d|S∗|M,K,N(
∑

i∈S∗ ri) (5.104)

P[Error]
.
= ρ−d|S∗|M,K,N(

∑
i∈S∗ ri) (5.105)

where S∗ is as defined in (5.102).

We explain the implications of the theorem using a two-user example. The
subsets of {1, 2} are {1}, {2}, {1, 2}, meaning that the following codeword
difference matrices should obey the condition in the theorem for achieving
the DMT simultaneously, that is,

min(N,MK)∏

j=1

∣∣∣λj

(
Φ(1)

)∣∣∣
2
>̇ ρ−2r1 (5.106)

min(N,MK)∏

j=1

∣∣∣λj

(
Φ(2)

)∣∣∣
2
>̇ ρ−2r2 (5.107)

min(N,2MK)∏

j=1

∣∣∣λj

(
Φ(1,2)

)∣∣∣
2
>̇ ρ−2(r1+r2) (5.108)

where

Φ(1) =




∆S1
TGT

(1)

∆S1
TGT

(2)
...

∆S1
TGT

(K)




(5.109)
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Φ(2) =




∆S2
TGT

(1)

∆S2
TGT

(2)
...

∆S2
TGT

(K)




(5.110)

Φ(1,2) =

[
Φ(1)

Φ(2)

]
. (5.111)

Discussion

Unless we know more about relative eigenvalues of codeword different matri-
ces in (5.109) and (5.110), we cannot further simplify the conditions (5.106)
and (5.107). However, condition (5.108) can be written in a simpler manner

observing that non-zero eigenvalues of Φ(1,2)
(
Φ(1,2)

)H
and

(
Φ(1,2)

)H
Φ(1,2) are

identical, and are exactly the magnitude squares of singular values of Φ(1,2).
Assuming that MK > N , it is possible to further simplify (5.108) to

N∏

i=1

µi

(
2∑

i=1

(
Φ(i)

)H
Φ(i)

)
>̇ ρ−2(r1+r2) (5.112)

and (5.106) and (5.107) to

N∏

i=1

µi

((
Φ(1)

)H
Φ(1)

)
>̇ ρ−2r1 (5.113)

N∏

i=1

µi

((
Φ(2)

)H
Φ(2)

)
>̇ ρ−2r2 (5.114)

where µi (·) is the ith eigenvalue of the corresponding matrix (in ascending
order). In comparison to the frequency selective point-to-point MIMO design
criterion at high SNR [21], we see that the conditions (5.106-5.108) are more
difficult to satisfy. A dominating error event derivation (e.g. [21]) needs to
be carried out here to understand the DMT achieving criterion better.

Implications on the Code Design

The code design criterion tells us that it is sufficient to design the user codes
to obey the individual rate constraints and jointly in order to obey the sum
rate constraint. Can we do better? Is it possible to simplify the design
criterion so as to design for the dominating error event? The answer to this
difficult question is the following: Even though we can design our codebooks
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for the dominating user, we cannot ignore the design choices required for the
other user.
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Figure 5.2: Symmetric Tradeoff: DMT curves for a system with 3-users each
with 3 transmit antennas, K relays and a 12-antenna destination terminal.
For comparison, we include the DMT for a point-to-point system of same
dimension (without relays).



Chapter 6

Scaling laws for large ad-hoc
wireless networks with
Wishart-Poisson fading

Giuseppa Alfano, Maxime Guillaud, and Antonia M. Tulino

In the analysis of large random wireless ad hoc networks, the underlying
node distribution is almost ubiquitously assumed to be the homogeneous
Poisson point process. Despite the nice analytical properties of such model,
the spatial randomness has been, however, mainly exploited for connectivity
and interference analysis, but has not yet been taken into account explicitly in
the scaling laws evaluation. We move here a first step toward the evaluation
of an upper bound on the aggregate throughput when the additional random-
ness due to the spatial node distribution is taken into account, together with
the presence of power attenuation and random phase changes. This could
be seen as a first attempt to connect some overoptimistic results based on
stochastic channel model to more realistic analysis, relying on electromag-
netic propagation arguments.

6.1 Introduction

The question of what is the maximally achievable scaling of the total through-
put with the system size in an ad hoc wireless network has been first tackled
by Gupta and Kumar in [26] where, considering n nodes, randomly located
in the unit disk and wishing to communicate each to a random destination
at rate R(n), it is showed that multihop communication with conventional
single-user decoding cannot achieve a scaling better than O(

√
n). This

70
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landmark contribution, which is on its own an interference limited result, has
stimulated also the scientific community in providing a quantification of what
is the fundamental (i.e. independent on the communication paradigm) limit
of throughput scaling in such networks. A substantial amount of works has
then appeared, dealing with the scaling evaluation problem under different
assumptions on the electromagnetic propagation process, which led to (very)
different lower and upper bounds on the overall information rate scaling.
The most optimistic results rely on (almost) full cooperation between nodes
and/or nodes clusters, and promise scaling of O(n2/3) [51] and even O(n1−ε)
[47]. The information-theoretic capacity of a random ad hoc network seems,
thus, to well approximate that of a single-user MIMO system, where coop-
eration between transmit and receive antennas can be fully exploited. The
network effect1 appears as a panacea against the interference impairments,
and a suitable upper bound on the aggregate rate turns out to be of order
O(n log n) [47, Th. 3.1]. However, an analysis exploiting spectral behavior
of the electromagnetic field showed that, for the assumed geometry, a scaling
better than O(

√
n log n) is forbidden by physical limitations [20], since the

degrees of freedom of the radiating field, namely, the number of available
dimensions in the space whom the radiation operator (i.e. the functional
representing the radiated field from the nodes in the transmit side of the
network) belongs to [12], is bounded by

√
n log n, as n grows large.

Such a result relies on pure physical (geometric) structure analysis of the
communication system under consideration, and shows that more optimistic
scenarios are somewhat unrealistic. Usefulness and effectiveness of stochastic
channel models cannot be, however, denied at once. The question arise,
rather, of how to find a link between the optimistic, stochastic channel based
result of linear scaling and the actual square root decay law, dictated by
functional analysis.

A first step is made in the present paper by both taking into account
some stochastic geometry aspects usually neglected in the common approach,
as well as exploiting in our network framework some mutual information
expansions, widely adopted in the single-user multiantenna systems analysis.

We first embody spatial randomness, borrowing results from [28], in the
characterization of a MIMO communication between geometry-dependent
clusters of the networks, providing explicit expressions for some functions of
the eigenvalues of the newly defined channel matrix which are useful in the in-
formation theoretical analysis. Then, using tools from random matrix theory
already proven to be effective in the single-user multiple antenna scenario,

1We use the locution to refer to the diversity achievable through the full cooperation
among the nodes, as in [47].
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we provide the evaluation of the cut-set bound for a large wireless network
with Rayleigh faded long-range links, noticing that such an approach allows
to recover both the O(

√
n log n) as well as the linear scaling as particular

cases.

The paper is organized as follows: Section II contains the system model
description, and a list of assumptions on the stochastic propagation process is
therein reported. The MIMO Wishart-Poisson model for the wireless channel
is defined and analyzed. In Section III a basic SIMO upper bound on the
capacity scaling is evaluated under different choices of the path-loss exponent,
while a cut-set result is presented and discussed in Section IV.

6.2 System Model and Assumptions

Let N be a two-dimensional stationary Poisson point process over Re 2,
defined on a probability space (Ω,F , P ).We denote by E[·] the expectation
taken with respect to the measure induced by P . The points of the process
represent the (fixed) locations of the devices. The process is assumed to have
intensity 0 < λ < +∞, where λ is defined as the expected number of points
in the unit square. Given a finite Borel subset A ∈ Re 2, the number of points
of N in A, denoted by N (A), is then a Poisson random variable of intensity
λν(A), where ν(A) is the Lebesgue measure of the set A. White Gaussian
noise of power N0 is assumed to be present at the receiver, and each node
transmits at a prescribed power level Ptx.

We assume that the channel gain between any nodes pair is subject to
random phase changes, and that each node is in far-field zone with respect to
any randomly picked one. The model closely follows the assumptions in [47],
and the only difference consists in explicitly taking into account the spatial
randomness of the devices locations, whose (ordered) distances probability
density function (pdf) is provided in [28].

Our aim is to analytically characterize the communication protocol pro-
posed in [47]; a first step consists of the distribution of the bits to be sent from
the source to its first m neighbors, then, a traditional MIMO communication
between the two clusters which source and destinations, respectively, belong
to, takes place, and finally a joint decoding of the received bits, sent back
from its neighbors to the intended destination, is performed. The impact
of nodes stochastic geometry on the first and third step will be analyzed,
while a deeper analysis of the random distances impact on the inter-cluster
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transmission would require exploitation of some results in [11, and references
therein] and is subject of ongoing work.

6.2.1 Spatial gain matrix

Let us consider the information sharing between the source and its m neigh-
bors. The point-to-point channel from the source node, sending symbol xk

to its k-th neighbor can be represented as

zk =
√

Gejθkr
−α/2
k xk + nk (6.1)

where the received signal is indicated as zk, the gain G can be assumed to
be either a deterministic constant (see, e.g., [47]) or a random variable2, rk

follows the generalized Gamma distribution given in [28, Eq. (2)], α ≥ 2 is
the path loss exponent, and θk is the random phase on the channel between
the source and its k-th neighbor. The random variables rk and θk are assumed
to be independent.

In two dimensional random networks, the pdf of the distance from the
source to its k-th nearest neighbor3 can be written as

frk
(r) = e−λπr2 2(λπr2)k

r(k − 1)!
, (6.2)

and, in turn, denoting by yk = Gr−α
k the fading amplitude seen from such

neighbor4,

fyk
(y) =

(
2

α

)
e−λπ(G/y)2/α

y(k − 1)!
(λπ)k

(
G

y

)2k/α

. (6.3)

The m-th moment of the random variable yk has thus the following
expression:

E[ym
k ] =

Gm(λπ)
αm
2

(k − 1)!
Γ

(
k − αm

2

)
. (6.4)

Such a general model may, however, suffer from the singularity of the
path loss function with respect to distance if the network is very dense. A

2In this case, we will assume a unit-mean distribution for G, following [28]
3There is no loss of generality assuming the source located at the origin for each cluster,

due to the homogeneous Poisson distribution of the nodes. In fact, it is well known that
the spatial nodes distribution conditioned on having a node in the origin is the same as
the original one for a homogeneous Poisson point process.

4We remark that expression (6.2) refers explicitly to the case of deterministic G, while
it can be viewed as a conditional distribution if G is assumed to randomly vary.
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way to cope with such problem is to consider a regularized version of the
path loss function (see, e.g. [17]), namely to model the channel through

zk =
√

Gejθk max{r0, rk}−α/2xk + nk, (6.5)

with r0 a prescribed constant, which regularizes the unbounded behavior of
the attenuation function close to the origin. The Cumulative Distribution
Function (CDF) of the random variable uk = max{r0, rk} can be written as

Fuk
(x) =

[
1− e−λπx

n−1∑

`=0

(λπx)`

l!

]
1r0≤x,

and its pdf as

fuk
(x) = γ(k, λπx)δ(x− r0) + 1r0≤xλπeλπx (λπx)k−1

(k − 1)!
, (6.6)

with γ(k, x) =
∫ x
0 tk−1e−tdt the lower incomplete Gamma function. With

that,

E[u−α
k ] = r−α

0 γ(k, λπr0) +
(λπ)α

(k − 1)!
Γ(k − α, λπr0),

where Γ(k, x) =
∫∞
x tk−1e−tdt is the Incomplete Gamma function. The first

step of information sharing among the source and its neighbors can be then
modeled through a diagonal random matrix G, which we refer to as the
spatial gain matrix from now on, whose squared nonzero entries marginally
follow, depending on the chosen attenuation model, either the law (6.3) or
(6.6).

To additionally take into account channel randomness due to amplitude
fluctuations and not just to stochastic distances, we model G as exponentially
distributed with unit mean, i.e. fG(x) = e−x. The random variable Yk =
Gr−α

k pdf can be evaluated through

fYk|rk
(y) = e−yrα

k rα
k ,

so that

fYk
(y) =

2(λπ)k

(k − 1)!

∫ ∞

0
e−yrα

k−λπr2
kr2k+α−1

k drk,

which for α = 2 leads to fYk
(y) = k(λπ)k

(y+λπ)k+1 . Notice that this distribution has
finite moments up to the order m = k − 1, according to previous results in
[28].
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A general expression for fYk
(y) when α > 2 can be more easily evaluated

via fYk
(y) =

∫∞
0 fYk|G(y|x)e−xdx, with fYk|G(y|x) given by (6.3). Following

this way, we finally get

fYk
(y) =

(
2

α

)
(λπ)k

(k − 1)!

Γ(β)

[y(1 + y−2/αλπ)]β
, (6.7)

with β = 2k
α

+ 1.

6.2.2 The MIMO Wishart-Poisson model

The second step of the communication can be modeled as a MIMO commu-
nication on the linear channel

z = HGx + n

where x and z are, respectively, the input and output vectors while n is white
Gaussian noise. The channel between the two clusters is represented by the
m×m zero-mean random matrix H, with i.i.d. Gaussian entries, where m is
the (common) size of the clusters, while the diagonal matrix G accounts for
the additional randomness due to the intra-cluster information sharing and,
in particular, Gk,k =

√
Gejθkr

−α/2
k .

The information-theoretic analysis of the above channel subsumes the sta-
tistical characterization of the grammian channel matrix HGG†H†, which
will be the main subject of the present Section. We will study in particular
the positive definite matrix T = GG†, whose main diagonal contains strongly
correlated entries, due to the distances ordering. A way to get rid of the
correlation and deal with independent entries is to condition the process
on having a certain number of nodes in a given interval, or, equivalently,
conditioning on the value of rα

m+1 = a.
With that, following again [28] one can then evaluate the marginal density

distribution of an unordered nonzero entry of T obtaining

f (a)
yk

(y) =
2

yα

(
1

ay

)2/α

Γ
(
β′,

1

a

)
(6.8)

with β′ = 2
α
+1 and, as a consequence, the moments of the trace of the matrix

related to the spatial randomness. In particular, when the channel between
the source and the neighbors is unfaded, one can evaluate for the matrix T
both the Shannon and the η-transforms, whose expressions will be helpful in
evaluating the information flow between the two clusters.
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6.2.3 Shannon Transform

Following [60, (2.47) and (2.49)], we evaluate the transforms for the law in
eq. (6.8), obtaining,

ηT(γ) =

(
a

γ

)
2F1

(
1, β′; β′ + 1;− a

γ

)

β′
, (6.9)

with 2F1 the Gauss Hypergeometric function [4], and, respectively,

νT(γ) =

(
α

2γ

) 
aβ′


γ

α


γ

α

2F1

(
1, 2− β′; 3− β′;−γ

a

)

2
α
− 1

+

log
(
1 +

γ

a

))
−

(
γ

a

)β′

π csc (πβ′)

)]
. (6.10)

From the expressions above, moreover, we can evaluate the Shannon trans-
form for the compound channel matrix as [60]

νHTH†(γ) = β̃νT(ηγ) + log
1

η
+ (η − 1) log e, (6.11)

with η the solution to

β̃ =
1− η

1− ηT(γη)
.

6.2.4 Moment Generating Function

A further tool to investigate the finite-size behavior of the Wishart-Poisson
model above proposed is the Moment Generating Function (MGF); referring
to [60, eqq. (2.20) and (2.21)] we can provide the conditional (with respect
to T) MGF expression

E{det
(
I + HTH†)ζ |T} = 2F0(−ζ; m;−T). (6.12)

Notice that one among the hypergeometric coefficients is a negative integer,
hence the series in (6.12), for integer ζ, turns out to be a polynomial of degree
mζ [42, p. 258]. Moreover, writing

2F0(−ζ; m;−T) =
m∑

k=0

ζ
∑
κ

(−1)k(ζ)κ(m)κ

k!
Cκ(−T),

and recalling that zonal polynomials Cκ are symmetric, homogeneous polyno-
mials of degree |κ| in the eigenvalues of T, which are i.i.d. distributed with
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law (6.8), the unconditional MGF can be obtained through the evaluation of
E[Cκ(−T)]. The calculus boils down to the evaluation of the moments of the
random variables in (6.8). We note explicitly that, while for the asymptotic
analysis through Shannon and η-transforms in the absence of fading all the
involved parameters can be evaluated in closed form, the MGF only takes
finite values when the regularized attenuation function in (6.5) is exploited.

6.3 Scaling laws analysis: SIMO upper bound

Before evaluating the cut-set rate scaling of the network, we evaluate the
scaling achievable in the general case by exploiting the underlying spatial
random structure of the node process. We remark that after random source-
destination matching and the consideration of the actual power regimes
experienced by the nodes, such scaling will strongly change, as shown in
Section 6.4.

Theorem 4. The average aggregate throughput in a network with n nodes
distributed according to a two-dimensional homogeneous Poisson process is
bounded above by

T (n) ≤ Kn log log n (6.13)

Proof. Along the lines of [47], we can upper bound the transmission rate
R(n) from a source node s to the destination d by the capacity of the single-
input multiple-output (SIMO) channel between the source and the remaining
nodes. In our case, specifically, the bound turns out to be, for α = 2 and
exploiting (6.4),

E


log


1 +

P

N0

∑

i6=s

G

rα
i,s





 ≤ log


1 +

P

N0

∑

i 6=s

E

[
G

rα
i,s

]


≤ log

(
1 +

P G

N0

λπ
n∑

`=2

1

`− 1

)
,

which for large n tends to R(n) ≤ K ′ log log n by [4].
We explicitly note that, for α > 2, expression (6.4) is singular at least for

the closest neighbors. In this case, we resort to the regularized attenuation
function with first moment given by (6.6), noticing that

xnE1+α/2−n(x) + Γ(n)− Γ(n, x)

Γ(n)
≤ 1

n− 1
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and, then, still

E


log


1 +

P

N0

∑

i6=s

G

max{r, r0}α
i,s





 ≤ (6.14)

log


1 +

P

N0

∑

i6=s

E

[
G

max{r, r0}α
i,s

]
 =

log

(
1 +

P G

2N0rα
0

n∑

`=2

1

n− 1

)
.

6.4 Cut-set bound

The elegant derivation in [20] aims at obtaining an upper bound to the
mutual information between the nodes contained within a circular region
of area proportional to the node number and those placed in a circular
crown surrounding the first one. The information flow is split into two
contributions, a first one concerning the communication between the inner
nodes and those placed within an annulus of width δ, and a second one
coming from the information transfer to the remaining outer nodes. While
the first contribution analysis can be carried out without resorting to elec-
tromagnetic theory, a careful analysis of the degrees of freedom dictating the
maximum number of available independent channels (and thus, basically, the
achievable scaling) requires tools from functional analysis [12, and references
therein],[20]. Specifically, the rank of the radiation operator (i.e. of the
channel matrix) is evaluated performing a singular value decomposition of the
radiated field, which leads to the remarkable result that the effective number
of independent MISO channels between the inner nodes and the farthest
nodes is of order of

√
n, rather than proportional to n, thus forbidding a

linear scaling.
In this section, we aim at providing an upper bound on aggregate rate

sustainable by a large random network through some compact information-
theoretic performance indexes already proven to be very effective in the
design and analysis of single and multi-user wireless communications systems.
To bound the achievable information flow we resort to the classical cut-set
argument. Our study relies on the high Signal to Noise Ratio (SNR) affine
expansion of the mutual information in coherent MIMO channels [59] as to
the near-to-cut region, and on the low-power approximation [58], respectively,
for the remaining nodes.
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Before proceeding further in the analysis, we briefly recall the low and
high-power expansions to be exploited in the following, and their expressions
as a function of the involved channel matrices.

6.4.1 High and low-power mutual information analysis

In the high-SNR regime, one can expand the mutual information as a function
of the SNR

5 as [59]

I(SNR) = S∞

[
SNR|dB

3 dB
− L∞

]
+ o(1),

where

S∞ = lim
SNR→∞

I(SNR)

log2 SNR
(6.15)

and L∞, whose value is not of direct interest as long as just the scaling is to
be investigated, is defined in [59].

In the low-SNR regime instead [61], the key performance measures are
Eb

N0 min
(the minimum energy per information bit required to convey any

positive rate reliably) and S0, the capacity slope in bits/s/Hz/(3 dB), such
that

C( Eb

N0
) =

S0

3 dB

(
Eb

N0

|dB − Eb

N0 min

|dB

)
+ ε (6.16)

with ε vanishing faster than the main term as Eb

N0
approaches Eb

N0 min
. In the

following, we will be mainly concerned with the evaluation of the low-power
slope S0, since

Er
b

N0 min
= ln 2 for AWGN noise, irrespectively on the adopted

transmission scheme.

6.4.2 Upper bounding the information flow

We start from a square portion of the plane of linear dimension
√

n, where
n nodes are randomly deployed, and consider a cut dividing the area into
two equal halves. The maximum achievable sum-rate between the randomly
chosen source-destination pairs is bounded above by the capacity of the
MIMO channel between nodes S located to the left of the cut and nodes
D located to its right. Under fast fading assumption, such sum-rate can be
upper bounded by E[log det

(
I + HH†

)
], with H the channel matrix of the

overall MIMO system6.

5In our case of fixed transmit power and thermal noise at the receiver, SNR = Ptx/N0.
6We remark that a careful analysis of the network would require to adopt a (condition-

ally on the fading) euclidean random matrix model for H [11]. However, such discussion is
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We further consider the domain D to be sub-divided into a rectangular
strip of area 1 ×√n close to the border of the cut, which contains no more
than

√
n log n nodes [47, Lemma (5.1.a)]. By Hadamard’s inequality we can

write

log det
(
I + HH†

)
≤

log det
(
I + H1H1

†) + log det
(
I + H2H2

†) , (6.17)

where H1 is the channel matrix modeling the communication between the
nodes on the left of the cut, and those in the little strip, say the region VD and,
in turn, H2 is the matrix modeling the communication between the nodes on
the left and the remaining ones on the right D−VD. Nodes placed in the strip
VD, thus, are experiencing a communication in high-SNR regime, while the
remaining nodes communication takes place in the low-power regime. From
[59], S∞ ≤ min{ntx, nrx}, with ntx the number of transmit antennas and,
respectively, nrx the number of receiving antennas. For our channel, ntx =
O(n) and nrx = O(

√
n log n), S∞ ≤ √

n log n, confirming the
√

n law for the
near-to-cut region to which both purely stochastic and purely electromagnetic
approach end up [20][47]. As to L∞, its value can be approximated by [59,
Eq. (15)] (this is tantamount to assume the entries of H1 be i.i.d.). Finally,
by [58, eq. (19)],

S0 =
2neqtxneqrx

neqtx + neqrx

,

where neqtx and neqrx are equivalent number of transmit and receive antennas,
which take into account a reduction in the effective number of spatial degrees
of freedom due to phenomena impairing the transmit or, respectively, the
receive side of the channel. The work in [20], in particular, has revealed by
inspection of the radiation operator that the number of independent channels
crossing the cut toward the low-power region7 is O(

√
n log n), and that this

phenomenon can be interpreted as an effective reduction of the number of
independent receiving nodes within the abovementioned region. A more
qualitative analysis [3, Proposition I], comprehensive of both stochastic as
well as electromagnetic aspects, still shows such an impact on the spatial
degrees of freedom, reducible at the definition of neqtx and neqrx on the basis of
electromagnetic considerations in the region close to the transmitter and the
receiver, separately. Finally, we notice that if a separable correlation model

beyond the scope of the paper. We will, instead, make a simplifying assumption keeping
H zero-mean Gaussian with possibly correlated entries.

7The analysis is carried out in a region with circular symmetry, however as far as
asymptotic scaling is concerned the conclusions can be transferred also to a square
geometry.
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can be identified for the channel under consideration, due to [58, Property I],
O(1) ≤ neqrx ≤ O(n), and thus 1 ≤ S0 ≤ n (in order sense), encompassing
different scenarios, ranging from constant to linear throughput scaling with
n, and comprehensive of the

√
n law.

6.5 Conclusion

A closer look to random spatial features of large wireless networks has led to
the formulation of a new (matrix-variate) channel model, whose moments and
transforms have been in part evaluated, paving the way to future information-
theoretic analysis. The traditional cut-set argument has then been exploited
using an affine expansion of the mutual information approach, which shows
that the ultimate scaling law strongly depends on the spatial impairments
model. Future work will comprehend analysis of some commonly adopted
spatial correlation models and the discussion on their (eventual) fitting with
physically dictated scaling laws.
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Chapter 7

High and low-SNR regimes for
stochastic networks

Giuseppa Alfano, Maxime Guillaud, and Antonia Tulino

A compact model for the evaluation of scaling laws in random wireless net-
works is proposed and studied. The model allows the information-theoretic
characterization of both point-to-point as well as distributed communications.
It is analyzed under several assumptions about spatial correlation and the
utilized channel state information and transmission schemes.

7.1 Introduction

The promise of linear scaling of the aggregate throughput1 with the num-
ber of users has been for over a decade under the exclusive ownership of
multiantenna systems [55] and/or of fully coordinated multiuser schemes
[31, and references therein]. Far less promising were the so called ad hoc
networks, whose seminal investigation [26] led to the conclusion that the
sum-rate therein could scale only up to become proportional to the square
root of the number of users. More recent studies, however [46], exhibited

indeed some transmission protocols able to achieve up to O(n
h

h+1 ) aggregate
capacity scaling, where n is the number of users in a two-dimensional, planar
network of area proportional to n (extended network scenario) and h is any
positive integer. It seemed, then, that the loss in co-location and coordination
with respect to single-user multiantenna and/or multiuser schemes could be

1Throughout this paper, aggregate throughput denotes the maximum achievable sum-
rate between randomly chosen source-destination pairs in the network, following the cut-set
argument hypotheses in [14, Ch. 14].

82
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reduced or eliminated by paying a proper delay price. These results are,
however, in contrast with the physically achievable scaling [19], based on pure
geometric and electromagnetic arguments, which turns out to be of order

√
n

in a spatial region of area of O(n), regardless of the adopted communication
protocol.

The gap between the information-theoretic and the electromagnetic laws
needs thus to be closed, in order to provide an actual and tight upper
bound on the capacity scaling, to serve as a protocol design guideline. The
exploitation of the cut-set upper bound [14] for the network under exam offers
a supremum to the achievable aggregate rate in terms of the mutual infor-
mation conveyed by an equivalent Multiple-Input-Multiple-Output (MIMO)
channel. A particular care should be devoted then to adequately take into
account the several physical impairments [58, and ref. therein][59] already
arising in the point-to-point MIMO case, without neglecting the additional
randomness given by stochastic nodes locations (see e.g. [27]).

In this contribution, we will extend the approach proposed in [8] to
evaluate the scaling law of the aggregate throughput to a spatially correlated
channel, and then refine the analysis moving from an equivalent point-to-
point to a more effective equivalent broadcast channel. The paper is orga-
nized as follows: Section 7.2 recalls the cut-set bound derivation, and contains
some further background material on high and low-SNR scaling analysis. The
case of spatially correlated point-to-point channel is treated in Section 7.3.
Conclusion and hints for future work are contained in the final section.

7.2 Cut-set bound

Let us consider a network whose n nodes are randomly placed in a square
region of edge length

√
n. Without loss of generality, we will assume through-

out the paper the nodes to be located according to an Homogeneous Poisson
Point Process (HPPP) of unit intensity, and, unless otherwise stated, to
be single antenna equipped. By considering a cut which divides the area
into two equal halves, the maximum achievable sum-rate between randomly
chosen source-destination pairs is bounded above by the capacity of the
single-user MIMO channel between nodes S located to the left of the cut
and nodes D located to its right [14, Ch. 14]. Notice that, typically, there
will be approximately half of the nodes in the region S and the remaining
ones in the region D. Under fast fading assumption, such sum-rate can be
upper bounded by E[log det

(
I + HH†

)
], with H the channel matrix of the

overall MIMO system, and I the identity matrix. According to [46][19], we
further consider the domain D to be sub-divided into a rectangular strip,



84 MASCOT D3.2.2

say VD, of area 1 × √
n close to the border of the cut, which contains no

more than
√

n log n nodes [46, Lemma (5.1.a)], and a remaining region to
which we refer as D − VD. The idea behind this separation is that, due to
the randomness of the node positions, some nodes in VD can be arbitrarily
close to the boundary with S, and therefore (under the usual assumption of
a path-loss geometric in the distance between transmitter and receiver) enjoy
an arbitrarily high signal power, for which a separate analysis is required. By
Hadamard’s inequality, we can write

log det
(
I + HH†) ≤ log det

(
I + H1H1

†) + log det
(
I + H2H2

†) (7.1)

where H1 is the channel matrix modeling the communication between the
nodes on the left of the cut and those in the little strip, and, in turn, H2

is the matrix modeling the communication between the nodes on the left
and those in D− VD. Nodes placed in the strip VD, thus, are experiencing a
communication in high-SNR regime, while the remaining nodes communication
takes place in the low-power regime. Following [59][8], S∞ ≤ √

n log n, where
S∞ denotes the sum-rate slope in the high-SNR region. As to the low-power
slope2, since its evaluation involves the correlation structure of the receive
and/or transmit side, as well as the channel condition, the adopted protocol
and the amount of channel state information available at both receive and
transmit ends, we will make some further assumptions on the system, and
detail the results in the following Sections.

7.3 Spatially correlated MIMO

The low-power capacity slope for a Rayleigh fading MIMO channel can be
written as [58]

S0 =
2neq

T neq
R

neq
T + neq

R

,

where neq
T and neq

R are equivalent number of transmit and receive antennas,
which take into account a reduction in the effective number of spatial degrees
of freedom due to phenomena impairing the transmit or, respectively, the
receive side of the channel.

In [8] indeed, it is shown that, under the hypothesis of independent
signalling, 1 ≤ S0 ≤ n (in order sense), encompassing both linear (as a
limiting case) as well as

√
n law as a particular case. Linear scaling could

be, in principle, achieved only in case neq
T and neq

R are of the same order of

2We refer the reader to [58, Sec. I.B and III] for the introduction and an extensive
discussion on the low-power capacity slope in MIMO channels.
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magnitude. This is in contradiction with the electromagnetic argument of
counting independent channels in the low-power region [19], and the aim of
this Section is to detail a framework where stochastic and electromagnetic
arguments offer closer results.

A simplistic, though suitable, way to enhance channel non-ideality effects
is to express the random channel matrix following the Kronecker or separable
correlation model, i.e.

H2 = Θ
1/2
R WΘ

1/2
T (7.2)

where W is composed of independent unit-variance complex Gaussian ran-
dom entries. This model implies that the covariance matrix of each row of
H is thus given by ΘT while the covariance matrix of each column is given
by ΘR. From a physical point of view, in single-user MIMO systems this
means that the immediate surroundings to each array are responsible for
the correlation between its antennas but have no impact on the correlation
between the antennas at the other end of the link [40][22]. Such a model
could be questionable in the case of spatially distributed nodes, due to the
further geometric aspects to be managed in order to verify whether the spatial
distribution of the nodes in a region of the network does impact on the
correlation structure on the other side, but we choose as a starting point
of the analysis, and for ease of exposition, to keep it as far as no multiple-
polarizations and/or other signalling strategies, usually known as breaking
the Kronecker model, are not exploited.

In terms of the spatial correlation matrices, the equivalent number of
antennas can be expressed as [58, Corollary 2]

neq
T =

nT

ζ(ΘT)
neq

R =
nR

ζ(ΘR)
. (7.3)

with nT and nR the actual number of transmit (respectively, receive) anten-
nas, and the function ζ(·), often referred to as the dispersion of the (random)
square matrix of dimension m in the argument, defined as [58, Eq.(8)],

ζ(A) = m
E[Tr{A2}]
E2[Tr{A}] . (7.4)

Notice that, since a correlation matrix has unit diagonal elements, expression
(7.4) particularizes to

ζ(Θ) =
E[Tr{Θ2}]

n
. (7.5)

which is usually referred to as correlation number, and whose value is bounded,
being

1 ≤ ζ(Θ) ≤ n (7.6)
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with the lower bound achieved if and only if the sensor nodes are uncorrelated
and the upper bound achieved if and only if they are fully correlated.

The evaluation of S0 in our framework essentially boils down to the
evaluation of E[Tr{Θ2}] for Θ a suitable (random) spatial correlation matrix
in a wireless network.

As a first step to deeper understanding the random network behavior, we
analyze some among the most commonly adopted spatial correlation models,
namely

• Constant correlation model [52, Example IV]

Given ρ ∈ (0, 1), ΘRi,j(ρ) = ρ ∀i, j such that i 6= j.

• Jakes’ model [33]

ΘRi,j = J0

(
2π
λ

di,j

)
, with di,j the inter-node distances for an HPPP and

λ the carrier wavelength.

• Random Toeplitz

The n elements of the first row of ΘR, say ϑ1,j, j = 1, . . . , n are
independent random variables which form a Toeplitz matrix.

For simplicity, and in order to allow comparison with previous results such
as [46][19], we make the optimistic assumption w.r.t. transmit correlation
that ΘT = I, hence ζ(ΘT) = 1 and neq

T = nT .

7.3.1 Spatial correlation: analysis

Proposition 1. The correlation number of a constant correlation matrix
ΘR(ρ) can be written as ζ(ΘR(ρ)) = 1 + (n− 1)ρ2.

Proposition 2. The correlation number for the random Jakes’ model when
nodes locations follow a HPPP pattern can be written as

ζ(ΘR) = 1 +
n∑

`=2

(
n

`

)
n−∑̀

t=0

(−1)t

` + t

(
n− `

t

)
·

2F3


` + t, 1/2; 1, 1, ` + t + 1;−

(
2π
√

n

λ

)2

 , (7.7)

where pFq is the generalized hypergeometric function [24].
Proof: See Appendix.



WP-3 87

Proposition 3. The correlation number when the entries of ΘR are inde-
pendent, nonzero mean3, subgaussian random variables4, with common mean
µ, forming a Toeplitz matrix, can be lower bounded by

ζ(ΘR) ≥ µ.

Proof: See Appendix.

7.3.2 Spatial correlation: discussion

The listed results are worth some comments; notice that, since the number
of nodes in S and that in D− VD are of the same order, one can write as for
the single-user MIMO channel with both receiver and transmitter equipped
with the same number of antennas [58, Corollary 3]

S0 =
2 n

1 + ζ(ΘR)
. (7.8)

Particularizing the above equation to the constant correlation model, it is
evident that it offers a very poor low power scaling, namely a per-node decay
of the throughput as fast as O(n−1). Constant correlation suitably models a
scenario where receive nodes are so closely spaced as to not to experience any
anisotropy in the received signal behavior. One should then be very careful
in stating that colocated nodes are most likely to well cooperate and offer
higher throughput, since also such spatial impairments, like in the single-user
MIMO case, have to be taken into account.

Things strongly change when putting into (7.8) the Jakes based corre-
lation number. Indeed, one can numerically verify that the summation
of hypergeometric functions does not cause a substantial increase of the
correlation number. However, such a parameter has been evaluated under
overoptimistic hypotheses, namely assuming that inter-nodes distances are
scattered as randomly as a HPPP dictates, and that the sensors are omni-
directional. A numerical investigation of a generalized Jakes model, keeping
fixed the angular beam of interest for the received signal, and relying on

3We cannot assume the mean of all elements to be zero since at least for the diagonal
elements we should ensure them to have unit mean, in order to comply with the definition
of correlation number.

4A random variable X is called subgaussian if

P[|X| ≤ t] ≤ 2e−at2 ∀t ≥ 0

and for some constant a > 0.
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distance statistics tailored on a non-isotropic node radiation pattern (see
e.g.[28, Corollary 3]) would offer more significant results.

The Toeplitz scenario is the more challenging from a mathematical point
of view. Indeed, the given bound is trivial when µ = 1, which indeed
should be at least on the main diagonal. Consider, however, that an actual
evaluation of the correlation number would involve nonlinear statistics of the
noncentral Toeplitz matrix entries, while we are herein exploiting results on
the spectral norm, i.e. the square of the maximum eigenvalue of the matrix
under exam. Notice further that the given result is based on approximating
the elements of the random correlation matrix to have all the same first
moment, which clearly does not apply to a real world scenario.

The brute-force generalization (and, even, adoption without any adapta-
tion) of the correlation models of the point-to-point scenario is questionable,
tough, it suggests further lines of investigations. Mostly, the question arises
of how to refine the stochastic channel model in order to embody the system
geometry, while keeping it still analytically tractable.

While a good alternative to separable correlation models, actually sub-
ject of ongoing work, is the adoption of Vandermonde-like channel matrices
([43][45]) in order to accounting for the randomness of phases relationships
between the receive sensors, we believe, nevertheless, that the inherent broad-
cast setting of the cut-set strategy in our framework (a single multiple-
antenna user, whose role is played by the nodes in S, which sends data
to two users in very different SNR regimes, namely the nodes in VD and in
D − VD) could be also characterized resorting to tools indeed developed in
the broadcast framework.

7.4 Conclusion

Upper bounds for the scaling laws of the aggregate throughput in random net-
works are provided in a compact way, using well assessed and effective tools
from multiple-antenna literature. Both point-to-point as well as broadcast
frameworks are exploited, leading to the remarkable result that the overall
scaling, up to first order analysis, is strongly limited by the information flow
among nodes experiencing communications in the low-power regime.
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APPENDIX

A: Proof of Proposition 2

The assumed system geometry implies that ΘRi,j = J0

(
2π
λ

di,j

)
with di,j

the random distance between the i-th and the j-th node in D − VD. The
k-th diagonal entry of ΘR, since di,j = dj,i, can be written as ΘR

2
k,k =

1 +
∑n

` 6=k J 2
0

(
2π
λ

d`,k

)
, from which

E[Tr{ΘR}2] = n +
n∑

k=1

n∑

` 6=k

E[J 2
0

(
2π

λ
d`,k

)
].

Distance statistics of random pairs in a network are to the best of the
authors knowledge not available in handy form; rather simplified expressions
have been provided instead in very recent years as long as ordered distances
in HPPP are concerned. Since the value of the mean is not altered by
considering for each k the sum ranging over the ordered distances from node
k, we can write the probability density function of the `-th ordered distance
from node k as in [53, Th. 2.1]

fd`
(r) =

2

L

(
n

`

) (
r

L

)2`−1 n−∑̀

t=0

(−1)t

(
n− `

t

) (
r

L

)2t

r ∈ (0, L)

where L is the typical linear dimension of the finite region where nodes are
placed and herein is of the order of

√
n. Since the n − 1 ordered distances

are identically distributed whatever choice of the origin node is made due to
the homogeneity assumption, we can then sum up over k and write

ζ(ΘR) = 1 + 2

(
n

`

)
n∑

` 6=k

n−∑̀

t=0

(−1)t

(
n− `

t

)

∫ L

0

(
r

L

)2`+2t−1

J 2
0

(
2π

λ
r
)

dr

L
, (7.9)

from which (7.7) follows.

B: Proof of Proposition 3

Follows from E[Tr{Θ2
R}] ≥ λ2

max, with λmax the maximum eigenvalue of ΘR,
and from [39, Eq.(8)].
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