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Abstract:

The focus of this deliverable is on the study of capacityaesi(i.e., the sets of jointl)
achievable rates) of multiuser MIMO systems by means ofyaicadnd simulation tools
Chapter 1 introduces the main concepts about the analyls tsed. Chapters 3 to
address the case of separately-correlated Rician fadmgaiwowband MIMO channel
by considering the following topics) transmitted signal covariance optimization in {
presence of intended and interfering signals second-order statistics of the mutual Jn-
formation in the presence of interference;) ergodic capacity region for a multiusgr
channel. Chapter 5 introduces interference functions dyar capacity regions (and
also other performance regions) by expressing them asesabdets of a certain intef-
ference function. Chapters 6 and 7 address the case of widdWBMO channels with
separately-correlated Rician fading and considers tHewiiolg topics: i) capacity ang
optimum signal covariance matrix for a point-to-point MIMi@k; i) ergodic capacity
region for a multiuser channel.
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Executive Summary

This deliverable summarizes the contributions in the MASCGRP3 concerning
the study of capacity regions for the multiuser MIMO channihe main target
of WP3 is to establish and investigate the fundamental padace limits of the
multi-user (MU) MIMO systems.

We focus on MIMO channel capacity in the Shannon theoretisseAccord-
ing to Shannon’s Theorem, the Shannon capacity of a sirggetime-invariant
channel is the maximum mutual information between the cekimput and out-
put. This maximum mutual information is shown to be the maximachievable
data rate, i.e., the maximum data rate that can be transhoier the channel with
arbitrarily small error probability. When the channel imé-varying, channel ca-
pacity has different definitions, depending on what is kn@lout the channel
state or its distribution at the transmitter and/or receaed whether capacity
is measured based on averaging the rate over all channes/stiatributions or
maintaining a constant fixed or minimum rate. In this case Shannon (ergodic)
capacity is the maximum mutual information averaged oVartalnnel states.

The research study described in this report has been inBddmg the meth-
ods of statistical physics, developed in the last centustudy the interactions of
particles in gases, fluids, and solids. Statistical phyasrecs multiuser communi-
cations show strong analogies from a conceptual point of.vigs a result, we
derive the asymptotic capacity of single-user and MU MIMQ@umhel by using
thereplica methodsindsuperanalysiswhich origin from statistical physics.

We study the ergodic capacity of the asymptotic separatetyelated Rician
fading MIMO channel with interference in in ChaptrIn this chapter we con-
sider the separately-correlated Rician fading MIMO chamwi¢éh narrowband
interference and calculate its channel capacity with tHg bmitation that the
receive correlation matrix is common for both the intendserisignal and inter-
ference. A simple method to derive the ergodic capacity aedcbrresponding
capacity-achieving covariance matrix for a MIMO fading shal with multiuser
interference is provided. The method applies when the gadiistribution is based
on the separately-correlated (Kronecker) Rician fadingleh@with common re-
ceive correlation), as the number of antennas grow asymaligtlarge. Numeri-
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6 MASCOT D3.1.3

cal results are provided to assess the accuracy of the agiiogmalytic method.
The results are compared to those obtained by more comptéeriration algo-
rithms proposed by by Vu and Paulraj [50] in the interferefree case. Next,
the analysis is extended to other MIMO channels affectedht®rfierence in order
to assess the benefits of covariance optimization versepermlent and uniform
power allocation (corresponding to iid transmitted synsipol

The second-order statistics of the mutual information efasymptotic separately-
correlated Rician fading MIMO channel with interference #re main subject of
Chapter3. This chapter aims at finding an analytic expression forrtimenent
generating functiorof the asymptotic mutual information. The results are based
on thereplica methodand superanalysispowerful tools developed in the con-
text of theoretical physics. Our initial findings are basedlwereplica method
which turned out in the recent past to be a powerful tool tadk@similar prob-
lems [58, 60, 61, 64]. Basically, we extend the approach bseMoustakaset
al. in [3], though in a nontrivial manner, to the correlated Ritifading case
and derive the mean and the variance of the mutual informatibhe mean
and variance of the mutual information of a separatelyatated Rician fading
MIMO channel are obtained in the presence of multi-accetesfarence, when
the number of transmit and receive antennas grows asyrogiigtiarge and per-
fect receive channel-state information is assumed. Theepee of line-of-sight
components induces additional coupling between the sarainterference parts
(off-diagonal matrix blocks in equation8.81)) in the saddle point approxima-
tion, which makes the calculations considerably compldxs problem is solved
by applying the methods a&uperanalysisleveloped in the context of theoretical
physics [52]. Analytic asymptotic results are compared bynk-Carlo simu-
lation in order to assess the accuracy of the method even Wigenumber of
antennas is small.

In Chapterd we study the ergodic capacity region of the separately ziea
Rician fading multiple access MIMO channel. This chaptespnts an asymp-
totic analytic method, still based on the replica method;alzulate theergodic
capacity regionof a multiple-access MIMO channel with correlated Riciad-fa
ing. The method applies when the number of antennas is vegg laut provides
very accurate approximations even with a small number adrards. We assume
that full channel state information at the receiver (CSB3vailable and the trans-
mitter knows the statistics of the channel, i.e., the chhdistribution informa-
tion at the transmitter (CDIT), but not the full channel staiformation. Based on
these assumptions, we provide an algorithm to find the maxiengodic sum-rate
achieving covariance matrices of a multiple-access MIM@nctel when the num-
ber of transmit and receive antennas grow asymptoticaiyelavith finite asymp-
totic ratios and the number of users and their SNR’s are firitethis context
we assume that the multiple-access communication chasaéfeicted by Rician
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fading with separate spatial correlation (with a commomnexpart and different
transmit parts). Our results rely on a previous work [25] rehtbe ergodic capac-
ity achieving covariance matrix was obtained for a sepbraterrelated Rician
fading MIMO channel with multiple-access interference iahhextended previ-
ous results due to Moustakas al. [3] relevant to the case of Rayleigh fading.
It is shown by numerical results that this asymptotic appioia very accurate
even when the number of antennas is as low as a few units. §bdiercapacity
achieving covariance matrices for all users are derivedrdang to the algorithm
provided and the corresponding capacity is compared wemihtual informa-
tion achieved by iid power allocation. Monte-Carlo simidas are also reported
in order to verify the accuracy of the asymptotic resultamig&ir results for the
separately-correlated Rician fading MIMO channel (withowltiple-access in-
terference) were obtained independently by Dunwiral. [31], using an asymp-
totic method based on Stieltjes transforms, and by Vu anét&4&0], using an
interior point with barrier optimization method [14].

The analysis of capacity regions is complicated by interiee between the
communication links(users). The achievable capacity @f lortk can depend on
the transmission strategies of other links. This typicediyults in a coupled sys-
tem with many degrees of freedom. Thus, well-establishethconication strate-
gies for point-to-point links are not always applicable toltiuser systems. Char-
acterization of wireless capacity regions can be quite aaviyvespecially when
additional system constraints are considered. This metvan abstract approach
based ornnterference functionsvhich focuses on some core properties.

Chapter5 investigates the system performance limits based on ereite
functions. One main contribution of this chapter is to shbat interference func-
tions can be used to analyse capacity regions (and alsopgermance regions).
In particular, every comprehensive capacity region carkpeassed as a sub-level
set of an interference function. This facilitates a gengeahework for analyzing
performance trade-offs in multiuser networks.

The results of this work, published in [75, 77, 80], show ttredre is a di-
rect correspondence between comprehensive performagmnseand interfer-
ence functions fulfilling the core properties of the inteefece functions. Further
properties, like convexity or log-convexity, can be add€ldis theoretical frame-
work facilitates a general and unifying approach for thdysia of different kinds
of capacity regions. By focusing on core properties, we ate @ develop a rig-
orous framework which allows for an analytical treatmenheTesults provide
intuition and a roadmap for the development of algorithm®@/iR1. An applica-
tion example is the iterative algorithm for max-min balargcpublished in [74].
Other resource allocation strategies are currently beiwngstigated in WP1. For
example, interference functions were successfully agpbethe analysis of re-
source allocation strategies based on cooperative garasytimg76, 79].
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Chapter6 extends the analysis carried out for the narrowband MIMOhoka
to the wideband MIMO channel based on OFDM signalling to ab@rize the
ergodic channel capacity. Although this is again an asytig@oalysis, numerical
results show that there is very good agreement with the astiopnalytic results.
The advantage of having analytic results consists maintgerfact that it allows
to optimize the input signal covariance matrix in order téed®ine the ergodic
capacity. The chapter focuses on a separately correladrRiading MIMO
channel under some mild technical assumptions, the keyamsasting in the fact
that only the shortest delay communication path has a liregiit components
while the remaining ones have only scattered componentis.chlapter provides
the basic tools on which the next Chapibuilds its developments aimed to
obtaining the full ergodic capacity region of a multiusertiple-access wideband
MIMO-OFDM separately correlated Rician fading channelisltvorth noticing
that the true ergodic capacity region is obtained in thig @=l not only the rate
region optimizing the ergodic sum rate. In order to achiéve tesult, somewhat
sophisticated convex optimization techniques have beglieap(interior point
with barrier optimization method from [14]) and the resudfiregion contains all
possible rate combinations that are achievable under thea giower constraint.
Again, these results have been obtained by using the astimppproach, and
numerical (Monte-Carlo) results have been also reportenider to establish the
accuracy of the analytic approach. It turned out that thexvery good agreement
between the asymptotic and the numerical results with a sergll number of
antennas.



Chapter 1

Introduction

Jialai Weng

1.1 Multiuser MIMO fading channels

Wireless systems continue to strive for ever higher datsrathis goal is par-
ticularly challenging for systems that are power, bandidhd complexity lim-
ited. However, another domain can be exploited to signifigancrease channel
capacity: the spatial domain based on the use of multiptestnit and receive
antennas. Pioneering work by Foschini, and Telatar ignitedh interest in this
area by predicting remarkable spectral efficiencies foelegs systems with mul-
tiple antennas when the channel exhibits rich scatteringitanvariations can be
accurately tracked. This initial promise of exceptionadpal efficiency resulted
in an explosion of research activity to characterize thenbtcal and practical
issues associated with multiple-input multiple-output D) wireless channels
and to extend these concepts to multiuser systems. We utdeosome recent
work focused on the capacity of MIMO systems for both singgers and multi-
ple users under different assumptions about spatial @diwaland channel infor-
mation available at the transmitter and receiver.

The large spectral efficiencies associated with MIMO chénare based on
the premise that a rich scattering environment providespeddent transmission
paths from each transmit antenna to each receive anteneaefdle, for single-
user systems, a transmission and reception strategy tpatitsxthis structure
achieves capacity on approximately separate channelgeviti¢he number of
transmit antennas and is the number of receive antennas, ddqpacity scales lin-
early with relative to a system with just one transmit and i@oeive antenna. This
capacity increase requires a scattering environment sathihte matrix of channel
gains between transmit and receive antenna pairs hasrillarad independent en-

9



10 MASCOT D3.1.3

tries and that perfect estimates of these gains are avaidlbhe receiver. Perfect
estimates of these gains at both the transmitter and regwedes an increase in
the constant multiplier associated with the linear scalMgch subsequent work
has been aimed at characterizing MIMO channel capacity rumiee realistic
assumptions about the underlying channel model and thenehagstimates avail-
able at the transmitter and receiver. The main question brotin a theoretical and
practical standpoint is whether the enormous capacitysgaitially predicted by
Winters, Foschini, and Telatar can be obtained in mores@alperating scenar-
ios and what specific gains result from adding more antennd®na feedback
link to feed receiver channel information back to the traittem

MIMO channel capacity depends heavily on the statisticapprties and an-
tenna element correlations of the channel. Recent workéadaped both analyt-
ical and measurement-based MIMO channel models along éthdrresponding
capacity calculations for typical indoor and outdoor eomments. Antenna cor-
relation varies drastically as a function of the scatteengironment, the distance
between transmitter and receiver, the antenna confignsatiand the Doppler
spread. As we shall see, the effect of channel correlatiorapacity depends on
what is known about the channel at the transmitter and recerorrelation some-
times increases capacity and sometimes reduces it. Marehannels with very
low correlation between antennas can still exhibit a kegledlect where the rank
of the channel gain matrix is very small, leading to limitexpacity gains. For-
tunately, this effect is not prevalent in most environmefitse impact of channel
statistics in the low-power(wide-band) regime has intimggproperties as well.

We focus on MIMO channel capacity in the Shannon theoretisase The
Shannon capacity of a single-user time-invariant charmdefined as the maxi-
mum mutual information between the channel input and outpbits maximum
mutual information is shown by Shannon capacity theoremetdhle maximum
data rate that can be transmitted over the channel withraribytsmall error prob-
ability. When the channel is time-varying channel capabag multiple defini-
tions, depending on what is known about the channel states alistribution at
the transmitter and/or receiver and whether capacity issored based on aver-
aging the rate over all channel states/distributions onta@iing a constant fixed
or minimum rate. In this case, the Shannon (ergodic) cap&ithe maximum
mutual information averaged over all channel states. Tigisdic capacity is typ-
ically achieved using an adaptive transmission policy whbe power and data
rate vary relative to the channel state variations. Othpaci#y definitions for
time-varying channels with perfect transmitter and reeei@SI include outage
capacity and minimum-rate capacity. These capacitiesinegufixed or mini-
mum data rate in all non-outage channel states, which isagkef applications
with delay-constrained data where the data rate cannomndepe channel vari-
ations (except in outage states, where no data is transinitiehe average rate
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associated with outage or minimum rate capacity is typrcathaller than ergodic
capacity due to the additional constraints associated thigke definitions. We
will focus on ergodic capacity.

When only the channel distribution is known at the transeifteceiver) the
transmission (reception) strategy is based on the chanstelbdtion instead of
the instantaneous channel state. The channel coefficientgmcally assumed to
be jointly Gaussian, so the channel distribution is spetifig the channel mean
and covariance matrices. We will refer to knowledge of thanetel distribution
as channel distribution information (CDI).We assume tgloaut the work that
CDl is always perfect, so there is no mismatch between theaCie transmitter
or receiver and the true channel distribution. When onlyrdueiver has perfect
CSI the transmitter must maintain a fixed-rate transmisstogtegy optimized
with respect to its CDI. In this case, ergodic capacity defithe rate that can be
achieved based on averaging over all channel states. Atteety, the transmitter
can send at a rate that cannot be supported by all channe$:siatthese poor
channel states the receiver declares an outage and thmiti@asdata is lost. In
this scenario, each transmission rate has an outage plibpalssociated with
it and capacity is measured relative to outage probabitigpécity CDF). For
single-user MIMO channels with perfect transmitter anceinggr CSI the ergodic
and outage capacity calculations are straightforwardesihe capacity is known
for every channel state.

In multiuser channels, capacity becomes aimensional region defining the
set of all rate vectors simultaneously achievable by alisiSEhe multiple capac-
ity definitions for time-varying channels under differerdgrismitter and receiver
CSI and CDI assumptions extend to the capacity region of thkipte-access
channel (MAC) in the obvious way. However, these MIMO mudgucapacity re-
gions, even for time-invariant channels, are difficult tafifrew capacity results
exist for time varying multiuser MIMO channels, especiallyder the realistic
assumption that the transmitter(s) and/or receiver(sg I only.

In this work we studied the ergodic capacity of single user muultiuser in a
correlated Rician fading channel.

1.2 Introduction to Asymptotic Analysis of MIMO
Channel

Wireless communication systems are designed to work imr@mvients with the
minimum possible amount of infrastructure. Their goal igtovide the users
with the freedom to communicate with whomever they want reigas wherever
they are. Since electromagnetic waves, the most populaeisof digital com-
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munications, propagate to almost any place, each userglthoommunicating
with only a single other user, interacts, in principle, wathother users in the net-
work. Such a setting is hard to press in formulas, in pariciilthe environment
is arbitrary. The failure of the so-calleldrd generation of wireless technology
is, to a large extent, due to a lack of understanding of thedurental principle
governing wireless communications in the presence of maeysuoperating si-
multaneously. This knowledge gap has become a severe bstahe further
penetration of wireless communication devices into modewiety and lifestyle
and, therefore, must be overcome.

Research on the behavior of systems where many bodies nyuiiigract
with many others has been driven forward by physicists forertban a century
studying the interactions of particles in gases, fluids,sidls. Statistical physics
and multiuser communications show strong analogies froonaeptual point of
view. In both cases many objects interact with each otheutyin variables that
are constrained in a certain way. These inter-disciplirmarglogies can be ex-
ploited to advance the understanding and design of futurel@gs communication
systems. Though the analogies between the two fields do teriéxoo far and,
in real world communication systems, statistical physéssiits cannot be applied
directly, the engineering community can strongly beneditrfithe analytical tool-
boxes developed by physicists. So far random matrix themigjnally studied
to describe spacings of nuclear energy levels, has recéieethost attention in
wireless system analysis and design. In addition, theaaphiethod developed
in statistical physics has entered wireless communicdatiarope with the often
binary nature of wireless communication signals. In wseleommunications,
random matrix theory and statistical mechanics tools haeevehelmingly used
for performance analysis. Many works have used these largfera tools for
actual design of communication systems.

Communication via MIMO channel allows a significant incre@s spectral
efficiency the information rate per communication link. \'é¢hmany recent re-
search works aim to utilize this advantage, it is still ndffisiently understood
how the physical properties of these channels translateaohievable signal-
to-interference-and-noise ratios (SINRs) and therefoeestipported information
rates. On the physical side, channel models are based oagatipn measure-
ments. They provide statistics of the propagation betwepaiof transmitter
arrays and receiver arrays in terms of delays, received pwaad directions of
arrival and departure. Statements about the informati@s izapable in the chan-
nel, however, are given in terms of the eigenvalues relatéde matrix algebraic
description of the communication link. Many works aim toldw bridge between
propagation scenarios and the eigenvalues of the covarraatrices of the chan-
nel in order to allow for predictions of channel capacitydmhen the morphology
of the physical medium. It is natural to describe a linearetimvariant MIMO
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system by its matrix valued impulse response. The matrinegitaps of the im-
pulse response of the antenna array channel depend on yagaoameters such
as the exact locations of all antenna elements and all scattebjects, which are
usually modeled as random variables in mobile communioatidhe quality of
the communication link, however, is mainly determined by $mgular values of
these matrix taps. It is well known that the singular valuies large class of ran-
dom matrix ensembles show fewer random fluctuations thed&ing matrices are,
and become deterministic in the limit of infinite matrix side the large matrix
limit, the influences of many properties of the matrix ergréee lost, such as the
shapes of their distributions, and in some cases even thstista dependencies
among them. Though the asymptotic distribution of singuédmes is only an ap-
proximation to the distribution in the case of finite-dimemsl matrices, it offers
two important advantages.

1) In contrast with finite-dimensional matrices, the sirrgwalue distribution
of asymptotically large random matrices can be calculatedyécally in many
cases. 2) In the asymptotic limit, only those physical patenms survive that
show significant influence on the singular value distrilbutio

With these two properties, the limiting singular value dizition can help to
analytically extract which physical parameters of the egaliopagation channel
largely determine the quality of a MIMO communication link.



Chapter 2

Ergodic Capacity of the Asymptotic
Separately-Correlated Rician
Fading MIMO Channel with
Interference

Giorgio Taricco,Erwin Riegler

2.1 Introduction

Multiple-input-multiple-output (MIMO) channels have itted considerable at-
tention during the last decade because of the promise of higty information
rates at an affordable cost. Seminal works by Winters [5alatar [46], Foschini
and Gans [32, 33] illustrated the principles of MIMO comnuations and how
to derive the channel capacity under tieh scatteringassumption, correspond-
ing to spatially-uncorrelated Rayleigh fading. More rabgrexperimental and
theoretical works showed that the rich scattering assumsi often inadequate
to encompass all the channel characteristic and more smaitésl correlated Ri-
cian fading models have been proposed to describe morstiedIMO chan-
nels [34, 35, 44]. Additionally, multiuser interferencekisown to have a consid-
erable impact on the achievable information rate an@Gasssian approximation
is known to produce unduly pessimistic results [27, 28].

In the current literature, separately-correlated Rayldagling with interfer-
ence has been considered by Moustaiaal. [3] as far as concerns the compu-
tation of the mean and variance of the mutual informationesehresults have
been extended in [8, 9] to the separately-correlated Rieidimg case without in-
terference and, more recently, with interference [43].tAdlse results address the

14



WP-3 15

evaluation of the mutual information when the number of anés grow asymp-
totically large. Many works address the derivation of cétydor specific MIMO
channels such as MISO with separately-correlated Raykighuncorrelated Ri-
cian fading [49], subsequently extended to the MIMO case3)y 48]. These
works derive the eigenvectors of the ergodic capacity &aigecovariance ma-
trix while the eigenvalue derivation is based on other nucaéralgorithms [39].
Other works in the area of MIMO capacity derivation are [2,488. In this con-
test, but using an asymptotic approach, Dumetrél. provide an algorithm for
the evaluation of thergodic capacityfor the separately-correlated Rician fading
MIMO channel without interference [31]. The authors conaptneir results to
those obtained by Vu and Paulraj [50].

In this work we consider the separately-correlated Riczlrfg MIMO chan-
nel with narrowband interference and calculate its chacahcity with the only
limitation that the receive correlation matrix is commonltboth the intended user
signal and interference. We compare our results with thbosaired numerically
by Vu and Paulraj [50] in the interference-free case. Thenextend our analysis
to other MIMO channels affected by interference and ass$essftect of covari-
ance optimization against iid power allocation (iid trafised symbols).

2.2 System model and basic results

We consider a narrowband block fading channel witleceive antennas trans-
mit antennas from an intended user, anttansmit antennas from an interfering
source. The channel is specified by the following equation:

y =Hx+Hx; +z. (2.1)

Here,x € C"*!is the transmitted signal vector; € C>*! is the interfering signal
vector, H € C™*! is the signal channel matril; € C"*> is the interference
channel matrixz € C™*! is the additive noise vector, agde C"*! is the received
signal vector. Botlx andx; are assumed to have zero mean.

We assume that the additive noise vector contains has zean arel covari-
ance matrixQ ; = E[zz"].

The channel matricebl and H; are assumed to be of separately (or Kro-
necker) correlated Rician fading typéth common receive correlationThus,
they can be written as

H=H+ RY?WT!?

and
H;=H;+ Rl/ZWIT}/Q,
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whereH and H; represent the average channel matrices related to thenpeese
of a line-of-sight signal component in the multipath fadeigannel, the Hermit-
ian positive definite matriceR, T, T; are the receive and transmit (signal and
interference) correlation matrices, aWd andW; have iid (0, 1) entries.

We define the signal and interference covariance matric€g asd Q;, re-
spectively. In the following we assume that the interfeeeaovariance matrix is
kept fixed and optimization is carried out on the signal ciavare matrixQQ under
a power constraint. Following standard conventions [1W&],define the Rician
factors as _

a [ H|”

- Tr(T) Tr(R) Tr(T;) Tr(R)’
We also define the signal-to-noise power ratio (SNR), therfatence-to-noise
power ratio (INR), and the signal-to-interference powdoréSIR) at the receiver
as

H|*

and K; £ (2.2)

SNR 2 (K +1) Tr( I’() r()R) Tr(Q/t); 2.3)
INR 2 (K;+1) Tr(T;) Tr(R) Tr(Q;/ 9);
Tr(Q2z)
SIR 2 (K+1)Tr(T) Tr(Q/t)

(K +1)T(Ty) Tr(Q;/ )

These power ratios coincide with the correspondeeivedpower ratios when
= (P/t)I, (iid transmitted symbols).
We know [29] that the random mutual information for a giveachel realiza-
tion is given by

I(x;y) = Indet(HQH" + H;Q/H + Qz)
— Indet(H;Q/H"Y + Q) nat/s/Hz (2.4)

Then, the ergodic capacity under a power constriirg obtained as

C= Trr(réz;ng[I(x, v)|. (2.5)

In order to calculate the capacit®.b) we resort to a recent result allowing to
calculate the average mutual information of a separatetyetated Rician MIMO
channel when the number of transmit/receive antennas grsyvsptotically large [8,
9]. Summarizing, the average capacity when the channelixriatil = H +
RY?WT'/2, and the noise and signal covariance matriced,aemdQ, respec-
tively, is given by

E[I(X; y)] ~ :uI(Hv Rv Tv Q) (26)
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nat/complex dimension, where we defined

2.7)

pn(H,R, T, Q) £ Indet <I’” T wR H > —wz

—ﬁH It + ZT

whereT £ Q'2TQ'?, T, 2 Q;*T,;Q}?, andw, ~ can be obtained by solving
the equations

w=Tr {[zIt LT+ TUHA(, + wR)—lﬁ]—l}
- o (2.8)
L =Tr {[er +R 4 ROHT + zT)—lﬂH]—l}

with H 2 HQY?, T 2 Q'/2TQ'/2.
This result can be applied to the calculation of the term2id)( In fact, to
calculate

I, £ E[lndet(I, + Q' (HQH" + H,QHY}))], (2.9)

we can consider the channel defined by
Q;"%y = { ;*(H,H)) (2.10)

~1/21/2 T O 1/2 X —1/2
HQPRIFW. W) (o S)+Q;

Then, we get
I, = MI(H17R1>T17Q1>

whereH, £ Q,'*(H,H,), R, £ Q,'’RQ,"* T, £ diag(T, T,), andQ, £
diag(@Q, Q). Similarly, defining
I, 2 Ellndet(I, + Q,'H;Q,HY)], (2.11)

we get
I, = MI(Hz,Rl,TbQI)

whereH, £ Q,'/*H;. Thus, we have

C = max (I1 — Ig)
Tr(Q)<P

—Trl(%afp{ﬂl(HlaRthQl) pr(Ho, Ry, Ty, Q) }-
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2.2.1 Definition of £,/ Ny and Shannon’s limit

Here we assume that the received noise vector is uncomelspatially white)
and henc&) , = NyI,.

We defineF), as the average received signal energy per bit obtained ity
the total average received signal energy by the average\adiie bit rate. Thus,
we have

By, , E[Tr(HQH")|
No  NoE[I(x;y)]

When the average signal and interference powers approaohatlh constant
ratio, we can use the approximatiandet(I + X) ~ Tr(X) (holding for any
nonnegative matriX whenTr(X) — 0) to approximate the average achievable
bit rate @.4) as follows:

In 2. (2.12)

EI(x;y)] ~ Ny 'E[Tr(HQH")].

Then, inserting the approximation above in2ol(?, we obtain

E
. In2 as Tr(Q) — 0,
No

which is the well known Shannon limit.

Remark 2.2.1 In most research works in MIMO communications, the SNR is
preferred to thds,/ N, ratio as a system cost indicator as it effectively describes
the channel reliability. However, only the,/N, ratio at the receiver provides

a precise description of the channel behavior in its asytigatty low power
regime.

2.3 Ergodic channel capacity

The ergodic capacity and the corresponding optimum cavegianatrix are de-
termined by maximizing the mutual information under the powonstraint con-
sidered. Following the approach in the previous sectioncaveobtain the mutual
informationI; for any given transmit covariance matigX in the asymptotic an-
tenna setting. Sincg, is independent of), the channel capacity can be obtained
by maximizingI; only, i.e.,

C = { s Il} L, (2.13)

where we assume that the interference covariance n@iris fixed.
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In order to solve the maximization problem we need to maxémizH,;, R, T1, Q,),
whereH, £ Q,'*(H,H)), R, 2 Q;"RQ;"* T, £ diag(T,T,), and
Q. £ diag(Q, Q;), with respect toQ and under the constraifr(Q) < P.
In order to proceed, we I& = Q'/2, S; = Q}/?, andS; = Q}/* = diag(S, S;)
and we write the Lagrangian function:

B Ir + le I::[lsl
L(S) = Indet ( ~S,HY I+ ZS1T1S1)
—wz — \[Tr(S?) — P (2.14)

where0 < P < P. Next, we calculate the first-order total variation Bfi4):
_ Al Bl
L= T Kc Dl)

_ Rl&g H,6S,
—581Hl£| SlT1815Z + 2(581T181 + SlTl(SSl)

—wdoz — zow — 2A Tr(SHS) (2.15)
wheredS; = diag(dS, 05«5) and [8]:
A, = [ +wR + ﬁl(It—l—B + Z'Tl)_lﬁ?]_l
_ —119
B, = ~(L +wRy)” HD, (2.16)
C = (Liys+ 2?1) fll Ay B
D, = [It+9 + 2T + Hlil(:[,n + ’LURl)_lHl]_l

whereH; 2 H,Q}? andT, 2 Q\/*T,Q;/*. Expanding 2.15 we get:
5L = [Tr(ARy) — z]éw + [Tr(D,Ty) — w]éz
-+ Tr[(—I:I?Bl + Clﬂl + Z(Tllel + D181T1))581]
—2XTr(S10S4) (2.17)

Since the first two terms ir2(17) are zero whem, z satisfy €.8), we can see that
the total variation £ is null, provided that the following equation holds:

{HY(L, + wRy)'HD; + (Lus + 2T1) 'HYA H,
+2(T1S:D1 + DS Ty) —2AS1 }i1e = 0 (2.18)

where(A),...q IS the submatrix ofd obtained by extracting the elements of rows
a to b and columnsg: to d. Then, we can show that:

(I, + wRy) "H Dy = (L5 4 2T) "HYA M
Therefore, we can simplify2(18 and obtain the following fixed-point equation:
S = A\'H[(EN(T, + wRy) T HH, + 2T1)S1Dy) s, (2.19)
whereH(A) £ (A + AM))2.
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2.3.1 Jensen approximations

In this section we extend the Jensen bound approach propo$&d] relevant
to the interference-free case. It is known from [29, 30, 4@ttthe following
inequalities hold for positive definite matricas X (X random):

E[lndet(X)] < Indet(E[X]), (2.20)
E[lndet(I+ X 'A)] > Indet(I+E[X]'A) (2.21)

Then, applying2.21), we have

Ell(x;y) | H]
= Elndet(I, + (H;QH" + Q;)'HQH") | H]
> Indet(I, + Q;HQH")

where we defined;; = E[H;Q;H" + Q]. Thus,
E[I(x;y)] > E[lndet(I, + Q;HQH")], (2.22)

i.e., the average mutual information of a MIMO channel wititerference is
lower bounded by the average mutual information of the sahammel where
interference is replaced by Gaussian noise with the samariamee matrix (see
also [27]). Applying sequentially inequalitie.21) and .20 (even though they
have opposite directions), we get the followirgnsen approximation

E[I(x;y)] ~ Indet(I, + EH"Q,;;H]Q). (2.23)

Hence, we can maximize this approximate mutual informakiprapplying the
standard water-filling approach [29]. If

EH"Q;;H] = UAU",
the optimum covariance matrix is given by

Q;=U(ul, — A1), U" (2.24)
wherey is obtained by solvingr|[(uI; — A™'),] = P and(A), is the matrix with

entriesmax{0, (A);; }.

2.4 Numerical results

In this section we present numerical examples based on thieocheleveloped
before.
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2.4.1 Comparison with the results from [50]

In order to validate the method proposed in this paper, wepeoenthe results
obtained versus those presented in [50]. Our results aepied in Fig2.1
(channel capacity) and.2 (normalized covariance matrix eigenvalues). Specifi-
cally, Fig. 2.1 reports the capacity obtained numerically in [50] (dotie& hwith
circles), the capacity obtained by our asymptotic apprdaohd line), and the
capacity obtained by Monte-Carlo simulation and using thegmit covariance
matrix obtained by our asymptotic approach (diamonds). Zigreports the nor-
malized covariance matrix eigenvalues obtained numdyioa[50] (dotted lines
with circles) and those obtained by our asymptotic apprdsclid lines with dia-
monds). In both cases, our results are in close agreemdn{>0L.

2.4.2 Impact of interference

We consider a MIMO system with the following parametets= r =>= 4,

K = K; = 10 dB, R, T, T; exponential matrice¢a!"~7| with basea = 0.7

in all cases)H, H; with rank one (all-equal entries). Fig2.3to 2.5 plot the
average mutual information f&R = —10, 0, 10 dB, respectively versus tI$NR

and the normalized optimu eigenvalues. The three mutual information curves
correspond to differenf: 1) optimum based on the proposed algorithm; 2) iid
symbols Q = ¢I,); 3) Jensen approximation; and 4) optimum with Gaussian
interference.

It can be noticed that the gain of the optimum versus iid davae matrix
may exceed 0 dB in some cases. Moreover, the Jensen approximation @evid
extremely accurate results up to some SNR threshold, abbiahvt starts to de-
grade (as can be noticed from F&j3). The goodness of the Jensen approximation
decreases (slightly) as the Rician factorgets lower. The channel capacity cor-
responding to the Gaussian approximation of interferescetch lower than the
true channel capacity 8tR = —10, 0 dB, as also evidenced in [28] for a Rayleigh
fading MIMO channel. The difference is more limited in thlR = 10 dB case.

In all cases, we have &8NR threshold, depending on t1%R, above which the
two capacity curves diverge.

2.4.3 Consistency with Shannon’s limit

Previous results reported the mutual information versasSiNR defined in4.3).

Fig. 2.6 reports instead the mutual information versus the recegdV, ratio
defined in .12. The diagrams show that the results obtained are consisitnm
the Shannon’s limit, as discussed in Sect2op.1
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Figure 2.1: Mutual information of thé x 4 MIMO channel proposed in [50].
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Figure 2.2: Normalized eigenvalues of the optimum transmvariance matrix
for the4 x 4 MIMO channel proposed in [50].
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Figure 2.3: Average mutual information of a MIMO channelwihterference
and parameters = r =3>= 4, SIR = —10 dB, K = K; = 10 dB, exponential
R, T, T; with base0.7, H, H; with all-equal entries. Optimum, Jensen, and iid
covariance curves (solid lines: asymptotic, circles: Me@arlo sim.). Optimum
normalized eigenvalues are also plotted.
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4x(4+4) MIMO - SIR=10dB
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Figure 2.5: Same as Fig.3butSIR = 10 dB.
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Figure 2.6: Same as Fig.3butSIR = 0 dB. Plot of mutual information (opti-
mum and iid covariance) versus receivggf N, ratio defined in2.12).



Chapter 3

Second-Order Statistics of the
Mutual Information of the
Asymptotic Separately-Correlated
Rician Fading MIMO Channel with
Interference

Giorgio Taricco,Erwin Riegler

3.1 Introduction

During the last decade, much attention has been devotecetartalysis of the
capacity of multiple-input multiple-output (MIMO) chanisd57, 62, 63] but only
a few papers considered the presence of multi-accessdargade, corresponding
to a more realistic multiuser MIMO scenatrio [3,53-55]. Rebe Chianiet al.
found a closed-form expression of the exact mean capaaitarfauncorrelated
Rayleigh fading MIMO channel with interference [28]. Naithat assimilating
interference into additive noideads to incorrect capacity resultas properly
evidenced in [28].

Though many studies focused on the case of Rayleigh fadiitty @iffer-
ent correlation structures), several experimental andréteal works showed
that Rician fading needs to be considered to describe matistie MIMO chan-
nels [34, 35,44]. The interference-free separately-tated Rician fading MIMO
channel has been recently studied int]9The results therein turned out to be a

1 Similar results were obtained independently by Dunedrat.[31,56] by using an asymptotic

28
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powerful tool in order to calculate the capacity achieviogariance matrices in a
multiple access scenario [25,43].

In this work we are interested in finding an analytic expr@ssif themoment
generating functiomf the asymptotic mutual information. Our findings are based
on thereplica methogdwhich turned out in the recent past to be a powerful tool
to handle similar problems [58, 60, 61, 64]. Basically, wéeex the approach
used by Moustakast al. in [3] to the correlated Rician fading case and derive
the mean and the variance of the mutual information. Howelierpresence of
line-of-sight components induces an additional couplisgMeen the signal and
interference parts (off-diagonal matrix blocks in equasi@3.31)) in the saddle
point approximation, which makes the calculations highdntnivial. This prob-
lem is solved by applying the methodssafperanalysisleveloped in the context
of theoretical physics [52].

In this paper we use Latin letters for complex variables C and Greek
letters for Grassmann variables= G [52]. Vectors and matrices are written with
lowercase and uppercase boldface characters, respgckeekhe (exponential of
the) trace and the determinant of a matkxwe use the symbok(r( X)) tr(X)
anddet(X), respectively. definite variance

3.2 System Model

We consider a narrowband block fading channel witransmit,r receive and
interfering antennas characterized by the equation:

y=Hx+ Hrx;+ z. (3.1)

Here,y € C" is the received signal vectox; € C' is the transmitted signal
vector with zero mean and covarian@e= E[zx'], ; € C'is the narrowband
interference signal vector with zero mean and covarid@ge= E[x;z¥], and

z € C" is the additive zero-mean noise vector with iid entegs- N.(0,1). The
channel matrice#d € C™* and H; € C™** model separately-correlated Rician
fadingwith common receive correlatiohus, they can be written as

H=H+ R'/’H,T"?,

_ 3.2
H;=H;+ R'’H,, Tr'? (3:2)
where H and H; represent the mean values and are related to the presence of
line-of-sight componentsk, T', andT} are receive and transmit (signal and in-
terference) correlation matrices, ahfl, and H,, r have iid (0, 1) entries. To

method based on Stieltjes transforms.
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simplify notations, we define
H2HQ'?, H; % HQ/'? (3.3)
T £ T'*QT"?, T; 2 T,°QT;”. (3.4)

Splitting the total received power components into diread diffuse parts we
obtain the Rician factors

_ AP and __EP
tr(R) tx(T) " (R te(T)

The signal-to-noise (SNR) and interference-to noise (INfD reads as

snro B+ D tr(R) tr(T))
r N (3.6)
(K7 + 1) tr(R) tr(Ty)

r

with signal-to-interference ratio SIR SNR/INR. We assume that the receiver
knowsperfectlythe channel matrice&l and H;. Thus, the mutual information
conditionedo H and Hj is given by [29], [28]:

= H(y|H7 HI) - H(y|m7 H7 HI)
I, + HiQH;” + HQH"
— hl det( r + IQI I + HQ )’ (37)
det(I, + HIQrH")

where’H denotes entropy. Clearly, when considering skeistical variationsof
the channel, the matriced and H; are random variables defined in equation
(3.2. Therefore, the statistical behaviorDis given by a random variable of the
form (3.7) with first two cumulant moments, i.e. mean and variance

/’LI é EHwaw,I[IL O-.% é EHmwa,I[I2] - /’l/_?[ (3'8)

Note thatu7 is linear inZ, which implies that the influence of interference can be
reduced to the case without interference [25, 28]. Howesehigher moments,
and in particular for the varianeg, this isno longer the case

(3.5)

INR =

3.3 The Cumulant Generating Function

In order to calculate the cumulant momentsZofve introduce the generating
function

G(a) = Elexp(—aZ)] VaeC, (3.9)
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and the cumulant generating functigfu) = In(G/(a)).
Assuming thatG(a) is analytic in a real right neighborhood of allows to
derive the mean and the varianceZof3]:

pr = —g'(0%), o7 =g¢"(0%). (3.10)

3.3.1 Rewriting determinants

In order to calculate3.9) we rewrite the determinants in e@®.7). Repeated use
of identity (3.23 yields:

det(I, + HiQH/" + HQH")™"

= / DCU/ D.V D.W
Crxa Ctxa Cronixa (311)

x etr(—m(U"U + VIV + WHW))
X f(Uv V)fw(Uv V)]EI(Uv W)fw,I<U7 W)7

with £, f., f1, andf,, ; defined by 8.27). Similarly, repeated use of identit$.25
yields:

det(I, + H;QH;™)"
:/ Dg(\p,\if)/ D,(£2,€2) (3.12)
(G'r‘xa’(GaX'r‘

Gixaﬂ;axi
etr(TW + QQ)h (¥, ¥, Q, Q)h,, (T, T, Q,Q),

with 72; andh,, ; defined in equations(28. The appearance of the functiofisf;
andh; is due to the line-of-sight components and responsiblehf@icbupling of
the determinants in the saddle point approxima8dh4

3.3.2 Calculating expectations

Using identity .23, we obtain:

Etr, Hy [ fo(U, V) fu1(U, W )h, 1 (¥, v, Q 0)]
= EHm [fw(Uv V)]EHw,I [wa(U7 W)th(\II> ‘Ilv Q? Q)]
= hI(U,W;\I/,\TI,Q,Q)f(U, V) f1(U,W), (3.13)

with f, f;,andh; defined in equations3(29 and @.30.
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3.3.3 Disentangling products and integration

In order to integrate out the Grassmann valued matdce®, 2, Q and the com-
plex valued matrice§/, V., W we have to disentangle the products of matrices
in the exponents of, f;, andh;, which can be done by using identity.25 and
(3.29). After some algebra (omitted for space limitations) we thet following
integral:

G(a) = /du(Tl,Rl)/du(Tz,R2)/du(T3,R3)

/ Dy(Oy, @1)/ Dy(©2,0) (3.14)
(Gaxa7(Ga><a Gaxa’GaXa

eXp[_F(TLR1,T2,R2,T37R3,@1,@1,@2,@2)]
whereK, M. T, andT are defined in%.31) and

F 2 —t1(RTy + RyTy + R3T3) +tr(©,0; + 0,0,)
— Insdet (X)
= —tr(RTy + RyTy + RsT3) + tr(©,;0; + 0,0,)
—Indet(M) + Indet(K + TM'T) (3.15)

M -T
%_<f K)'
For this derivation we resorted to the concepts of supemnand superdetermi-

nant developed in [52], and to the superdeterminant ruleo{326) in Appen-
dix 3.8.3

sinceX is given by

3.3.4 Saddle point approximation

Contrary to the cas& = K; = 0 developed in [3], matrice&X and M are not
block-diagonal so that the determinants #1165 do not factor. This makes the
task of evaluating the saddle point approximation much nsoraplex.

Now, we assume thaB(19 has a replica-symmetric and real saddle point,
hereafter denoted hy, corresponding to

T, =41, T, =t.1, T5 = t31,
R1 = TlIa R2 = 7’2Ia R3 = —7’3Ia (316)
@1 = 0 @2 = 0 (:)1 = 0

@
I
o
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Using the fact thain sdet (X) = str(ln X) [52, pp. 112] and the multiplicative

property of superdeterminants [52, p. 101], we have thevofig total variation

expansion:

(_1)k+1
k

Slnsdet (%) =) str((X710%)k), (3.17)
k=1
where

(3.18)

—1 ar-1
36_1|853€:<M s M —M \S(sr).

K-! |S 6T K! |5 oK

The explicit form of matriced ~! |s and K ~! |s can be found in eqs3(32 and
(3.39), respectively.

Nulling the first-order terms in the expansiah17) of (3.15 yields the fol-
lowing saddle point equations:

tl = tI‘(AKR) tg = tI‘(AKR) t3 = tl"(AMR)
r o= tr(EKT) ry = tr(IKTI) ry = tr(DMTI), (3.19)

with A, and Dy, from equations3.33 and Ak, Fx, andIg from equations
(3.35.

3.4 Asymptotic mean of the mutual information

The leading term of the expansion Bfat the saddle poir§ is given by

F(] £ _ In sdet (%) ‘5 —CL(tlTl + tQTQ — t37‘3)
= Indet K |s —Indet M |s —a(t111 + tars — t3rs),

after defining the matriced! |s= My ® I, andK |s= Ko ® I, with

I.—-mR —-H
M2 (77 .3 T

and ) L
R H H;

K, S —ﬁH T 0
~H; 0 1Ty

whereR 2 I, + mR+ R, T £ I, + t,T, andT; £ I, + ,T;. Finally, we
obtain the asymptotic mean:

Kz ~ (11’1 det(Ko) — tlTl — tQTQ) — (11’1 det M() — t3T3). (320)
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M. = (1+tr(BMTIC’MR) tr((DpT1)?) )
tr((AxR)?) tr(Dg RBKT) + 1
K, & _ tr(BkTDgR) + 1 tr((ExT)?)

tr(Axk RAKR) tr(Dx RBKT)
tI‘(CKTIGKR) tI‘(FKTIHKT)

tI‘(AKRAKR) tI‘(GKRCKTI)
tr(BkTDgR) tr(HxTFgT)
tr((AxR)?) tr(GxkRCkT) + 1
tr(CKTIGKR) + 1 tl"((IKTI)Z)
G A (tr(CKTICMR) —1 tI‘(IKTIDMTI) )
2 tr(AxkRAyR)  tr(GxRByT) — 1

(3.22)

3.5 Asymptotic variance of mutual information

The second-order term in the expansion fLf) at the saddle poin§ is given
by:

R 2 %str((ae—laaef) s — tr(68100; + 60550,)
- tr(5R15T1(5R25T2 — (5R3(5T3)

Defining the matricedVl,, K., andG as in eg. 8.22 on page34, the contour
integrals can be evaluated and yield the following result:

det(G3)? ¢
Gla) ~ exp(=Fi) (—det(Mz) det(Kz)) ‘

Therefore, the asymptotic variance is given by:

02 ~ —Indet(Ks) — In(— det(My)) + 2 In det(Ga). (3.21)

3.6 Numerical results

We consider a MIMO channel with = r = ¢ = 4 antennas, SNR of0 dB,
K =10dB, andK; = 5 dB. We assume that the average channel mat#fesd
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Mean [SIR]

2 4‘1 é é l‘O 1‘2 1‘4 1‘6 1‘8 20

SIR(dB)
Figure 3.1: Average mutual information mean for MIMO as action of SIR.
T, Tr, and R have baser = 0.7. SNR = 10dB, K = 10dB, andK; = 5dB.
Solid lines: Q is proportional tal;. Dashed linesQ is optimized to achieve the

asymptotic ergodic capacity [25]. Thin lines: interferemeregarded as Gaussian
noise. Circles: Monte-Carlo simulations.

H; are multiple of the allt matrices and the spatial correlation matri@esr;,
and R have basex = 0.7. Figs.3.1and3.2plot the average mutual information
mean and standard deviation versus the SIR. Thin lines dagnelol by regarding
interference as Gaussian noise. They show a considerahletien of the mean
and of the standard deviation in the low SIR regime. In botbesasolid lines
correspond tay proportional tol; and dashed lines are obtained by optimizing
Q to achieve the asymptotic ergodic capacity [25]. It can b#&ced that both the
mean and of the standard deviation are higher weis optimized in the low
SIR regime. Circle markers, corresponding to Monte-Camouations, show
an excellent agreement with the asymptotic results evea femall number of
antennas.

3.7 Conclusion

We calculated the asymptotic meand variance of the mutual information of a
separately-correlated Rician MIMO channel with interfere in a very general
setting. Our development involves the usesaperanalysi$52] to deal with the
coupling of the signal and interference part induced by ithe-bf-sight compo-
nents in the saddle point approximation.
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Figure 3.2: Average mutual information standard deviaéiera function of SIR.
Channel parameters and curves as in Bid.

3.8 Appendix

3.8.1 Identities for complex valued matrices

Identity 3.8.1 [3,9] (Completing the Square) Let, B be a complex, Hermitian,
positive definiten x m andn xn matrix, respectively, an@, D ben xm complex
matrices. Then

/ D.U etr(—n(AU"BU + C"U + U" D))
(C7L><7n

= det(A) " det(B) ™etr(rA'C”B™' D). (3.23)
Identity 3.8.2 [3] (Hubbard-Stratonovich Transformation) Ldt, B, R, andT

be complexn x m matrices. Define the contousT', R) for the elements oR
andT over the real and imaginary axis, respectively. Then,

etr(—AB) = / du(T, R) etr(RT — AT — RB). (3.24)

3.8.2 Identities for Grassmann valued matrices

Identity 3.8.3 [3] (Completing the Square) Led, B be a complex, Hermitian,
positive definiten x m andn x n matrix, respectively, an®, =7 be Grassmann
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valuedn x m matrices. Then

/ Dy(¥,¥)etr(AVBY + EV + UP)
GnXm7Gan
= det(A)"det(B)"etr(—A'EB'®). (3.25)

It is important to note that matriceb and ¥ areindependenandnot related by
an involution, like Hermitian conjugation in the complexsea

3.8.3 Supermatrices, superdeterminant and supertrace

Borrowing from [52, p. 82] , we calsupermatrixa matrix composed in part by
complex entries and in part by Grassmann variables. We @eested in particu-
lar to the following block supermatrix:

(¥ )

In this case, the superdeterminadtt (X) and the supertracer(X) are given
by [52, p. 99

{sdet (X) = det(M)det(K +TM~'T)"! (3.26)

str(X) = tr(M) —tr(K).

3.8.4 Definition of functions and matrices

FU,V) 2 etr(—n(UTAV - VIA"U))
W) 2 etr(—n(UYH,W - WIH,"U))
W) 2 etr(—n(T/V*Q*WUH RY?
% H,y g — Hw,IHRl/zUWHQII/zTIl/z)).

(3.27)

hi(T,8,0Q,0) 2 etr(QH, ¥ — $H,Q)
ho (0,9, Q Q) £ etr(T//?°Q'*QURY*H,, ; (3.28)
. w,IHRl/z‘IIQQIl/ZTIl/Z)-
fU, V) 2 etr(—n*(VITVU" RU))
(U W) 2 ctr(—n2(WHT,WU" RU)).
(U W, ¥ QQ) 2 etr(QT QP RD)
X etr(—n(PRUWHT Q + QT ;WU" RW)).

(3.29)

(3.30)
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I,+R HxI, H;®I,
K2| —A"9I, I,+TeTl 0
—ﬁIH®Ia 0 Im—FTI@TZT
H' 9l IL.,+T/oTf (3.31)
ra R®©] 0 0
0 0 T;® 0%
R ©F 0
ra 0 0
0 Tre67
withR2 R® RT + R® RY.
_ AM BM
M1 |s= ® I,, 3.32
= (& ) (332)
with
AM é (Ir +T3R+ﬁI(IZ +t3TI)_1ﬁIH)_1
By 2 (I, +13R)"'H D
M A< ’ )~ o (3.33)
CM - —(Ii—}—thI)_lHI AM
Dar 2 (I + t,T7 + Hy (I, + r4R)"\H )™,
K'|s=| Dk Ex Fx |®I, (3.34)

Gk Hgk Ik
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with

Ik

2 (R+HT'H" + BT HY )™
2 - R (HEk + H;Hg)
2 - R (HFk+ HIyx)

AT'H Ak
2+ A'RA-A"RH;
Ty + Hy R Hy)H;" R H)™!
s _(T+H'RH)H RVH Ik
= TI—lILHAK
) .

>

= (TI +ﬁIHR_1ﬁI — I:II R_1I‘~I
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Chapter 4

On the ergodic capacity region of the
separately correlated Rician fading
multiple access MIMO channel

Giorgio Taricco,Erwin Riegler

4.1 Introduction

An important problem of network information theorem is theridation of the
achievable rate region of a multiple-access channel. lie giintense research
efforts carried out through the recent decades, there amradeopen problems
in this area that have wide implications for the theory of camications and
computation [15].

The multiple access channel achievable rate region is thef sate vectors
that are achievable by the different channel users and hes $tadied exhaus-
tively in the literature [15]. The achievable rate regiomsats a simple expression
for the Gaussian multiple access channel that has beendexteéa the Gaussian
multiple access MIMO channel by Yet al.[26] who provided an iterative water-
filling algorithm aimed at finding the optimum user signal abance matrices
that maximize the sum-rate of the channel. Their resultiappthen the multiple
access MIMO channel is perfectly known at the transmitter ainthe receiver.
However, when only the channel state information at theivec€CSIR) is avail-
able, the problem of finding the maximum ergodic sum-rateesing covariance
matrices is still open in the general setting [16]. Nevdebg, a notable result in
this area has been provided by Haefial. [2], who proved that the ergodic and
outage achievable rate region increases (as sets) moocalgwith the singular
values of the line-of-sight component of the channel matrix

40
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In this work we assume that the receiver has full CSIR and riduesmitter
knows the statistics of the channel, i.e. the transmitterdiannel distribution
information (CDIT). Based on these assumptions we provigelgorithm to
find the maximum ergodic sum-rate achieving covarianceiogsiof a multiple-
access MIMO channel when the number of transmit and receitenaas grow
asymptotically large with finite asymptotic ratios and tlhenber of users and their
SNR'’s are finite. In this context we assume that the multggleess communica-
tion channel is affected by Rician fading with separateiapatrrelation (with a
common receive part and different transmit parts). Ourltesaly on a previous
work [25] where the ergodic capacity achieving covarian@rix was obtained
for a separately-correlated Rician fading MIMO channehwitultiple-access in-
terference, which extended previous results due to Moasteitkal. [3] relevant
to the case of Rayleigh fading. Similar results for the safedy-correlated Ri-
cian fading MIMO channel (without multiple-access inteefiece) were obtained
independently by Dumort al.[31], using an asymptotic method based on Stielt-
jes transforms, and by Vu and Paulraj [50], using an intgpmint with barrier
optimization method [14].

assumptions illustrates the and

4.2 System model

We consider a narrowband multiple access separatelylatadeblock Rician fad-
ing MIMO channel withK users witht;, transmit antennas for each ugee K =
{1,..., K} and a single receiver withreceive antennas. The channel is charac-
terized by the following equation:

y = Z H;x; + z. (4.1)
kek

Here,x;, € C**! is the transmitted signal vector of userH, ¢ C"* is the
channel matrix of usek, z € C"*! is the additive noise vector, ande C™*! is

the received signal vector. Eagly is assumed to have zero mean with covariance
matrix Q. We assume that the additive noise vector has zero mean aadawe
matrix Q; = E[zz"].

The channel matriced,, are assumed to be of separately (or Kronecker) cor-
related Rician fading typeith common receive correlationThus, they can be
written as

H, = H, + R"*’W, T,> VkeKk,

where, for each uset, H, represents the average channel matrix related to the
presence of a line-of-sight signal component in the mutltigading channel, the
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Hermitian positive definite matriR characterizes the spatial receive correlation
component, and the Hermitian positive definite matrifgharacterize the spa-
tial transmit correlation component. The random matri®és have iidV.(0,1)
entries.

Following standard assumptions [1, 9, 25], we define the Rawor of usek
as

wra | 4.2)
T Tr(Ty) Tr(R) '
and the signal-to-noise power raBtlR, of userk as
R

Tr(Qz)

Notice that the latter assumption allows to overcome thigcdifies related with
the consideration of the receive SNR

H
SNRygx 2 E[Trfj(’g;)}lk”

which arise when we try to make any optimization based onaf$etnsmit power
constraints of the typ®r(Q,) < P, since the receive SNBNR,, gx iS not propor-
tional toTr(Qy) (unlessQ; is a multiple of the identity matrix). The assumption
Q. = %Itk will be referred to in the following asd power allocation

4.3 Ergodic Capacity Region

Let Re = (Ry,...,Rg) € Rf be the vector of rates for all usekse K and
denote byS = {ki,...,ks} C K subsets ofC with complementS¢ £ K\ S.
Then, the achievable rate region of the multiple accessreiaran be defined by
extension of the results from [15] as the set:

R = {R;C e RY | ZRk’ <E[I(xs;y|xs)] VS C /C}, (4.4)
keS

wherexs = (x; | k € S) and

EI(xs;ylxs:)] £ E[lndet(HsQsHE + Q)]
—Indet(Qy), (4.5)

with

Hgs £ (Hk; | ke S) and QS £ dlag(Qk | k € S) (46)
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We restrict our attention to the dominant face

DA2RN {RK eRY S Ry :E[I(x;y)]}, 4.7)

kel

wherex = x, and
E[I(x;y)] = E[lndet(HQH" 4+ Q)] — Indet(Q) (4.8)

with H £ He andQ £ Qx. The reason for this is that every poRfc € R
is dominated by (i.e., it has no rate component higher thgmiat in D. The
ergodic capacity of the multiple access MIMO channel is aefias

A
¢ QkiT{?Si%SPk E[I(X7 y)]’ (4'9)

with power constraint3r(Q;) < P, (k € K). The corresponding achievable
rate region will be sai@rgodic capacity region

In order to solve this optimization problem we resort to aergaesult allow-
ing to calculate the average mutual information of a sepbratorrelated Rician
MIMO channel when the number of transmit and receive antegnaw asymp-
totically large [8,9]. Summarizing, ag, r — oo with 0 < ¢, /r < oo, the asymp-
totic average mutual information with channel matiix = H + R'/?WT'/2,
noise covarianc€), = I, and signal covariana®, is given by

E[I(x;y)] ~ u;(H,R, T, Q) (4.10)
nat/complex dimension, where we defined

I, +wR H

H,R, T, Q) = Indet ~ ~
:ul( [k 7Q) nde ( _HH It—|—2T

) — w2 (4.11)

whereT £ Q'/2TQ"? andw, » can be obtained by solving the equations

w=Tr {[zIt + T+ TN, + wR)—lﬁ]—l}
- L (4.12)
L= Tr {[er +R 4+ ROHT + zT)—lﬂH]—l}

with H 2 HQ'/2 andT £ Q'/>TQ"/2. The solution of eqs4(12) can be shown
to be a pair of positive real numbers. Egs1() and @.12 have been established
independently in [65] for the uncorrelated Rician MIMO cheh

This result can be applied to calculate the average muttahnation @.9):

EI(x;y) = pu(Hz Rz, T, Q),
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where we defined, £ Q,'*(H, | k € K), Rz £ Q,'"RQ}"*, andT £
diag(Ty | £ € K). The optimum covariance matrix is obtained by maximizirg th
average mutual informatiord(8) under the power constraints(Q) < P (k €
K).

Then we notice that the constraints of this optimizatiorbpem satisfy Slater’'s
condition so that the Karush-Kuhn-Tucker (KKT) conditiemiecessary and suf-
ficient for optimality [14]. Therefore, we define the Lagraagdual function:

Ir + ’LURZ ﬁZ
L(Si|keK) = Indet ~ ~
SekeR) = e (VI He)

—wz =Y M[Te(S}) = B, (4.13)
kel

where0 < P, < P, Sy 2 Q%S 2 Q'2, H, £ H,S, T £ STS, and

t & > rex te- Next, the KKT condition is derived by calculating the fistler
total variation of 4.13):

B A, B
5L = TrKCl Dl)

—SHY  STS6z + 2(6STS + STS)

—wdz — 20w —2) N Tr(Sk0Sy), (4.14)
kel
where [8]
A, = [ +wRy+Hy(I +2T)'HY|
_ —119

Bl - (IT +£UEZ)H HZDI (415)
Cl = (It + Z:I;) AI/_IZAl _
D, = [It + 2T + HE(IT + sz)_le]_l.

Since we have fron¥(12 w = Tr(D,T), z = Tr(A;R), and [25]
(I + wRy) 'HD; = [(I, + 2T)"HY A",
we end up with:

L = 2Tr(H[HY (I, + wRz)'H; + 2T)SD,|sS)
—2> " A Tr(SkdSy), (4.16)

kel
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whereH[A] £ (A + AM)/2. Thus, the first order total variatiofi. is null (and
the KKT condition is satisfied) provided that

Sk = A\ H[(HY(I, + wRy,)"'Hy + 2T)SDy] |y, (4.17)
whereA|, is the submatrix ofA obtained by extracting the elements of the rows

and columns with indexes frod ', + 1to 3¢ t;, and)\, is obtained from
the constrain®r(S?) = B, namely,!

\ \/ Tr{{H[(H%(L, + wRy)~"H + 2T)SD1] [,}2}

P (4.18)
Ifall S, (k € K) satisfy equation4.17), we define
Qo £ diag(S? | k e K) (4.19)

the optimumcovariance matrix, which can be found using the followingoal
rithm:

Algorithm 1 (Iterative water-filling — optimum covariance)
initialize S |k: \/Pk/tk’]:tkv kel
repeat
fork=1t0 K
obtain )\, from(4.18
setS = A\ "H[(HY (Iy + wRy) ' Hy + 2T)SD4] |,
end
until S converges. Sefo = S

4.3.1 Jensen approximation

Here we consider an approximation of the mutual informakiaged on Jensen’s
inequality and derive the covariance matrices that maxaniaVe known from [15,
30,40] that the following inequalities hold for positivefihite Hermitian matrices
A, X (with X random):

E[lndet(X)] < Indet(E[X]), (4.20)
E[lndet(I+ X 'A)] > Indet(I+E[X]'A). (4.21)

! The positive definiteness &, derives from the positivity ofv, z.
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Applying inequality @.21) to the mutual informatior4.8) gives:
E[I(x;y)]
= E[lndet(HQH" + Q)] — Indet(Qy)
Ellndet(H;Q;HY + Q)] — Indet(Qz)
E[ln det(I, + (H kaHH +Qz) 'H,QH})]
[In det(H
[In det (L,

AV

Ellndet(H;Q;HY + Q)] — Indet(Qz)
+ Elndet(L, + Q;; H,.QHY)], (4.22)
where we definedl;, £ Hy\ i}, Q; £ Qic\xy» andQ 1z, £ E[H, Q HY + Q]
for k € K. Then, applylng4 20 to the last term in4.22), we obtain
E[ln det(I, + Q7 , H,Q:H})]
< Indet(L;, + EH}Q;; Hi]Qx) (4.23)

Finally, if we treat inequalities as approximations, thetmaliinformation 4.8) is
approximately given by
ElI(x;y)] ~ E[ndet(H;Q;H! + Q)] — Indet(Qz)
+ Indet(I,, +EH}Q;; Hi]Qx) (4.24)
for anyk € K and the last term can then be maximized by water-filling [15].

Thus, we calDensen approximaticthe set of covariance matricé, . | k €
K} that maximize

Indet(I;, + EH} Q77 Hi]Qx) (4.25)
for all £k € K and denote by
QJ dlag(QJk | k e IC) (426)

the Jensen covariance matrixhere the matrice®;, can be found by using the
following algorithm:

Algorithm 2 (Iterative water-filling — Jensen approx.)
initialize Q |x= (Py/tx)1y,, k€ K
repeat
fork=1t0 K
factorE[H}Q;; ,H;] = U,A, U,
solveTr[(u L, — Ay').] = Py for py, 2
setQ [y= Uy (L, — A1) UY
end
until Q converges and then all the terrs25 are maximized.

2(A); is the matrix with entriesaax{0, (A);;}
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4.4 Numerical results

In this section we present numerical results illustrathregdccuracy of the asymp-
totic analytic optimization of the sum-rate capacity. Weasider the following
scenarios:

1. Multiple-access channel withh = 2 users witht;, = 4 transmit antennas
and withr = 4 receive antennas, all users have the same SNR.

2. Multiple-access channel witR® = 4 users witht, = 4 transmit antennas
and withr = 4 receive antennas, all users have the same SNR.

3. Multiple-access channel witR = 4 users witht, = 4 transmit antennas
and withr = 4 receive antennas. There are thsgeng usersvith the same
SNR and onaveak usemwith SNR 10 dB below the strong user SNR. This
scenario allows to assess thear-far effecof the multiuser MIMO system
considered in [67].

In all scenarios it is assumed that the line-of-sight magld,, have all constant
entries (i.e.,(f{k)ij = 1for all £ € K), the spatial correlation matrices are of
exponential type (i.e(R);; = o/l and(T});; = a) 7' with basesy = 0.7 and
ay = 0.7 for all k € K), and the Rice factors ad€} = 10 dB for all k =€ K.

4.4.1 First scenario ( = 2), symmetric

Figs. 4.1 and 4.2 refer to the first scenario described above and illustrage th
achievable rate regions corresponding to the optimum Gves and iid power
allocation (Fig4.1) and to the optimum and Jensen covariance matrices4Fy.
for several user SNR values. Solid and dashed lines are lmasé#te analytic
asymptotic approximations with the corresponding coveméamatrices. Mark-
ers are based on Monte-Carlo simulations correspondingetsame covariance
matrices. It can be noticed that there is always an excedlgraement between
analytic asymptotic approximations and Monte-Carlo satiahs. This also con-
firms the accuracy of the optimum covariance matrices denvith the analytic
asymptotic approximation.

Fig. 4.1 shows a considerable difference between the achievaldeegion
corresponding to the optimum covariance matrix and thatesponding to iid
power allocation. As expected, the differences get lowehasuser SNR’s get
larger but are still notable &0 dB. Fig. 4.2 instead shows that Jensen approx-
imation is very close to the optimum for moderate SNR'’s thotlge difference
becomes noticeable abovg dB.
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Figure 4.1: Achievable rate region of the MIMO multiple assehannel for sce-
nario 1 (X = 2 users)SNR;, € {—10, —5,...,15,20} dB. Solid lines correspond
to the optimum covariance matr@@o from eq. @.19. Dashed lines correspond
to iid power allocation. Markers correspond to Monte-Cailaulations with the

corresponding covariance matrices.
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Figure 4.2: Same as Fig.1but dashed lines correspond to the Jensen approxi-
mation covariance matri& ;.

4.4.2 Second scenarioi{ = 4, symmetric)

The capacity of the second scenarig (= 4) is reported in Fig4.3. In this
case the achievable rate region cannot be illustratedtijires it would require
a four-dimensional picture. However, it is completely deteed by the four
achievable sum-ratds|I (xs; y|xsc)] corresponding t¢S| = 1 to 4, because of
the symmetric choice of parameters and user SNR’s. In theefigolid curves
correspond to the asymptotic optimum covariance matra&shed curves to iid
power allocation, and dash-dot curves to Jensen appraximagach type of
curve corresponds t&| = 1 to 4, from bottom to top. Markers represent cor-
responding Monte-Carlo simulation results. Again, it cembticed that there is
always an excellent agreement between analytic asymgatppooximations and
Monte-Carlo simulations, which confirms the accuracy ofdpgmum covariance
matrices derived with the asymptotic approximation.

It can be noticed that there is a close correspondence betasgenptotic op-
timum and Jensen approximation results over the SNR ranggdered. On the
contrary, the diagrams display marked differences betvegeéimum/Jensen and
iid results, that confirm the consistent suboptimality dfpower allocation.
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4.4.3 Third scenario (K = 4, asymmetric)

The capacity of the third scenario is illustrated by Figst and4.5 The as-
sumption of having three strong users and one weak user éwithdB-lower
SNR) implies that the achievable rate region is determined Bum-rates for
every SNR, four of which are included in Fi4.4 and three in Fig4.5. More
precisely, Fig.4.4 shows the sum-rateB|I(xs; y|xs<)| corresponding t&S =
{1}, {k}, {1, k}, {k, K'} with k, k" # 1 (from bottom to top). Figt.5 shows the
sum-rates correspondingso= {1, k, k'}, {k, k', k"},{1,2,3,4} with k, k', k"
1 (from bottom to top).

In all cases, iid power allocation is again shown to be carsidly suboptimal
while the Jensen approximation covariance matrices turmoogive a very good
agreement with the asymptotic optimum results in the rafidg@N\iR considered.
Markers report corresponding Monte-Carlo simulations emwfirm, again, the
accuracy of the asymptotic approximation.

4.5 Conclusions

We presented an asymptotic analytic method to calculateetpedic capacity
region of a multiple-access MIMO channel with correlated Riciadifg. The
method applies when the number of antennas goes to infinityiblads very ac-
curate approximations even with a small number of antennas.
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Figure 4.3: Average mutual informati@tif (xs; y|xs-)] versusSNR,, for scenario

2 (K =4 users) andS| = 1,...,4 (from bottom to top). The results refer to the
optimum @.19, Jensen4.26), and iid power allocationk/* = 10 dB, T, andR.
are exponential with base7, » = 4, ¢, = 4 for all k£ € K. Markers correspond to
Monte-Carlo simulations.



52 MASCOT D3.1.3
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Figure 4.4: Same as Figl.3 but for scenario 3 [asymmetric, weak user 1
with (SNR;)ag = (SNRy)qs — 10]. The curves in this figure refer t6 =
{1}, {k} {1, k), {k, K’} with &, k" # 1 (from bottom to top).
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Figure 4.5: Same as Figl.4 but the curves in this figure refer t6
{1,k K"} {k, K K"}, IC with k, k', K" # 1 (from bottom to top).
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Chapter 5

Characterization of Capacity
Regions by Means of Interference
Functions

Holger Boche, Martin Schubert

5.1 Introduction

The analysis of capacity regions is complicated by interiee between the com-
munication links (“users”). The achievable capacity of bnk can depend on the
transmission strategies of other links. This typicallyutesin a coupled system
with many degrees of freedom. So well-established comnatioit strategies for

point-to-point links are not always applicable to multiusgstems.

A well-known example is the capacity region of the GaussidW®™ multiple
access channel (MAC), and its dual broadcast channel (BE&)7[®, 82]. A thor-
ough understanding of the underlying performance trafiei®bften the basis for
the development of efficient multiuser transmission stjige For example, the
characterization of the aforementioned MIMO broadcasbregas accompanied
by a search for optimum communication strategies.

However, these results only hold under certain conditidfa. example, the
transmit strategies for MIMO broadcast channels propas¢e8—70] rely on the
BC/MAC duality. If the transmit strategy is constrained te Ilnear, then the
existence of such a duality is still unknown. If we furthemnstrain the system
by forbidding time sharing or rate splitting, then the capacegion can even
be non-convex [81]. For more complicated channels, e.gayrehannels, the
characterization of the capacity region is an open problem.

This discussion shows that the characterization of wisetegpacity regions
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can be quite complicated, especially when additional systenstraints are con-
sidered. This motivates an abstract approach, which fecoisesome core prop-
erties. A typical property, for example, is that the perfarmoe of any link can
be reduced without leaving the feasible region. This “monatity behavior” is
known ascomprehensivenegsa game-theoretical context [72].

5.1.1 Comprehensive Performance Sets

Before providing detailed definitions for comprehensiveeve need some nota-
tional conventions.

o £ ={1,2,..., K} isthe set of users (communication links).

e The set of non-negative reals is denotedfy. The set of positive reals is
denoted byR , , .

e Matrices and vectors are denoted by bold capital letterdaitilowercase
letters, respectively. Laj be a vector, thep, = [y], is thelth component.

e A vector inequalityr > y meansr, > y, for all k. The same definition
holds forz > y.

Definition 1 A setY c R¥ is said to beupwards-comprehensivkfor an arbi-
trary v € V,

v>v = vev. (5.1)

The sed’ is said to bedownwards-comprehensivfeor an arbitrary v € V,
vV<v = veV. (5.2)

A useful concept for analyzing interference-coupled caghpnsive systems
is the framework of interference functions [71]. A genengiview on this frame-
work was already shown in the previous deliverable D.3.hd the related refer-
ence [78].

The main contribution of this deliverable (the correspogdbaper was pub-
lished in [77]) is to show that interference functions cambed for the analysis of
capacity regions (and also other performance regions)aittiqolar, every com-
prehensive capacity region can be expressed as a sub-é¢\aflan interference
function. This facilitates a general framework for anahggziperformance trade-
offs in multiuser networks.
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5.1.2 Level Sets and Interference Functions

We start with an introduction of general interference fiorcs.

Definition 2 We say thaf : R, — R, is aninterference functioff it fulfills
the axioms:

Al (positivity) I(p) >0
A2 (scale invariance) Z(ap) =
A3 (monotonicity)  Z(p) >Z

aZ(p) VaeR,,

(p) ifp>p

These properties are quite intuitive when we thinkpof= [py,...,px|’ as a

vector of transmission powers, afi@p) as the resulting interference. However,

other interpretations are possible. Some examples aredgah\e.g. in [71,73,78].
Let's analyze the interference functid@iip). It was shown in [77] that every

interference function satisfying A1-A3 has a min-max repreation. In order to
explain this result, we need the definition of relative ctheess.

Definition 3 A setV C R¥, is said to berelatively closedn R, if there exists
aclosed sed C R* such thaty = ANREK,.

Consider level sets

(T)={p>0:1(p) < 1} (5.3)
(T)={p>0:I(p)>1}. (5.4)

&I

SinceZ(p) is continuous [71], the sets(Z) and L(Z) are relatively closed in
RE., . From property A3, it follows that the sets are comprehensiv
We have the following result [77]

Property 5.1.1 LetZ be an arbitrary interference function fulfilling A1-A3, the

. Pk
A = — 55
(P) = i B &9

= max min& ) (5.6)
peL(T) k€K Dy

That is, every interference function can be interpretedrasimization over
elementary interference function, where the varigblis chosen from a closed
comprehensive level set.

Conversely, we can start with a closed comprehensive pesét (e.g. a ca-
pacity region), and show that this set can be expressed aslaét of an interfer-
ence function. This leads to the following observation [77]
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Property 5.1.2 Every closed comprehensive positivel¢ean be expressed as a
sub-level set

U={ueRE, :Cu)<1}. (5.7)

The set/ is closed comprehensive positive if and onlg'{fu) is an interference
function.

Hence, there is a direct correspondence between inteciefenctions and com-
prehensive performance regions.

An extension to other types of performance regions can badan [80],
where the supportable region of a multiuser system withcagvex interference
functions is analyzed.

Definition 4 We say thaf : RY — R, is alog-convex interference functiah
A1-A3 are fulfilled and in additiofi (exp{s}) is log-convex ofiR .

It was shown in [71] that every convex interference funci®®a log-convex in-
terference function, but the converse is not true. Notg, tthia statement only
holds true with the change of variabfe = exp{s}. Thus, the family of log-
convex interference functions is more general than thelyaohiconvex interfer-
ence functions. The log-convexity property is useful fog #nalysis of certain
types of performance regions (e.g. SIR feasible sets).i$Histher investigated,
e.g. in[76,79].

In the context of capacity regions, we are mostly interestednvex regions.
Convexity simplifies the taks of resource allocation. A commndesign goal is to
find a Pareto optimal point on the boundary of the region.

The assumption of convexity is typically justified by timeasing are rate
splitting arguments. An analysis of convex performanceoregwas published
in [75]. In this publication, the following result was shown

Property 5.1.3 Every closed comprehensive positive convex utility sebeasx-
pressed as a sub-level set

U={ueRE, :Cu)<1}. (5.8)

The set/ is closed comprehensive positive convex if and ordi(if) is a convex
interference function.

This shows how basic properties of interference functiosagransferred to prop-
erties of utility sets, and vice versa.
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5.1.3 Discussion

The results of this work package, published in [75, 77, 8bgvs that there is a
direct correspondence between comprehensive perforrmagmms and interfer-
ence functions fulfilling the properties A1-A3. Further peoties, like convexity
or log-convexity, can be added.

This theoretical framework facilitates a general and undyapproach for the
analysis of different kinds of capacity regions. By focgsaonm core properties, we
are able to develop a rigorous framework which allows forrzalical treatment.
The results provide intuition and a roadmap for the develaqmtrof algorithms in
WP1.

An application example is the iterative algorithm for maxrbalancing pub-
lished in [74]. Other resource allocation strategies ameecily being investi-
gated in WP1. For example, interference functions wereesstually applied to
the analysis of resource allocation strategies based opecative game theory
in [76,79].



Chapter 6

Asymptotic Ergodic Capacity of
Wideband MIMO Channels with
Separately-Correlated Rician
Fading

Giorgio Taricco,Erwin Riegler

6.1 Introduction

Many research studies in multiple-input multiple-outphMtifMO) communica-
tions address the problem of deriving the channel capaPitgbably one of the
most successful results in this area is due to Telatar, whod@losed-form ex-
pressions for the capacity of the independent RayleigmfalilMO channel [46].
Subsequent studies showed that this channel model is nayalappropriate be-
cause it does not take into account spatial correlation la@gtesence of a line-
of-sight (LOS) component. Many experimental and theoatticorks addressed
the issue of channel modeling [16]. A good trade-off betwewrel complexity
and accuracy is achieved by the so-called separatelytatedechannel [18].
Another active research area in MIMO communications tadjete extension
to the wideband channel, in most cases based on an OFDM apdddi 19, 22].
Recently, Moustakas and Simon studied the asymptotic rhutt@mation of
the wideband Rayleigh fading correlated MIMO channel in][Zktending one
of their own earlier studies, relevant to the narrowbanchokacase [20]. The
analytic approach used in these works is based on the ssdecafilica method
widely adopted in theoretical physics because of its affeness in addressing
complex system scenarios where other methods, such asdtmead on Stieltjes

59
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transform proposed in [31], provide equivalent resultdnaigreater mathematical
effort.

In this work we address the case of a wideband Rician fading®thannel
with separate correlation (see the System Model sectiothoprecise assump-
tions). We derive an expression of the average mutual irdtion in the case of
asymptotically large number of antennas. This result e a nontrivial ex-
tension of earlier results [25] addressing the narrowbdrashoel case. By using
this result, we derive the ergodic capacity of the channdltae corresponding
(optimum) input signal covariance matrix. Then, we study tlumerical accu-
racy of the asymptotic approximation proposed and analyeesffectiveness of
covariance optimization with respect to the spatial catreh and the Rice factor.

6.2 System model

We consider a wideband frequency-selective separatehglated Rician fading
MIMO channel witht transmit and- receive antennas. We assume that the chan-
nel bandwidth isB and the delay spread is Then, the maximum number of
resolvable paths of the channellis= [Br]|, and the channel equation can be
written as follows:

yln] =) H[l)x[n — (] +z[n], neN. (6.1)

lel

Here, we defined: the frame lengi¥; the setsC = {0,...,L — 1} and N £
{0,..., N — 1}; the transmitted signal vectafn] € C**! at timen; the impulse
response channel matiX[¢] € C"**, sampled at delay timé the additive noise
vectorz[n] € C™! at timen; and the received signal vectpfn] € C™*! at time
n.

We assume that the additive noise is independent over tich@mcorrelated:
z[n| ~ N(0,I,)%.

We assume uncorrelated scattering, so that all matkikjésare independent.
We consider a separately correlated Rician fading moddi wdimmon spatial
correlation among the users at the receiver. Thus, we cda wri

H[(] = E[H[(]] + R[()*H, [(]T[(])"/>. (6.2)

Here, the matriceH,, [¢] have all iid entries distributed a¢.(0, 1) (in compliance
with the uncorrelated scattering assumptidy] is the receive spatial correlation

L In the presence of spatial correlatieiy] ~ N.(0, £ ), we can reduce to the uncorrelated

case pre-multiplying[n] by 221/2. The resulting noise vector will be uncorrelated with idint
covariance matrix and the channel matrices will be all prdtiplied by the same constant matrix

221/2 and the resulting problem will be still tractable under opp@ach.
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matrix, andT'[/] is the transmit spatial correlation matrix. Since a nonzaeerage
channel matrix derives from a line-of-sight component, chhiypically affects
only the signal path with the lowest delay, it will be assurtfest
H (=0
EH[/]] = { 0 (>0 (6.3)
The Rician factor (defined as the ratio between the LOS ansidéigered received

power when the input signals are iid with poweft) and the signal-to-noise ratio
(SNR) are given by:

N |H|?
B S TR T 64
and
e (K DD T TWRID THT() 65)
respectively.

6.2.1 OFDM signaling

We consider a communication system based on orthogonaldray-division
multiplexing (OFDM). Itis well known that OFDM allows to cweart the frequency-
selective fading channel into a set of parallel frequenay€hannels. The key
assumption of OFDM is the insertion of a cyclic prefix (CP) lifi@ames, whose
length is equal to the delay spread. The CP assumption isniiieefollowing set
of conditions:

x[n] = x[n + N] n=-L+1,...,—1. (6.6)
It must be noted that the presence of a CP reduces the aeailabughput by a
factors = 55—

1
Next, we calculate the discrete Fourier transform (DFT)hef thannel equa-
tion. Letw = exp(—j27/N) so that, in consideration of the CP conditidh@),
we can transform the channel equatiériy into

yiml £ > yhl™

neN
= Z Z H[(]x[n — (Jw™" + Z z[njw™"
neN teLl neN
= Y CH[W™ Y xnjw™ + Y znjw™
el neN neN
= Hm|X[m] + 2[m], (m e N). (6.7)

Here, we defined the following vector/matrix DFTHi[m] £ e HOw™,

X[m] £ 3\ x[nJw™, andzm] £ >\ z[njw™.
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6.2.2 Frequency-domain equivalent channel

First, we notice that the frequency-domain noise vectasidisince:

E[z[m]z[m' "] = ZE[z[n]z[n]”]w(m—m%
neN

_ {0 m#Em 6.8)

NI, m=m

However, the frequency-domain channel matriﬁa[m] may be statisticallyle-
pendent even though th&I[/| matrices are independent. This complicates the
analysis of the mutual information because the resultimgnokl would be frequency-
varying. However, under assumptich d), the frequency-domain channel matri-
ces are marginally identically distributed. In fact, it &sg to see that[H[m||] =

H for all m € N. Moreover, settinch[(] £ (H[¢]), hjm] £ (H[m]), h[(] £

h[{] — E[h[{]], for ¢ € £ andm € N, andh = (H), we have:

~ ~

E [h[m]h[mf]*']

~

= E [h[mﬂ E [ﬂ[m’]} o Y E {Emﬁ[ew] wm=m)t

= hh"+ ) TRt (6.9)
lel
which is independent o whenm = m/, as required.
Then, we follow the arguments reported in [13]. Assumingg@~DM sym-
bol corresponds to independent realizations of the chanmmllse response ma-
trices, the mutual information will be given (in nat) by

~ ~ 1
I(Q[],...,Q[N —1]) = NiL_1
- > Indet(I, + H[m]Q[m]H[m]"), (6.10)

meN

whereQ[m] = E[X[m]X[m]"].
Typically, the ergodic channel capacity is calculated urateaverage time-
domain power constraint:

> E[Tr(x[n)x[n]")] < P. (6.11)
neN
However, applying the inverse DFT (IDFT)
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we can obtain the following equivalent average frequenmygin power con-
straint:

P

A%

> ETr(x[n]x[n]")

neN

- Yy Z m'] )]w—(m—m’)n

neN meN m/eN

= —ZETr m)X[m]™)]. (6.12)

meN

Therefore, the MIMO-OFDM ergodic capacity is defined as theximum of
E[I(Q)] under the constraint

> T(Q[m]) < NP. (6.13)
meN

Furthermore, in accordance with [21, Sec. IlI-A], we canwlibat the ergodic
capacity achieving matrices are independent.oin fact, let use define:

$(Q) £ E[lndet (L, + H[m|QH[m]")).

This is a concave function dﬁ from [15, Th. 17.9.1]. Hence, we can apply
Jensen’s inequality and obtain:

EI(QU].....QIN —1)] = ﬁzsﬁ(é[mb

s(ZQ)

meN

Since the last matrix argument is independent:pfve conclude that the ergodic
capacity is achieved by a covariance matrix that is condtarall values ofm.
Therefore, we restrict to consider the case of equal coweelmatrlceQ[ | = Q
with the power constraint R

Q) < P.

6.3 Asymptotic Analysis
In this section we provide an analytic method to calculageasymptotic ergodic

mutual information of the OFDM-MIMO fading channel des@&tbabove. The
method proposed is a generalization of the one presenté] 9 felevant to the
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narrowband channel. Recalling that each frequency-dontennel matri>ﬁ[m]
has the same probability distribution, our goal is to calteithe mean

E[ln det(I, + HQHM)],
where

() ~ 7 (B Y T6RI ).
lel
according t0 §.9). The ergodic mutual information of our OFDM-MIMO fading
channel model is obtained as

E[I(Q)] = <E[In det(I, + HQH")].

6.3.1 Asymptotic CGF

Repeating the main steps of the asymptotic analysis desdlop[8, 9], we write
the cumulant generating function (CGF) of the mutual infation as follows:

Gv) 2 E[det(lr + ﬁéﬁ”)—"]
= E{/ dU etr{ — (U0 + VHV)}
Crxv (Ct><u
etr{ ~ 7(UMHQY?V — V”él/Qﬁ”U)}dV} .
Using the following result (see, e.g., [8, 9]):

Eletr(MW — WHM")] = exp(—||M]]*),

which holds for any random matriwv with iid \V..(0, 1) entries, we obtain:

Glv) = / dU dVetr[—m(U"U + VHV)]
(CTXV (Ctxu
etr{ — 7(UMHQ'?V — VHQ'/*H"U)

—r?y U“R[é]UVHT[z]V}

= / dU dVetr[—m(U"U + VHV)]
Crxv (Ctxu
etr[-m(UNHQ'?V — VHQ'/2H"U)]

1T / dp(Wy, zé)etr{wgzz — WWZU”R[K]U}
lel

etr{ - ﬂZgV”T[ﬁ]V}.
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Here, integration oveW, is carried out onR**” + W, for someW,, €
CY*¥, and the integration oveZ, is carried out on(jR)"** + Z,, for some
Z,p € C". Moreover,du(Wy,Z;) = dW,d(Z,/(j2n)). Applying the iden-
tity TrMMXPNY) = (X)H(MTEN)(Y) [17] in the last integral, we obtain the
following result:

Glv) = / {Hetr(wgzg)du(wz,zg)} X (6.14)

el

o [T T S WeRI LeEQY: )
~1,£Q'/*H" L+ e Ze€T

Here and in the following we defir€[¢] £ QY/2T[(]Q"/2.

6.3.2 Ergodic mutual information

We assume that the saddlepoint of the integrand6ii4f corresponds to the
replica symmetric poinW, = wl,,Z, = z1,, for ¢ € L. Under this assump-
tion, we can get the values af,, z, by solving the following set of fixed-point
equations:

(

we = Tr{[L+ Sep %l + Q2
< (L4 o wRl) HQY2| )
z = Tr { [Ir + 3, wR[() + HQY?
STCEE SIS V() I G: i )

(6.15)

\

for all ¢ € L. The resulting asymptotic approximation of the ergodicacily is
given by:

1(Q) = lndet{ImLngR[é]}

el

—1
+Indet {It + {Z 2 T[] + H" (L« + ZweRM) }_I} é}
teL teL
- Z Wezy (616)
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6.3.3 Ergodic capacity

To maximize the ergodic mutual informatio6.16 with respect to the input co-
variance matrixQ we have to solve the following optimization problem:

~

maximize  u;(Q)
subjectto Q@ >0, Tr(Q) < P.

Paralleling the approach of [26], we can see that the obdtinction is concave
with respect ta) and the constraints satisfy Slaters qualification conulifiizt].
Thus, the Karush-Kuhn-Tucker (KKT) conditions are necasaad sufficient for
optimality [14]. Then, to derive the KKT conditions, we foitime Lagrangian

LQN®) = 1(Q) — A[THQ) — P] + Tr(2Q) (6.17)

for A > 0, ¥ > 0. After nulling the variation ofC(@,)\, W) with respect t(ﬁ,
we obtain the KKT conditions:

(L+EQ)'E =L - ¥

T(Q) =P (6.18)
T(TQ) =0

where we defined the matrix

22 5T+ H" (Ir +) WR[ﬁ]) _11‘{.

lel lel
The solution of eqs.g.18 depends on the rank of the mati& Let us as-
sume thate = UYA,U, is the orthogonal decomposition & with A, =
diag(A,,0) and unitaryU", where A, is a positive definite diagonal matrix.
Then, if P, =rank(E) < t, we can see that

In det(I, + 2Q) = Indet(I,, + A,Q),

Whereél is thep, x p, upper left submatrix oUm@UQ. Finally, the ergodic
capacity achieving covariance matrix is given by

Q- deiag<()\_11pz CACY,, 0) ut (6.19)

where(-), denotes the elementwise positive part of the elements oféiteix
argument, i.e.(z), = z for x > 0 and0 otherwise. The Lagrange multipligris
determined by solving the constraint equaﬁb(@) = P. It can be noticed that
eg. 6.19 can be written as

Q=U,(\'T, - AJY), UM

xT

by assuming that matrix inversion maps the null entries enntiain diagonal of
A, to positive infinity.
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Remark 6.3.1 It is worth noting that the ergodic capacity achieving coace
matrix found has the typicatlaterfilling form arising in many information theo-
retic optimization problems (see [15, 26]). The ergodicroted capacity is found
by solving the joint set of equations given b§.15 and 6.19. This can be
achieved by an iterative algorithm that starts from anahitalue of the variables
(wy, 20, Q) and proceeds by applying.(L5 and €.19 alternately until it con-
verges.

Remark 6.3.2 In the special case wheR[¢(] = R, constant for all € £, we
have a substantial simplification of the asymptotic mutnfdrimation equations.
In fact, egs. §.15 and 6.16 become

w = Te{[L, + 2T + QV*H"(I, + wR) 'HQ/?'T}
T)1/2 ™\ —1)1/2FTH] -1 (6.20)
z = Tr{[l, + wR +HQY*(1, + »T)'Q'*H"'R}
and
1/(Q) = Indet(I, + wR)
+Indet{I, + [T + H"(I, + wR) "H]Q} — w2,
(6.21)

respectively. In those equations we ¥e& ", . T[(] andT £ Q'/*TQ"/>.

6.4 Numerical results

We present some numerical results to illustrate the acgushthe asymptotic
analytic method proposed to determine the capacity of tdelband MIMO com-
munication channel considered. Here we disregard the edtection due to CP
insertion (equivalently, we assumé — oc). Specifically, we study the effects of
spatial correlation with a strong LOS component correspantb a Rice factor
K = 0 dB. We consider the following parameters of the commuricasicenar-
ios:

e N. of antennast = r = 4, n. of paths:L = 3.
e Mean channel matrixtH),;, = h, (constant).
e Correlation:(R[(]). = al* " and(T[(])w = peB" ", with p, = 0.9

The effects of spatial correlation are assessed by conptrénergodic capacity
and the iid mutual information (corresponding@= ¢I,) in three different sce-
narios: i) uncorrelated (Fig6.1); i) partly correlated (i.e., correlated only over
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the paths without a LOS component, F6g2); andiii) completely correlated (i.e.,
correlated over all paths, Fi§.3). In all figures, solid and dashed lines with mark-
ers correspond to the ergodic capacity and to the iid mutdafmation, respec-
tively, obtained in both cases via the asymptotic analypigraach developed in
this work. Square markers represent the corresponding é40atlo simulation
results. We can see that, in all cases considered, simuleggults are in close
agreement with the analytic ones. The figures also plot thienop covariance
matrix eigenvalue distribution (solid lines without mar&ewith sum normalized
to 1). These curves confirm the well known fact tlheamformingcorrespond-
ing to a single dominant eigenvalue, only one curve stucK ts optimal below
a certain SNR. These results show that the threshold inesessthe correlation
increases, too. The optimization of the covariance magrimore effective as the
level of spatial correlation increases. The results sh@w¢hbvariance optimiza-
tion can compensate almost completely the iid mutual infdrom degradation
due to increased correlation. Similar results, not repofte space limitation,
show that the effectiveness of covariance optimizatioreases as the Rice factor
increases. On the contrary, with Rayleigh fading, the athgais more limited.

6.5 Conclusions

We provided an analytic asymptotic (in the number of antehnaethod to ap-
proximate the mutual information of a wideband Rician fadseparately corre-
lated MIMO channel. By using this method, we obtain the asytigally opti-
mum input signal covariance matrix, yielding the ergodipamity of the chan-
nel considered. As noticed in [31], the asymptotic methoslisstantially more
efficient than numerical optimization methods such as the moposed in [50]
(interior point with barrier). We show by numerical resuttst the asymptotic
approximation is accurate even when the number of antesnamall. Finally,
using our proposed method, we analyze the effectivenessvafiance optimiza-
tion related to the level of spatial correlation and the Raxor.
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Figure 6.1: System capacity and iid mutual information usrhe SNR for the
uncorrelated scenario. Optimum covariance normalizedre@ues are also re-
ported.
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Figure 6.2: Same as Fi§.1for the partly correlated scenario.
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Figure 6.3: Same as Fi§.1for the completely correlated scenario.
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Chapter 7

Asymptotic Ergodic Capacity
Region and Rate Optimization of a
Multiple Access OFDM MIMO
Channel with Separately-Correlated
Rician Fading

Giorgio Taricco,Erwin Riegler

7.1 Introduction

An important problem of network information theory is theidation of the ca-
pacity region of a multiple access channel. In spite of isgeresearch efforts
carried out through the recent decades, there are severalmpblems in this
area that have wide implications to the theory of commuiooatand computa-
tion [15].

The multiple access channel capacity region is the largastfsate vectors
that are achievable by the different channel users and hes $tadied exhaus-
tively in the literature [15]. It admits a simple expressfonthe Gaussian multi-
ple access channel that has been extended to the Gausstgieradcess MIMO
channel by Ywet al.[26], who provided an iterative water-filling algorithm agah
at finding the optimum user signal covariance matrices tlzgadmize the sum rate
of the channel. Their result applies when the multiple a&®4BVO channel is
perfectly known at the transmitter and at the receiver.

However, in many situations it is more reasonable to assimaednly the
channel state information at the receiver (CSIR) and thamsladistribution in-

72
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formation at the transmitter (CDIT) are available. In thése, the problem of
finding the optimum covariance matrices is still open in teeeyal setting [16].
A notable result in this area has been provided by Héishl. [2], who proved
that the ergodic and outage achievable rate region incr@sssets) monotoni-
cally with the singular values of the line-of-sight (LOS)aponent of the channel
matrix. In this contribution we assume that full CSIR butyo@IDIT is available.
The channel matrix for each user includes a LOS componenseyparate spatial
correlation at the transmitter and the receiver for eachydip. In particular, we
also allow different receive correlation matrices at theereer for each delay tap
andfor each user, which is done by introducing "virtual delayblote that con-
trary to the semi-correlated case [13], where either théapzorrelation matrix
at the transmitter or at the receiver is the identity matte, channel matrices in
the frequency domain are no longer of the Kronecker type.

Based on these assumptions we provide two algorithms to etape opti-
mum covariance matrices which maximize the (weighted) satas in order to
obtain the asymptotic ergodic capacity region. Our analigssbased on a recent
result [11] which allows to calculate the wideband asyniptoapacity in the
single-user case when the number of transmit and receieaaas grows asymp-
totically large though the number of users and their SNRsfiaite.

Our results generalize previous works where we derived pienam covari-
ance matrices for a MIMO channel with interference [10] amdthe dominant
face of a multiple access channel [7] in the narrowband cesgenaing a common
receive correlation matrix. Related works on the asymep#tgproximation of the
mutual information in the single-user case are [3] and [%]tfee separately-
correlated Rayleigh fading narrowband and wideband cHarespectively, [4]
for the Rician fading narrowband channel without spatiai€ation, and [6,8, 9]
for the separately-correlated Rician fading channel. Binsingle-user capacity
results were also obtained in [31] using an asymptotic ntethassed on Stielt-
jes transforms and in [50] using the Newton barrier method] €bmbined with
Monte-Carlo simulations.

An expression for the asymptotic sum mutual informationddoitrary input
distributions of a multiple access narrowband seperatetyelated Rayleigh fad-
ing MIMO channel has been derived in [12].

7.2 System model

We consider a wideband frequency selective multiple acagsarately-correlated
Rician fading MIMO channel with< users transmitting to a single receiver. User
k, fork € K £ {1,...,K}, is endowed with(k) transmit antennas and the
receiver withr receive antennas. We assume that the maximum number of re-
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solvable paths of the channelis= [Br] = |£ = {0,...,L — 1}| (whereB
is the signal bandwidth andthe is the delay spread), so that the channel can be
modeled by the following equation:

yinl =" Hlxi[n — () + 2[n] (7.1)

kek teL

forn € N2 {0,...,N — 1}. Here,n is a discrete time index;[n] € CH*)x!

is the transmitted signal vector of useat timen; H;[¢] € C™***) is the channel
matrix impulse response of uskrsampled at delay timé z[n] € C™*! is the
additive noise vector at time; andy[n| € C™*! is the received signal vector at
timen. We assume stationary and white (in time) noise samples with

Qz = Elz[n]z[n]"].

We also assume uncorrelated scattering and no correlatitovebn the chan-
nel matrices for different users. Spatial correlation ketainto account by setting

H,[0] = Hy + R [0]Y/2W[0] T [0]}/2 7.2)
whereH,, = E[H,[0]], Ri[(] is the receive spatial correlation matrix of ugeat
delay time/, andT}[¢] is the transmit spatial correlation matrix of ugeat delay
time ¢. The matricedV[¢] are iid with entries distributed &s_(0, 1).

Furthermore, we assume that the communication systemesllmssan orthogonal-
frequency-division multiplexing (OFDM) scheme allowing ¢tonvert the fre-
guency selective fading channel into a set of independemditdonally on the
channel matrices) frequency flat channels. A key assumpgitime insertion of
a cyclic prefix (CP) with length equal to the delay spread,clwl@amounts to the
following set of conditions:

xi[n] = xg[n + N] n=-L+1,...,—1. (7.3)

The CP condition limits the information throughput by a taodf © £ .
Next, we calculate the discrete Fourier transform (DFT hef¢thannel equation.
Letw £ exp(—;j27/N) so that, in consideration of the CP conditidh3), we can

transform the channel equation y) into

yiml £ ynlw™ > N TS T Hi[xn—Cw™ = > Hy[m]R[m]+2[m]

neN neN kek (el kex
(7.4)
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for m € N, where we defined the DFTH,,[m] £ >ver Hilllw™, Xi[m] =
>nen Xk[njw™, andzim] £ Y -z[njw™ with Q, = NQ; = E[z[m]z"[m]).
We assume an average power constraint for eachkuset:

1 N
P = Y TEknxn)]) = N > TH(Qu[m)
neN meN
with Qy[m] £ E[X[m]|X[m]"].
Note that the entries dfi,[m| are again Gaussian and
H[m] ~ Hy, 2 Hy + > R[] W [(T/%[(] (7.5)
el
for all m € N. Following standard assumptions [1, 9, 10], we define the Ric
Factor of usek as

H||?
KR 2 [H 7.6
C S ST TRAT) (79
teL
and the signal-to-noise power raB8lR, of userk as
Pr(KR +1) > Tr(Ty[(]) Tr(Ry[(])
SNR, £ = : (7.7)

t(k) Tr(Qz)

which corresponds to the received SNR when the transmitiaat isignal is iid,
see the discussion in [7].

7.3 Achievable rate region

From the transformation property of the entropy under linttansformations
h(Ax) = h(x) + log | det(A)| ( [15, p. 254]) and the fact that we have inde-
pendent channels (conditionally on the channel matricetha frequency domain
(7.4 it is plain to see that the mutual information can be cakadaeither in the
time domain or in the frequency domain:

;A %J(ﬁlm,...,@(w— 11:5001,....5IN 1] | &)

= %I(Xl[O],,XK[N_1]7Y[O]77Y[N_1] ‘ 6)
= %rg\/’](xl[m],---,XK[m];Y[m]7"'7Y[m] ‘ Gm)

with &,, = {Hi[m] | k € K} and& £ |J &,,. The ergodic capacity region
meN
can therefore be derived in the frequency domain:
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Proposition 1 Denoting byS c K an ordered subset &f and byS® = K\ S its
ordered complement ift, the ergodic capacity region is given by the following
union of polytopes:

C = U {Beld R <

TH(Qr<Py) kes
—Z [m] | Rge[m], S, ¥ S C K}
meN
= U {Rx | ZRk <
TH(Qr<Py) keS

KE[In det(HsQsHR + Q)] — kIndet(Q2) VS C K}

whereRc = (R, ..., Rx) denotes the rate vector of all usérs: K, Xs|m| £
Xx[m]" | k € )T, Hs £ (Hy | k € §), Qs = diag(Qy | k € S), and
Q:[m] = Q. is the same for alln € .

Proof The proof follows from:

o SR ] | Rse[m]. &)

me./\/

=+ O (Elndet(FsQslm] A + Q)] — Indet(@)

meN
< E[lndet(HsQsHY + Q)] — Indet(Qy),

with Qs[m] £ diag(Qx[m] | k € S), where we used the fact that:

1. The average mutual information depends only on the Statisf the chan-
nel matrices defined irv(5).

2. The average mutual information is concave in the covaeanatrices.

3. Jensen’s inequality.

4. & va diag(@k[m]) is independent af: so that we can assumetl@;[m] =
me

@;Nm e N.

The convex hull operation may be omitted because any convearlcombination
of rate vectors is in the polytope defined by the same conmealicombination
of covariance matrices (see the proof of Theorem 2 in [26]ctviolds for any
concave function of positive semidefinite matrices). |j
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To maximize the extreme points in each polytope we introdveighted rate sums
[26]. For each permutation of K letw € D™ where

D" £ {w=(w|keK)eRY|
Zwk:L 'LUW(K)_ >’w7r >0}

Then the extreme point correspondinguols achieved by the set of covariance
matrices{ @}’ | k € K} that maximize the weighted rate sum

Z kak

kel
< Y AwE[ndet(Hs,, Qs HE = +Qz)]
kel
—Wr(K) In det(Qz)
2 I, (7.8)
subject to
Q) < P and Q.>0 Vkek

where S, is the ordered set defined &) = {r(j) | j € K, j > k},
A A
Wro) = 0, ANdA (1) = Wr(k) — Wr(k—1)-

7.4 Optimization

In order to solve this optimization problem we use a recestilteallowing to
calculate the average mutual information of a single-ugdebandseparately-
correlated Rician MIMO fading channel when the number aidrait/receive an-
tennas grows asymptotically large:

Proposition 2 The asymptotic single-user ergodic mutual information mvtiee
channel matrix is of the form

H=H+> R[(]'W[T[(]'/> cC™ (7.9)
lel

the noise covariance @, € C™*", and the signal covariance @ € C, is
given by

E[l(x;y | H)] ~
w(QPH{Q, PRINQ,*Y. {10}, Q)
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nat/complex dimension, where we defined

pr(H AR} AT}, Q) £ Indet(I, + ) wR[(])+

el
mdet(I, + (O % T[] + BT, + Y wR[(])'H)Q)
el LeLl
— Z Wyzy.
el

Here,{w,} and{z,} are the positive solutions of the fixed point equations:

we = Tr {T[/z] L+ 2T+ Y, + 3 ng[e])—lﬁ]—l}

o= TR, + X w R+ H(, + X 2 00) i)

with H 2 HQ'/? andT[(] £ Q'/*T[()Q"/2.

Proof see [11]

Applying this result to the upper bound on the weighted rate 1 equation
(7.9 yields:

]’UJ ~ Z Aﬂ(k)ﬂ[(ﬁsﬂ(kw {ﬁ,[ﬁ] }7 {Tsﬂ.(k) [ﬁ]}? éSﬂ(k))
kel

where we defined

I:iS £ (é;l/zﬁk | ke S)
Tsll] £ diag(dx; T[] | j€S) Ve L
Rl(] 2 Q' °R.0Q, VeLe L

for subsetss ¢ K. Here, we introduced “virtual delayg'= (k, () € Ls = SxL
to cope with the fact that we allow for different receivedretation matrices for
the transmitting users. Note that there are several sysiéfixed point equations,
each of which corresponding to a certainSefo distinguish them we writéw; }
and{z{} with £ € Ls for the corresponding solution of the system:

wf=Te{Ts (g o+ S5 Tsle) + HA(L+ S wiR[E) )}
ter ter
zf:Tr{R[ﬁ] L+Y wiR[E] + Hs(I+Y" 2 Ts [ﬁ])_lﬁg]_l}
= LeL LeL —
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with Hs 2 HsQY’, Ts[f) 2 QY’Ts[€)QY>, andis 2 Y, s t(k) for S C K.
To proceed we define the quantities

Xs £ Z ZgTS _'_HS + Z ’(UgR
LeLs Lels

Furthermore, for eacl = {iy,...,i|s)} C K andk € S we define the matrices

Qrs 2 diag(0y(;, ), - Q.. O:(is)))

Qis £ Qs—Qus.
Noting that(I + AB)~*A > 0 for arbitrary positive semidefinite matrices B
of the same size [17, p. 19] we can rewrite the expressions:

Indet(Ls + XsQs) — Indet (I + XsQf )

= Indet(L + (Ls + XsQf ) ' XsQu.s)

— Indet(Lp + ArsQp) (7.10)
with A s £ (L, + XsQf, )~ Xs]y, for arbitraryS ¢ K with & € S, where
[A], denotes the submatrix & obtalned by extracting the elements of the rows

and columns with indexes fro@] t(j)+1to Zj:; (7). Using these manip-
ulations and the fact that

Opr -0 and

o
il L_0 veec
o oz e 5

we further get:
V@w(k)l’”

k

~ Q ") ZAW MI(HS(V{R[ ]} {TS()[ ]} QSW(J))

7j=1
= V©ﬂ<k)¢w(k>(@n(k)) (7.11)
with
D (éﬂk)é
ZA In det(Tyir(r) + An), s, Qriiy) (7.12)

forflxed{wﬂ”} and{z, St (j =1,...,k). This implies that we can alternately
solve the systems of fixed point equatlons and maximize tipeessionsp,
with respect th7r ), resulting in the following optimization algorithm:



80 MASCOT D3.1.3

Algorithm 3 (Optimization for arbitraryw)
initialize Q. = diag(Py/t(k)L | k € K)
repeat
solve fixed point equatior{sue"(k)} and{ze”(k)} VkekK
fork e K B B
for fixed{w;""} and{z;"")} wherej = 1,... .k

SO|VeQ7Tw(k) = arg max(gbw(k)(Qﬂ(k)))
subject tOTr(éﬂ(k)) < P7r(k:) and éﬂ(k) >0
end R
setQ, =QYVEkek
until the desired accuracy is reached.

For arbitrary weights nexplicitwater-filling solution exists unless all the ma-
tricesAy s, Which appear in the objective function in equati@nl@ commute,
which would imply that we could diagonalize them simultanglg. Nevertheless,
this objective function is concave and we can use the Newaornds method [14,
Chapter 11.3] to maximize it. This method has the advantdgevading the
(highly non-linear) inequality constrain{@k > 0}. When the positive semidef-
inite constraint is tight we replace the objective functigg., by

S ( Qi) 2 n) Qi) + (1/1) Indlet(Qrry) (7.13)

with barrier function(1/t) In det(@r(k)) (t > 0) and iterate Algorithn8 overt,
as proposed in [14, Algorithm 11.1]. Thanks to the manipoiet in equations
(7.10, the gradient and the Hessian of the objective functibh3 can be com-
puted with little effort, see [50] equations (9) and (10}pectively.

7.4.1 Simultaneous water-filling

Assume that we want to maximize the rate sum of a subset ag&ser{i,, ..., 45} C
IC with equalweights:

C(1)S| fhes
Y=Y 0 otherwise

i.e. we want to maximize theum rate The sum in the objective functio7.(L2)
then collapses to a single term and we get:

~

Q) = arg max(dn(n(Qrw))
= arg max(Indet(Iyxw)) + Ar)sQr))
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for all k € S. Furthermore, we can apply Hadamard’s inequality [15, p0] 68
and get the following standard water-filling solution foetbptimum covariance
matrices:

1

Q5m — Uk[)\—kIt(k) — AL UM (7.14)

where we used the eigenvalue decomposition
Ay s = Up\, U}

and defined A, '); £ oo in the case of A,); = 0. This gives us the following
algorithm:

Algorithm 4 (Simultaneous water-filling)
initialize Qx = diag(Py/t(k)Lyw) | k € K)
repeat
solve fixed point equations féry } and{zy }
fork e K B B
for fixed{wy } and{z3 }
solveQ§™ = Uy [ L T4 — A '], UY
end R
setQ, =Q;""VkeS
until the desired accuracy is reached.

7.5 Numerical simulations

In this section we present numerical results illustrathregdaccuracy of the asymp-
totic optimization of the (weighted) rate sum. Figutd illustrates the two-user
asymptotic ergodic capacity regions for several SNR valo@snded by the thick
curves. Red chain dotted lines bound the achievable ratenggsing simulta-
neous water-filling (Algorithn#), where the optimum covariance matrices maxi-
mize the sum rates. Magenta solid curves are obtained byhtegigate sum op-
timization (Algorithm3), where we iterated, within w, € {0,0.05,...,1} and
plotted the curves connecting the corresponding extrenmepdlue dashed lines
report single-user bounds dty and R, corresponding ta, = 1 andwy = 0, re-
spectively. Black thin dashed lines show the bounds on thiegable rate regions
for iid power allocation. "x"- and "0”- markers refer to MogtCarlo simulations
and label the extreme points and faces in the polytopesecésply to confirm
the accuracy of the asymptotic approximation.

We have chosen the following parameters for our simulations
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1. The number of transmit/receive antennas is equélito= ¢(2) = r = 4.

2. The number of paths i = 3 with spatial correlation
(Tk[0)ap = p(O)ar(0)*" (Ri[0)ap = Bi(0)

fork € K and¢ € L. Here,p(¢) £ 0.7° corresponds to a power delay profile
with exponential decay. Furthermore, we sgtl) = as(¢) = (1(¢) =
By (€) with a1 (0) = 0.7, a1 (1) = 0.8, anda (2) = 0.9.

3. For the line-of-sight components we took the all one matormalized such
that K} = K} = 0 dB.

4. The signalto noise ratio is iterated witliNR; = SNR, € {5, 10, 15, 20,25}
dB,Qz =1,, andx = 1.

22
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Figure 7.1: Asymptotic ergodic capacity regions of a tworusgenario with
SNR; = SNR; < {5, 10,15, 20,25} dB.

It can be noticed that there is a considerable distance kettthe dominant faces
of the iid rate regions and the, = 0.5 rate regions, which are obtained by si-
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multaneous water-filling, in the low SNR regime. The effefolveighted rate sum
optimization is mainly visible in the high SNR regime.

7.6 Conclusion

We investigated the ergodic capacity region of a multipteas separately-correlated
Rician fading MIMOwidebandchannel using an asymptotic approach. The chan-
nel model we used is sufficiently general to allow for consitgdifferent spatial
correlation matrices for each user and delay at the tratemaind the receiver.
Two algorithms have been proposed to optimize the covagiamatrices for the
(weighted) rate sums in order to obtain the asymptotic eoyoapacity region.

We showed by numerical simulations that our approach is aecyrate even for

a small number of antennas.
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