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Abstract:

The focus of this deliverable is on the study of capacity regions (i.e., the sets of jointly
achievable rates) of multiuser MIMO systems by means of analytic and simulation tools.
Chapter 1 introduces the main concepts about the analytic tools used. Chapters 3 to 4
address the case of separately-correlated Rician fading for narrowband MIMO channels
by considering the following topics:i) transmitted signal covariance optimization in the
presence of intended and interfering signals;ii) second-order statistics of the mutual in-
formation in the presence of interference;iii) ergodic capacity region for a multiuser
channel. Chapter 5 introduces interference functions to analyse capacity regions (and
also other performance regions) by expressing them as sub-level sets of a certain inter-
ference function. Chapters 6 and 7 address the case of wideband MIMO channels with
separately-correlated Rician fading and considers the following topics: i) capacity and
optimum signal covariance matrix for a point-to-point MIMOlink; ii) ergodic capacity
region for a multiuser channel.
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Executive Summary

This deliverable summarizes the contributions in the MASCOT WP3 concerning
the study of capacity regions for the multiuser MIMO channel. The main target
of WP3 is to establish and investigate the fundamental performance limits of the
multi-user (MU) MIMO systems.

We focus on MIMO channel capacity in the Shannon theoretic sense. Accord-
ing to Shannon’s Theorem, the Shannon capacity of a single-user time-invariant
channel is the maximum mutual information between the channel input and out-
put. This maximum mutual information is shown to be the maximum achievable
data rate, i.e., the maximum data rate that can be transmitted over the channel with
arbitrarily small error probability. When the channel is time-varying, channel ca-
pacity has different definitions, depending on what is knownabout the channel
state or its distribution at the transmitter and/or receiver and whether capacity
is measured based on averaging the rate over all channel states/distributions or
maintaining a constant fixed or minimum rate. In this case, the Shannon (ergodic)
capacity is the maximum mutual information averaged over all channel states.

The research study described in this report has been influenced by the meth-
ods of statistical physics, developed in the last century tostudy the interactions of
particles in gases, fluids, and solids. Statistical physicsand multiuser communi-
cations show strong analogies from a conceptual point of view. As a result, we
derive the asymptotic capacity of single-user and MU MIMO channel by using
thereplica methodsandsuperanalysis, which origin from statistical physics.

We study the ergodic capacity of the asymptotic separately-correlated Rician
fading MIMO channel with interference in in Chapter2. In this chapter we con-
sider the separately-correlated Rician fading MIMO channel with narrowband
interference and calculate its channel capacity with the only limitation that the
receive correlation matrix is common for both the intended user signal and inter-
ference. A simple method to derive the ergodic capacity and the corresponding
capacity-achieving covariance matrix for a MIMO fading channel with multiuser
interference is provided. The method applies when the fading distribution is based
on the separately-correlated (Kronecker) Rician fading model (with common re-
ceive correlation), as the number of antennas grow asymptotically large. Numeri-
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6 MASCOT D3.1.3

cal results are provided to assess the accuracy of the asymptotic analytic method.
The results are compared to those obtained by more complex optimization algo-
rithms proposed by by Vu and Paulraj [50] in the interference-free case. Next,
the analysis is extended to other MIMO channels affected by interference in order
to assess the benefits of covariance optimization versus independent and uniform
power allocation (corresponding to iid transmitted symbols).

The second-order statistics of the mutual information of the asymptotic separately-
correlated Rician fading MIMO channel with interference are the main subject of
Chapter3. This chapter aims at finding an analytic expression for themoment
generating functionof the asymptotic mutual information. The results are based
on thereplica methodandsuperanalysis, powerful tools developed in the con-
text of theoretical physics. Our initial findings are based on thereplica method,
which turned out in the recent past to be a powerful tool to handle similar prob-
lems [58, 60, 61, 64]. Basically, we extend the approach usedby Moustakaset
al. in [3], though in a nontrivial manner, to the correlated Rician fading case
and derive the mean and the variance of the mutual information. The mean
and variance of the mutual information of a separately-correlated Rician fading
MIMO channel are obtained in the presence of multi-access interference, when
the number of transmit and receive antennas grows asymptotically large and per-
fect receive channel-state information is assumed. The presence of line-of-sight
components induces additional coupling between the signaland interference parts
(off-diagonal matrix blocks in equations (3.31)) in the saddle point approxima-
tion, which makes the calculations considerably complex. This problem is solved
by applying the methods ofsuperanalysisdeveloped in the context of theoretical
physics [52]. Analytic asymptotic results are compared by Monte-Carlo simu-
lation in order to assess the accuracy of the method even whenthe number of
antennas is small.

In Chapter4 we study the ergodic capacity region of the separately correlated
Rician fading multiple access MIMO channel. This chapter presents an asymp-
totic analytic method, still based on the replica method, tocalculate theergodic
capacity regionof a multiple-access MIMO channel with correlated Rician fad-
ing. The method applies when the number of antennas is very large but provides
very accurate approximations even with a small number of antennas. We assume
that full channel state information at the receiver (CSIR) is available and the trans-
mitter knows the statistics of the channel, i.e., the channel distribution informa-
tion at the transmitter (CDIT), but not the full channel state information. Based on
these assumptions, we provide an algorithm to find the maximum ergodic sum-rate
achieving covariance matrices of a multiple-access MIMO channel when the num-
ber of transmit and receive antennas grow asymptotically large with finite asymp-
totic ratios and the number of users and their SNR’s are finite. In this context
we assume that the multiple-access communication channel is affected by Rician
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fading with separate spatial correlation (with a common receive part and different
transmit parts). Our results rely on a previous work [25] where the ergodic capac-
ity achieving covariance matrix was obtained for a separately-correlated Rician
fading MIMO channel with multiple-access interference, which extended previ-
ous results due to Moustakaset al. [3] relevant to the case of Rayleigh fading.
It is shown by numerical results that this asymptotic approach is very accurate
even when the number of antennas is as low as a few units. The ergodic capacity
achieving covariance matrices for all users are derived according to the algorithm
provided and the corresponding capacity is compared with the mutual informa-
tion achieved by iid power allocation. Monte-Carlo simulations are also reported
in order to verify the accuracy of the asymptotic results. Similar results for the
separately-correlated Rician fading MIMO channel (without multiple-access in-
terference) were obtained independently by Dumontet al. [31], using an asymp-
totic method based on Stieltjes transforms, and by Vu and Paulraj [50], using an
interior point with barrier optimization method [14].

The analysis of capacity regions is complicated by interference between the
communication links(users). The achievable capacity of one link can depend on
the transmission strategies of other links. This typicallyresults in a coupled sys-
tem with many degrees of freedom. Thus, well-established communication strate-
gies for point-to-point links are not always applicable to multiuser systems. Char-
acterization of wireless capacity regions can be quite awkward, especially when
additional system constraints are considered. This motivates an abstract approach
based oninterference functions, which focuses on some core properties.

Chapter5 investigates the system performance limits based on interference
functions. One main contribution of this chapter is to show that interference func-
tions can be used to analyse capacity regions (and also otherperformance regions).
In particular, every comprehensive capacity region can be expressed as a sub-level
set of an interference function. This facilitates a generalframework for analyzing
performance trade-offs in multiuser networks.

The results of this work, published in [75, 77, 80], show thatthere is a di-
rect correspondence between comprehensive performance regions and interfer-
ence functions fulfilling the core properties of the interference functions. Further
properties, like convexity or log-convexity, can be added.This theoretical frame-
work facilitates a general and unifying approach for the analysis of different kinds
of capacity regions. By focusing on core properties, we are able to develop a rig-
orous framework which allows for an analytical treatment. The results provide
intuition and a roadmap for the development of algorithms inWP1. An applica-
tion example is the iterative algorithm for max-min balancing published in [74].
Other resource allocation strategies are currently being investigated in WP1. For
example, interference functions were successfully applied to the analysis of re-
source allocation strategies based on cooperative game theory in [76,79].
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Chapter6 extends the analysis carried out for the narrowband MIMO channel
to the wideband MIMO channel based on OFDM signalling to characterize the
ergodic channel capacity. Although this is again an asymptotic analysis, numerical
results show that there is very good agreement with the asymptotic analytic results.
The advantage of having analytic results consists mainly inthe fact that it allows
to optimize the input signal covariance matrix in order to determine the ergodic
capacity. The chapter focuses on a separately correlated Rician fading MIMO
channel under some mild technical assumptions, the key one consisting in the fact
that only the shortest delay communication path has a line-of-sight components
while the remaining ones have only scattered components. This chapter provides
the basic tools on which the next Chapter7 builds its developments aimed to
obtaining the full ergodic capacity region of a multiuser multiple-access wideband
MIMO-OFDM separately correlated Rician fading channel. Itis worth noticing
that the true ergodic capacity region is obtained in this case and not only the rate
region optimizing the ergodic sum rate. In order to achieve this result, somewhat
sophisticated convex optimization techniques have been applied (interior point
with barrier optimization method from [14]) and the resulting region contains all
possible rate combinations that are achievable under the given power constraint.
Again, these results have been obtained by using the asymptotic approach, and
numerical (Monte-Carlo) results have been also reported inorder to establish the
accuracy of the analytic approach. It turned out that there is very good agreement
between the asymptotic and the numerical results with a verysmall number of
antennas.



Chapter 1

Introduction

Jialai Weng

1.1 Multiuser MIMO fading channels

Wireless systems continue to strive for ever higher data rates. This goal is par-
ticularly challenging for systems that are power, bandwidth, and complexity lim-
ited. However, another domain can be exploited to significantly increase channel
capacity: the spatial domain based on the use of multiple transmit and receive
antennas. Pioneering work by Foschini, and Telatar ignitedmuch interest in this
area by predicting remarkable spectral efficiencies for wireless systems with mul-
tiple antennas when the channel exhibits rich scattering and its variations can be
accurately tracked. This initial promise of exceptional spectral efficiency resulted
in an explosion of research activity to characterize the theoretical and practical
issues associated with multiple-input multiple-output (MIMO) wireless channels
and to extend these concepts to multiuser systems. We introduce some recent
work focused on the capacity of MIMO systems for both single-users and multi-
ple users under different assumptions about spatial correlation and channel infor-
mation available at the transmitter and receiver.

The large spectral efficiencies associated with MIMO channels are based on
the premise that a rich scattering environment provides independent transmission
paths from each transmit antenna to each receive antenna. Therefore, for single-
user systems, a transmission and reception strategy that exploits this structure
achieves capacity on approximately separate channels, where is the number of
transmit antennas and is the number of receive antennas. Thus, capacity scales lin-
early with relative to a system with just one transmit and onereceive antenna. This
capacity increase requires a scattering environment such that the matrix of channel
gains between transmit and receive antenna pairs has full rank and independent en-
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10 MASCOT D3.1.3

tries and that perfect estimates of these gains are available at the receiver. Perfect
estimates of these gains at both the transmitter and receiver provides an increase in
the constant multiplier associated with the linear scaling. Much subsequent work
has been aimed at characterizing MIMO channel capacity under more realistic
assumptions about the underlying channel model and the channel estimates avail-
able at the transmitter and receiver. The main question fromboth a theoretical and
practical standpoint is whether the enormous capacity gains initially predicted by
Winters, Foschini, and Telatar can be obtained in more realistic operating scenar-
ios and what specific gains result from adding more antennas and/or a feedback
link to feed receiver channel information back to the transmitter.

MIMO channel capacity depends heavily on the statistical properties and an-
tenna element correlations of the channel. Recent work has developed both analyt-
ical and measurement-based MIMO channel models along with the corresponding
capacity calculations for typical indoor and outdoor environments. Antenna cor-
relation varies drastically as a function of the scatteringenvironment, the distance
between transmitter and receiver, the antenna configurations, and the Doppler
spread. As we shall see, the effect of channel correlation oncapacity depends on
what is known about the channel at the transmitter and receiver: correlation some-
times increases capacity and sometimes reduces it. Moreover, channels with very
low correlation between antennas can still exhibit a keyhole effect where the rank
of the channel gain matrix is very small, leading to limited capacity gains. For-
tunately, this effect is not prevalent in most environments. The impact of channel
statistics in the low-power(wide-band) regime has interesting properties as well.

We focus on MIMO channel capacity in the Shannon theoretic sense. The
Shannon capacity of a single-user time-invariant channel is defined as the maxi-
mum mutual information between the channel input and output. This maximum
mutual information is shown by Shannon capacity theorem to be the maximum
data rate that can be transmitted over the channel with arbitrarily small error prob-
ability. When the channel is time-varying channel capacityhas multiple defini-
tions, depending on what is known about the channel state or its distribution at
the transmitter and/or receiver and whether capacity is measured based on aver-
aging the rate over all channel states/distributions or maintaining a constant fixed
or minimum rate. In this case, the Shannon (ergodic) capacity is the maximum
mutual information averaged over all channel states. This ergodic capacity is typ-
ically achieved using an adaptive transmission policy where the power and data
rate vary relative to the channel state variations. Other capacity definitions for
time-varying channels with perfect transmitter and receiver CSI include outage
capacity and minimum-rate capacity. These capacities require a fixed or mini-
mum data rate in all non-outage channel states, which is needed for applications
with delay-constrained data where the data rate cannot depend on channel vari-
ations (except in outage states, where no data is transmitted). The average rate
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associated with outage or minimum rate capacity is typically smaller than ergodic
capacity due to the additional constraints associated withthese definitions. We
will focus on ergodic capacity.

When only the channel distribution is known at the transmitter (receiver) the
transmission (reception) strategy is based on the channel distribution instead of
the instantaneous channel state. The channel coefficients are typically assumed to
be jointly Gaussian, so the channel distribution is specified by the channel mean
and covariance matrices. We will refer to knowledge of the channel distribution
as channel distribution information (CDI).We assume throughout the work that
CDI is always perfect, so there is no mismatch between the CDIat the transmitter
or receiver and the true channel distribution. When only thereceiver has perfect
CSI the transmitter must maintain a fixed-rate transmissionstrategy optimized
with respect to its CDI. In this case, ergodic capacity defines the rate that can be
achieved based on averaging over all channel states. Alternatively, the transmitter
can send at a rate that cannot be supported by all channel states: in these poor
channel states the receiver declares an outage and the transmitted data is lost. In
this scenario, each transmission rate has an outage probability associated with
it and capacity is measured relative to outage probability (capacity CDF). For
single-user MIMO channels with perfect transmitter and receiver CSI the ergodic
and outage capacity calculations are straightforward since the capacity is known
for every channel state.

In multiuser channels, capacity becomes aK dimensional region defining the
set of all rate vectors simultaneously achievable by all users. The multiple capac-
ity definitions for time-varying channels under different transmitter and receiver
CSI and CDI assumptions extend to the capacity region of the multiple-access
channel (MAC) in the obvious way. However, these MIMO multiuser capacity re-
gions, even for time-invariant channels, are difficult to find. Few capacity results
exist for time varying multiuser MIMO channels, especiallyunder the realistic
assumption that the transmitter(s) and/or receiver(s) have CDI only.

In this work we studied the ergodic capacity of single user and multiuser in a
correlated Rician fading channel.

1.2 Introduction to Asymptotic Analysis of MIMO
Channel

Wireless communication systems are designed to work in environments with the
minimum possible amount of infrastructure. Their goal is toprovide the users
with the freedom to communicate with whomever they want regardless wherever
they are. Since electromagnetic waves, the most popular carriers of digital com-
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munications, propagate to almost any place, each user, though communicating
with only a single other user, interacts, in principle, withall other users in the net-
work. Such a setting is hard to press in formulas, in particular if the environment
is arbitrary. The failure of the so-called3-rd generation of wireless technology
is, to a large extent, due to a lack of understanding of the fundamental principle
governing wireless communications in the presence of many users operating si-
multaneously. This knowledge gap has become a severe obstacle to the further
penetration of wireless communication devices into modernsociety and lifestyle
and, therefore, must be overcome.

Research on the behavior of systems where many bodies mutually interact
with many others has been driven forward by physicists for more than a century
studying the interactions of particles in gases, fluids, andsolids. Statistical physics
and multiuser communications show strong analogies from a conceptual point of
view. In both cases many objects interact with each other through variables that
are constrained in a certain way. These inter-disciplinaryanalogies can be ex-
ploited to advance the understanding and design of future wireless communication
systems. Though the analogies between the two fields do not extend too far and,
in real world communication systems, statistical physics results cannot be applied
directly, the engineering community can strongly benefit from the analytical tool-
boxes developed by physicists. So far random matrix theory,originally studied
to describe spacings of nuclear energy levels, has receivedthe most attention in
wireless system analysis and design. In addition, the replica method developed
in statistical physics has entered wireless communicationto cope with the often
binary nature of wireless communication signals. In wireless communications,
random matrix theory and statistical mechanics tools have overwhelmingly used
for performance analysis. Many works have used these large system tools for
actual design of communication systems.

Communication via MIMO channel allows a significant increase in spectral
efficiency the information rate per communication link. While many recent re-
search works aim to utilize this advantage, it is still not sufficiently understood
how the physical properties of these channels translate into achievable signal-
to-interference-and-noise ratios (SINRs) and therefore the supported information
rates. On the physical side, channel models are based on propagation measure-
ments. They provide statistics of the propagation between apair of transmitter
arrays and receiver arrays in terms of delays, received powers, and directions of
arrival and departure. Statements about the information rates capable in the chan-
nel, however, are given in terms of the eigenvalues related to the matrix algebraic
description of the communication link. Many works aim to build a bridge between
propagation scenarios and the eigenvalues of the covariance matrices of the chan-
nel in order to allow for predictions of channel capacity based on the morphology
of the physical medium. It is natural to describe a linear time invariant MIMO
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system by its matrix valued impulse response. The matrix valued taps of the im-
pulse response of the antenna array channel depend on various parameters such
as the exact locations of all antenna elements and all scattering objects, which are
usually modeled as random variables in mobile communications. The quality of
the communication link, however, is mainly determined by the singular values of
these matrix taps. It is well known that the singular values of a large class of ran-
dom matrix ensembles show fewer random fluctuations the larger the matrices are,
and become deterministic in the limit of infinite matrix size. In the large matrix
limit, the influences of many properties of the matrix entries are lost, such as the
shapes of their distributions, and in some cases even the statistical dependencies
among them. Though the asymptotic distribution of singularvalues is only an ap-
proximation to the distribution in the case of finite-dimensional matrices, it offers
two important advantages.

1) In contrast with finite-dimensional matrices, the singular value distribution
of asymptotically large random matrices can be calculated analytically in many
cases. 2) In the asymptotic limit, only those physical parameters survive that
show significant influence on the singular value distribution.

With these two properties, the limiting singular value distribution can help to
analytically extract which physical parameters of the radio propagation channel
largely determine the quality of a MIMO communication link.



Chapter 2

Ergodic Capacity of the Asymptotic
Separately-Correlated Rician
Fading MIMO Channel with
Interference

Giorgio Taricco,Erwin Riegler

2.1 Introduction

Multiple-input-multiple-output (MIMO) channels have attracted considerable at-
tention during the last decade because of the promise of veryhigh information
rates at an affordable cost. Seminal works by Winters [51], Telatar [46], Foschini
and Gans [32, 33] illustrated the principles of MIMO communications and how
to derive the channel capacity under therich scatteringassumption, correspond-
ing to spatially-uncorrelated Rayleigh fading. More recently, experimental and
theoretical works showed that the rich scattering assumption is often inadequate
to encompass all the channel characteristic and more sophisticated correlated Ri-
cian fading models have been proposed to describe more realistic MIMO chan-
nels [34, 35, 44]. Additionally, multiuser interference isknown to have a consid-
erable impact on the achievable information rate and itsGaussian approximation
is known to produce unduly pessimistic results [27,28].

In the current literature, separately-correlated Rayleigh fading with interfer-
ence has been considered by Moustakaset al. [3] as far as concerns the compu-
tation of the mean and variance of the mutual information. These results have
been extended in [8,9] to the separately-correlated Ricianfading case without in-
terference and, more recently, with interference [43]. Allthese results address the
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evaluation of the mutual information when the number of antennas grow asymp-
totically large. Many works address the derivation of capacity for specific MIMO
channels such as MISO with separately-correlated Rayleighand uncorrelated Ri-
cian fading [49], subsequently extended to the MIMO case by [37, 48]. These
works derive the eigenvectors of the ergodic capacity achieving covariance ma-
trix while the eigenvalue derivation is based on other numerical algorithms [39].
Other works in the area of MIMO capacity derivation are [2, 38, 47]. In this con-
test, but using an asymptotic approach, Dumontet al. provide an algorithm for
the evaluation of theergodic capacityfor the separately-correlated Rician fading
MIMO channel without interference [31]. The authors compare their results to
those obtained by Vu and Paulraj [50].

In this work we consider the separately-correlated Rician fading MIMO chan-
nel with narrowband interference and calculate its channelcapacity with the only
limitation that the receive correlation matrix is common for both the intended user
signal and interference. We compare our results with those obtained numerically
by Vu and Paulraj [50] in the interference-free case. Then, we extend our analysis
to other MIMO channels affected by interference and assess the effect of covari-
ance optimization against iid power allocation (iid transmitted symbols).

2.2 System model and basic results

We consider a narrowband block fading channel withr receive antennas,t trans-
mit antennas from an intended user, and∋ transmit antennas from an interfering
source. The channel is specified by the following equation:

y = Hx + HIxI + z. (2.1)

Here,x ∈ Ct×1 is the transmitted signal vector,xI ∈ C∋×1 is the interfering signal
vector,H ∈ Cr×t is the signal channel matrix,HI ∈ Cr×∋ is the interference
channel matrix,z ∈ Cr×1 is the additive noise vector, andy ∈ Cr×1 is the received
signal vector. Bothx andxI are assumed to have zero mean.

We assume that the additive noise vector contains has zero mean and covari-
ance matrixQZ = E[zzH].

The channel matricesH andHI are assumed to be of separately (or Kro-
necker) correlated Rician fading typewith common receive correlation. Thus,
they can be written as

H = H̄ + R1/2WT1/2

and
HI = H̄I + R1/2WIT

1/2
I ,
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whereH̄ andH̄I represent the average channel matrices related to the presence
of a line-of-sight signal component in the multipath fadingchannel, the Hermit-
ian positive definite matricesR,T,TI are the receive and transmit (signal and
interference) correlation matrices, andW andWI have iidNc(0, 1) entries.

We define the signal and interference covariance matrices asQ andQI , re-
spectively. In the following we assume that the interference covariance matrix is
kept fixed and optimization is carried out on the signal covariance matrixQ under
a power constraint. Following standard conventions [1, 8],we define the Rician
factors as

K ,
‖H̄‖2

Tr(T) Tr(R)
and KI ,

‖H̄I‖2

Tr(TI) Tr(R)
. (2.2)

We also define the signal-to-noise power ratio (SNR), the interference-to-noise
power ratio (INR), and the signal-to-interference power ratio (SIR) at the receiver
as

SNR ,
(K + 1) Tr(T) Tr(R) Tr(Q/t)

Tr(QZ)
; (2.3)

INR ,
(KI + 1) Tr(TI) Tr(R) Tr(QI/ ∋)

Tr(QZ)
;

SIR ,
(K + 1) Tr(T) Tr(Q/t)

(KI + 1) Tr(TI) Tr(QI/ ∋)
.

These power ratios coincide with the correspondingreceivedpower ratios when
Q = (P/t)It (iid transmitted symbols).

We know [29] that the random mutual information for a given channel realiza-
tion is given by

I(x;y) = ln det(HQHH + HIQIH
H

I + QZ)

− ln det(HIQIH
H

I + QZ) nat/s/Hz. (2.4)

Then, the ergodic capacity under a power constraintP is obtained as

C = max
Tr(Q)≤P

E[I(x;y)]. (2.5)

In order to calculate the capacity (2.5) we resort to a recent result allowing to
calculate the average mutual information of a separately-correlated Rician MIMO
channel when the number of transmit/receive antennas growsasymptotically large [8,
9]. Summarizing, the average capacity when the channel matrix is H = H̄ +
R1/2WT1/2, and the noise and signal covariance matrices areIr andQ, respec-
tively, is given by

E[I(x;y)] ∼ µI(H̄,R,T,Q) (2.6)



WP-3 17

nat/complex dimension, where we defined

µI(H̄,R,T,Q) , ln det

(
Ir + wR H̃

−H̃H It + zT̃

)
− wz (2.7)

whereT̃ , Q1/2TQ1/2, T̃I , Q
1/2
I TIQ

1/2
I , andw, z can be obtained by solving

the equations





w = Tr

{
[zIt + T̃−1 + T̃−1H̃H(Ir + wR)−1H̃]−1

}

z = Tr

{
[wIr + R−1 + R−1H̃(It + zT̃)−1H̃H]−1

} (2.8)

with H̃ , H̄Q1/2, T̃ , Q1/2TQ1/2.
This result can be applied to the calculation of the terms in (2.4). In fact, to

calculate
I1 , E[ln det(Ir + Q−1

Z (HQHH + HIQIH
H

I ))], (2.9)

we can consider the channel defined by

Q
−1/2
Z y =

{
Q

−1/2
Z (H̄, H̄I) (2.10)

+Q
−1/2
Z R1/2(W,WI)

(
T 0
0 TI

)1/2}(
x
xI

)
+ Q

−1/2
Z z.

Then, we get
I1 = µI(H̄1,R1,T1,Q1)

whereH̄1 , Q
−1/2
Z (H̄, H̄I), R1 , Q

−1/2
Z RQ

−1/2
Z , T1 , diag(T,TI), andQ1 ,

diag(Q,QI). Similarly, defining

I2 , E[ln det(Ir + Q−1
Z HIQIH

H

I )], (2.11)

we get
I2 = µI(H̄2,R1,TI ,QI)

whereH̄2 , Q
−1/2
Z H̄I . Thus, we have

C = max
Tr(Q)≤P

(I1 − I2)

= max
Tr(Q)≤P

{µI(H̄1,R1,T1,Q1) − µI(H̄2,R1,TI ,QI)}.
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2.2.1 Definition ofEb/N0 and Shannon’s limit

Here we assume that the received noise vector is uncorrelated (spatially white)
and henceQZ = N0Ir.

We defineEb as the average received signal energy per bit obtained by dividing
the total average received signal energy by the average achievable bit rate. Thus,
we have

Eb

N0
,

E[Tr(HQHH)]

N0E[I(x;y)]
ln 2. (2.12)

When the average signal and interference powers approach zero with constant
ratio, we can use the approximationln det(I + X) ≈ Tr(X) (holding for any
nonnegative matrixX whenTr(X) → 0) to approximate the average achievable
bit rate (2.4) as follows:

E[I(x;y)] ≈ N−1
0 E[Tr(HQHH)].

Then, inserting the approximation above into (2.12), we obtain

Eb

N0
→ ln 2 as Tr(Q) → 0,

which is the well known Shannon limit.

Remark 2.2.1 In most research works in MIMO communications, the SNR is
preferred to theEb/N0 ratio as a system cost indicator as it effectively describes
the channel reliability. However, only theEb/N0 ratio at the receiver provides
a precise description of the channel behavior in its asymptotically low power
regime.

2.3 Ergodic channel capacity

The ergodic capacity and the corresponding optimum covariance matrix are de-
termined by maximizing the mutual information under the power constraint con-
sidered. Following the approach in the previous section, wecan obtain the mutual
informationI1 for any given transmit covariance matrixQ in the asymptotic an-
tenna setting. SinceI2 is independent ofQ, the channel capacity can be obtained
by maximizingI1 only, i.e.,

C =
{

max
Tr(Q)≤P

I1

}
− I2, (2.13)

where we assume that the interference covariance matrixQI is fixed.



WP-3 19

In order to solve the maximization problem we need to maximizeµI(H̄1,R1,T1,Q1),
whereH̄1 , Q

−1/2
Z (H̄, H̄I), R1 , Q

−1/2
Z RQ

−1/2
Z , T1 , diag(T,TI), and

Q1 , diag(Q,QI), with respect toQ and under the constraintTr(Q) ≤ P .
In order to proceed, we letS = Q1/2, SI = Q

1/2
I , andS1 = Q

1/2
1 = diag(S,SI)

and we write the Lagrangian function:

L(S) = ln det

(
Ir + wR1 H̄1S1

−S1H̄
H It+∋ + zS1T1S1

)

−wz − λ[Tr(S2) − P̃ ] (2.14)

where0 ≤ P̃ ≤ P . Next, we calculate the first-order total variation of (2.14):

δL = Tr

[(
A1 B1

C1 D1

)

·

(
R1δw H̄1δS1

−δS1H̄
H

1 S1T1S1δz + z(δS1T1S1 + S1T1δS1)

)]

−wδz − zδw − 2λTr(SδS) (2.15)

whereδS1 = diag(δS, 0∋×∋) and [8]:




A1 = [Ir + wR1 + H̃1(It+∋ + zT̃1)
−1H̃H

1 ]−1

B1 = −(Ir + wR1)
−1H̃1D1

C1 = (It+∋ + zT̃1)
−1H̃H

1A1

D1 = [It+∋ + zT̃1 + H̃H

1 (Ir + wR1)
−1H̃1]

−1

(2.16)

whereH̃1 , H̄1Q
1/2
1 andT̃1 , Q

1/2
1 T1Q

1/2
1 . Expanding (2.15) we get:

δL = [Tr(A1R1) − z]δw + [Tr(D1T̃1) − w]δz

+ Tr[(−H̄H

1B1 + C1H̄1 + z(T1S1D1 + D1S1T1))δS1]

−2λTr(S1δS1) (2.17)

Since the first two terms in (2.17) are zero whenw, z satisfy (2.8), we can see that
the total variationδL is null, provided that the following equation holds:

{H̄H

1 (Ir + wR1)
−1H̃1D1 + (It+∋ + zT̃1)

−1H̃H

1A1H̄1

+z(T1S1D1 + D1S1T1) − 2λS1}1:t,1:t = 0 (2.18)

where(A)a:b,c:d is the submatrix ofA obtained by extracting the elements of rows
a to b and columnsc to d. Then, we can show that:

(Ir + wR1)
−1H̃1D1 = [(It+∋ + zT̃1)

−1H̃H

1A1]
H

Therefore, we can simplify (2.18) and obtain the following fixed-point equation:

S = λ−1H[(H̄H

1 (Ir + wR1)
−1H̄1 + zT1)S1D1]1:t,1:t, (2.19)

whereH(A) , (A + AH)/2.
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2.3.1 Jensen approximations

In this section we extend the Jensen bound approach proposedin [50] relevant
to the interference-free case. It is known from [29, 30, 40] that the following
inequalities hold for positive definite matricesA,X (X random):

E[ln det(X)] ≤ ln det(E[X]), (2.20)

E[ln det(I + X−1A)] ≥ ln det(I + E[X]−1A) (2.21)

Then, applying (2.21), we have

E[I(x;y) | H]

= E[ln det(Ir + (HIQIH
H

I + QZ)−1HQHH) | H]

≥ ln det(Ir + Q−1
IZHQHH)

where we definedQIZ , E[HIQIH
H

I + QZ ]. Thus,

E[I(x;y)] ≥ E[ln det(Ir + Q−1
IZHQHH)], (2.22)

i.e., the average mutual information of a MIMO channel with interference is
lower bounded by the average mutual information of the same channel where
interference is replaced by Gaussian noise with the same covariance matrix (see
also [27]). Applying sequentially inequalities (2.21) and (2.20) (even though they
have opposite directions), we get the followingJensen approximation:

E[I(x;y)] ≈ ln det(It + E[HHQ−1
IZH]Q). (2.23)

Hence, we can maximize this approximate mutual informationby applying the
standard water-filling approach [29]. If

E[HHQ−1
IZH] = UΛUH,

the optimum covariance matrix is given by

QJ = U(µIt −Λ−1)+UH (2.24)

whereµ is obtained by solvingTr[(µIt−Λ−1)+] = P and(A)+ is the matrix with
entriesmax{0, (A)ij}.

2.4 Numerical results

In this section we present numerical examples based on the method developed
before.
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2.4.1 Comparison with the results from [50]

In order to validate the method proposed in this paper, we compare the results
obtained versus those presented in [50]. Our results are presented in Fig.2.1
(channel capacity) and2.2 (normalized covariance matrix eigenvalues). Specifi-
cally, Fig.2.1 reports the capacity obtained numerically in [50] (dotted line with
circles), the capacity obtained by our asymptotic approach(solid line), and the
capacity obtained by Monte-Carlo simulation and using the transmit covariance
matrix obtained by our asymptotic approach (diamonds). Fig. 2.1reports the nor-
malized covariance matrix eigenvalues obtained numerically in [50] (dotted lines
with circles) and those obtained by our asymptotic approach(solid lines with dia-
monds). In both cases, our results are in close agreement with [50].

2.4.2 Impact of interference

We consider a MIMO system with the following parameters:t = r =∋= 4,
K = KI = 10 dB, R,T,TI exponential matrices(α|i−j| with baseα = 0.7
in all cases),H̄, H̄I with rank one (all-equal entries). Figs.2.3 to 2.5 plot the
average mutual information forSIR = −10, 0, 10 dB, respectively versus theSNR

and the normalized optimumQ eigenvalues. The three mutual information curves
correspond to differentQ: 1) optimum based on the proposed algorithm; 2) iid
symbols (Q = qIt); 3) Jensen approximation; and 4) optimum with Gaussian
interference.

It can be noticed that the gain of the optimum versus iid covariance matrix
may exceed10 dB in some cases. Moreover, the Jensen approximation provides
extremely accurate results up to some SNR threshold, above which it starts to de-
grade (as can be noticed from Fig.2.3). The goodness of the Jensen approximation
decreases (slightly) as the Rician factorK gets lower. The channel capacity cor-
responding to the Gaussian approximation of interference is much lower than the
true channel capacity atSIR = −10, 0 dB, as also evidenced in [28] for a Rayleigh
fading MIMO channel. The difference is more limited in theSIR = 10 dB case.
In all cases, we have anSNR threshold, depending on theSIR, above which the
two capacity curves diverge.

2.4.3 Consistency with Shannon’s limit

Previous results reported the mutual information versus the SNR defined in (2.3).
Fig. 2.6 reports instead the mutual information versus the receivedEb/N0 ratio
defined in (2.12). The diagrams show that the results obtained are consistent with
the Shannon’s limit, as discussed in Section2.2.1.
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Figure 2.1: Mutual information of the4 × 4 MIMO channel proposed in [50].
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Figure 2.2: Normalized eigenvalues of the optimum transmitcovariance matrix
for the4 × 4 MIMO channel proposed in [50].
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Figure 2.3: Average mutual information of a MIMO channel with interference
and parameterst = r =∋= 4, SIR = −10 dB,K = KI = 10 dB, exponential
R,T,TI with base0.7, H̄, H̄I with all-equal entries. Optimum, Jensen, and iid
covariance curves (solid lines: asymptotic, circles: Monte-Carlo sim.). Optimum
normalized eigenvalues are also plotted.



WP-3 25

−30 −20 −10 0 10 20 30
0

1

2

3

4

5

6

7

8

SNR (dB)

M
ut

ua
l i

nf
or

m
at

io
n 

(b
it/

s/
H

z)

4x(4+4) MIMO − SIR=0dB

 

 

optimum
iid
Jensen
Gaussian int.

Figure 2.4: Same as Fig.2.3butSIR = 0 dB.
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Figure 2.5: Same as Fig.2.3butSIR = 10 dB.
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Chapter 3

Second-Order Statistics of the
Mutual Information of the
Asymptotic Separately-Correlated
Rician Fading MIMO Channel with
Interference

Giorgio Taricco,Erwin Riegler

3.1 Introduction

During the last decade, much attention has been devoted to the analysis of the
capacity of multiple-input multiple-output (MIMO) channels [57,62,63] but only
a few papers considered the presence of multi-access interference, corresponding
to a more realistic multiuser MIMO scenario [3, 53–55]. Recently, Chianiet al.
found a closed-form expression of the exact mean capacity for an uncorrelated
Rayleigh fading MIMO channel with interference [28]. Notice that assimilating
interference into additive noiseleads to incorrect capacity results, as properly
evidenced in [28].

Though many studies focused on the case of Rayleigh fading (with differ-
ent correlation structures), several experimental and theoretical works showed
that Rician fading needs to be considered to describe more realistic MIMO chan-
nels [34,35,44]. The interference-free separately-correlated Rician fading MIMO
channel has been recently studied in [9]1. The results therein turned out to be a

1 Similar results were obtained independently by Dumontet al.[31,56] by using an asymptotic

28
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powerful tool in order to calculate the capacity achieving covariance matrices in a
multiple access scenario [25,43].

In this work we are interested in finding an analytic expression of themoment
generating functionof the asymptotic mutual information. Our findings are based
on thereplica method, which turned out in the recent past to be a powerful tool
to handle similar problems [58, 60, 61, 64]. Basically, we extend the approach
used by Moustakaset al. in [3] to the correlated Rician fading case and derive
the mean and the variance of the mutual information. However, the presence of
line-of-sight components induces an additional coupling between the signal and
interference parts (off-diagonal matrix blocks in equations (3.31)) in the saddle
point approximation, which makes the calculations highly nontrivial. This prob-
lem is solved by applying the methods ofsuperanalysisdeveloped in the context
of theoretical physics [52].

In this paper we use Latin letters for complex variablesx ∈ C and Greek
letters for Grassmann variablesψ ∈ G [52]. Vectors and matrices are written with
lowercase and uppercase boldface characters, respectively. For the (exponential of
the) trace and the determinant of a matrixX we use the symbol (etr(X)) tr(X)
anddet(X), respectively. definite variance

3.2 System Model

We consider a narrowband block fading channel witht transmit,r receive andi
interfering antennas characterized by the equation:

y = Hx + HIxI + z. (3.1)

Here, y ∈ Cr is the received signal vector,x ∈ Ct is the transmitted signal
vector with zero mean and covarianceQ = E[xxH ], xI ∈ Ci is the narrowband
interference signal vector with zero mean and covarianceQI = E[xIx

H
I ], and

z ∈ Cr is the additive zero-mean noise vector with iid entriesza ∼ Nc(0, 1). The
channel matricesH ∈ Cr×t andHI ∈ Cr×i model separately-correlated Rician
fadingwith common receive correlation. Thus, they can be written as

H = H̄ + R1/2HwT 1/2,

HI = H̄I + R1/2Hw,ITI
1/2,

(3.2)

whereH̄ andH̄I represent the mean values and are related to the presence of
line-of-sight components,R, T , andTI are receive and transmit (signal and in-
terference) correlation matrices, andHw andHw,I have iidNc(0, 1) entries. To

method based on Stieltjes transforms.
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simplify notations, we define

H̃ , H̄Q1/2, H̃I , H̄IQI
1/2, (3.3)

T̃ , T 1/2QT 1/2, T̃ I , T
1/2
I QIT

1/2
I . (3.4)

Splitting the total received power components into direct and diffuse parts we
obtain the Rician factors

K =
‖H̃‖2

tr(R) tr(T̃ )
and KI =

‖H̃I‖2

tr(R) tr(T̃ I)
. (3.5)

The signal-to-noise (SNR) and interference-to noise (INR)ratio reads as

SNR=
(K + 1) tr(R) tr(T̃ )

r
,

INR =
(KI + 1) tr(R) tr(T̃ I)

r

(3.6)

with signal-to-interference ratio SIR= SNR/INR. We assume that the receiver
knowsperfectlythe channel matricesH andHI. Thus, the mutual information
conditionedto H andHI is given by [29], [28]:

I = I(y; x | H ,HI)

= H(y|H ,HI) −H(y|x,H ,HI)

= ln
det(Ir + HIQIHI

H + HQHH)

det(Ir + HIQIHI
H)

, (3.7)

whereH denotes entropy. Clearly, when considering thestatistical variationsof
the channel, the matricesH andHI are random variables defined in equation
(3.2). Therefore, the statistical behavior ofI is given by a random variable of the
form (3.7) with first two cumulant moments, i.e. mean and variance

µI , EHw ,Hw,I
[I], σ2

I , EHw ,Hw,I
[I2] − µ2

I . (3.8)

Note thatµI is linear inI, which implies that the influence of interference can be
reduced to the case without interference [25, 28]. However for higher moments,
and in particular for the varianceσ2

I , this isno longer the case.

3.3 The Cumulant Generating Function

In order to calculate the cumulant moments ofI we introduce the generating
function

G(a) , E[exp(−aI)] ∀ a ∈ C+ (3.9)
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and the cumulant generating functiong(a) , ln(G(a)).
Assuming thatG(a) is analytic in a real right neighborhood of0+ allows to

derive the mean and the variance ofI [3]:

µI = −g′(0+), σ2
I = g′′(0+). (3.10)

3.3.1 Rewriting determinants

In order to calculate (3.9) we rewrite the determinants in eq. (3.7). Repeated use
of identity (3.23) yields:

det(Ir + HIQIHI
H + HQHH)−a

=

∫

Cr×a

DcU

∫

Ct×a

DcV

∫

Cnoni×a

DcW

× etr(−π(UHU + V HV + W HW ))

× f̃(U ,V )fw(U ,V )f̃I(U ,W )fw,I(U ,W ),

(3.11)

with f̃ , fw, f̃I , andfw,I defined by (3.27). Similarly, repeated use of identity (3.25)
yields:

det(Ir + HIQIHI
H)

a

=

∫

Gr×a,Ga×r

Dg(Ψ, Ψ̄)

∫

Gi×a,Ga×i

Dg(Ω, Ω̄)

etr(Ψ̄Ψ + Ω̄Ω)h̃I(Ψ, Ψ̄,Ω, Ω̄)hw,I(Ψ, Ψ̄,Ω, Ω̄),

(3.12)

with h̃I andhw,I defined in equations (3.28). The appearance of the functionsf̃ , f̃I

andh̃I is due to the line-of-sight components and responsible for the coupling of
the determinants in the saddle point approximation3.3.4.

3.3.2 Calculating expectations

Using identity (3.23), we obtain:

EHw ,Hw,I
[fw(U ,V )fw,I(U ,W )hw,I(Ψ, Ψ̄,Ω, Ω̄)]

= EHw
[fw(U ,V )]EHw,I

[fw,I(U ,W )hw,I(Ψ, Ψ̄,Ω, Ω̄)]

= hI(U ,W ;Ψ, Ψ̄,Ω, Ω̄)f(U ,V )fI(U ,W ), (3.13)

with f, fI ,andhI defined in equations (3.29) and (3.30).
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3.3.3 Disentangling products and integration

In order to integrate out the Grassmann valued matricesΨ, Ψ̄,Ω, Ω̄ and the com-
plex valued matricesU ,V ,W we have to disentangle the products of matrices
in the exponents off , fI , andhI , which can be done by using identity (3.25) and
(3.24). After some algebra (omitted for space limitations) we getthe following
integral:

G(a) =

∫
dµ(T1,R1)

∫
dµ(T2,R2)

∫
dµ(T3,R3)

∫

Ga×a,Ga×a

Dg(Θ1, Θ̄1)

∫

Ga×a,Ga×a

Dg(Θ2, Θ̄2)

exp[−F (T1,R1,T2,R2,T3,R3,Θ1, Θ̄1,Θ2, Θ̄2)]

(3.14)

whereK,M ,Γ, andΓ̄ are defined in (3.31) and

F , − tr(R1T1 + R2T2 + R3T3) + tr(Θ̄1Θ1 + Θ̄2Θ2)

− ln sdet (X)

= − tr(R1T1 + R2T2 + R3T3) + tr(Θ̄1Θ1 + Θ̄2Θ2)

− ln det(M) + ln det(K + Γ̄M−1Γ) (3.15)

sinceX is given by

X =

(
M −Γ
Γ̄ K

)
.

For this derivation we resorted to the concepts of supermatrix and superdetermi-
nant developed in [52], and to the superdeterminant rule of eq. (3.26) in Appen-
dix 3.8.3.

3.3.4 Saddle point approximation

Contrary to the caseK = KI = 0 developed in [3], matricesK andM are not
block-diagonal so that the determinants in (3.15) do not factor. This makes the
task of evaluating the saddle point approximation much morecomplex.

Now, we assume that (3.15) has a replica-symmetric and real saddle point,
hereafter denoted byS, corresponding to

T1 = t1Ia T2 = t2Ia T3 = t3Ia

R1 = r1Ia R2 = r2Ia R3 = −r3Ia (3.16)

Θ1 = 0 Θ2 = 0 Θ̄1 = 0 Θ̄2 = 0
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Using the fact thatln sdet (X) = str(ln X) [52, pp. 112] and the multiplicative
property of superdeterminants [52, p. 101], we have the following total variation
expansion:

δ ln sdet (X) =

∞∑

k=1

(−1)k+1

k
str((X−1δX)k), (3.17)

where

X
−1 |S δX =

(
M−1 |S δM −M−1 |S δΓ
K−1 |S δΓ̄ K−1 |S δK

)
. (3.18)

The explicit form of matricesM−1 |S andK−1 |S can be found in eqs. (3.32) and
(3.34), respectively.

Nulling the first-order terms in the expansion (3.17) of (3.15) yields the fol-
lowing saddle point equations:

t1 = tr(AKR) t2 = tr(AKR) t3 = tr(AMR)

r1 = tr(EKT̃ ) r2 = tr(IKT̃ I) r3 = tr(DMT̃ I), (3.19)

with AM andDM from equations (3.33) andAK, EK, andIK from equations
(3.35).

3.4 Asymptotic mean of the mutual information

The leading term of the expansion ofF at the saddle pointS is given by

F0 , − ln sdet (X) |S −a(t1r1 + t2r2 − t3r3)

= ln det K |S − ln det M |S −a(t1r1 + t2r2 − t3r3),

after defining the matricesM |S= M0 ⊗ Ia andK |S= K0 ⊗ Ia with

M0 ,

(
Ir − r3R −H̃I

H̃
H

I Ii + t3T̃ I

)

and

K0 ,




R̂ H̃ H̃I

−H̃
H

T̂ 0

−H̃I 0 T̂I




whereR̂ , Ir + r1R + r2R, T̂ , It + t1T̃ , andT̂I , Ii + t2T̃ I. Finally, we
obtain the asymptotic mean:

µI ∼ (ln det(K0) − t1r1 − t2r2) − (ln det M0 − t3r3). (3.20)
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



M2 ,

(
tr((AMR)2) 1 + tr(CMRBMT̃ I)

1 + tr(BMT̃ ICMR) tr((DMT̃ I)
2)

)

K2 , −




tr((AKR)2) tr(DKRBKT̃ ) + 1

tr(BKT̃DKR) + 1 tr((EKT̃ )2)

tr(AKRAKR) tr(DKRBKT̃ )

tr(CKT̃ IGKR) tr(FKT̃ IHKT̃ )

. . .

. . .

tr(AKRAKR) tr(GKRCKT̃ I)

tr(BKT̃DKR) tr(HKT̃ FKT̃ I)

tr((AKR)2) tr(GKRCKT̃ I) + 1

tr(CKT̃ IGKR) + 1 tr((IKT̃ I)
2)




G2 , −

(
tr(CKT̃ ICMR) − 1 tr(IKT̃ IDMT̃ I)

tr(AKRAMR) tr(GKRBMT̃ I) − 1

)

(3.22)

3.5 Asymptotic variance of mutual information

The second-order term in the expansion of (3.15) at the saddle pointS is given
by:

F2 ,
1

2
str((X−1δX)2) |S − tr(δΘ̄1δΘ1 + δΘ̄2δΘ2)

− tr(δR1δT1δR2δT2 − δR3δT3).

Defining the matricesM2, K2, andG2 as in eq. (3.22) on page34, the contour
integrals can be evaluated and yield the following result:

G(a) ∼ exp(−F0)

(
det(G2)

2

− det(M2) det(K2)

)a

.

Therefore, the asymptotic variance is given by:

σ2
I ∼ − ln det(K2) − ln(− det(M2)) + 2 ln det(G2). (3.21)

3.6 Numerical results

We consider a MIMO channel witht = r = i = 4 antennas, SNR of10 dB,
K = 10 dB, andKI = 5 dB. We assume that the average channel matricesH̄ and
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Figure 3.1: Average mutual information mean for MIMO as a function of SIR.
T ,TI, andR have baseα = 0.7. SNR = 10dB, K = 10dB, andKI = 5dB.
Solid lines:Q is proportional toIt. Dashed lines:Q is optimized to achieve the
asymptotic ergodic capacity [25]. Thin lines: interference is regarded as Gaussian
noise. Circles: Monte-Carlo simulations.

H̄I are multiple of the all-1 matrices and the spatial correlation matricesT ,TI,
andR have baseα = 0.7. Figs.3.1and3.2plot the average mutual information
mean and standard deviation versus the SIR. Thin lines are obtained by regarding
interference as Gaussian noise. They show a considerable reduction of the mean
and of the standard deviation in the low SIR regime. In both cases solid lines
correspond toQ proportional toIt and dashed lines are obtained by optimizing
Q to achieve the asymptotic ergodic capacity [25]. It can be noticed that both the
mean and of the standard deviation are higher whenQ is optimized in the low
SIR regime. Circle markers, corresponding to Monte-Carlo simulations, show
an excellent agreement with the asymptotic results even fora small number of
antennas.

3.7 Conclusion

We calculated the asymptotic meanandvariance of the mutual information of a
separately-correlated Rician MIMO channel with interference in a very general
setting. Our development involves the use ofsuperanalysis[52] to deal with the
coupling of the signal and interference part induced by the line-of-sight compo-
nents in the saddle point approximation.
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Figure 3.2: Average mutual information standard deviationas a function of SIR.
Channel parameters and curves as in Fig.3.1.

3.8 Appendix

3.8.1 Identities for complex valued matrices

Identity 3.8.1 [3,9] (Completing the Square) LetA, B be a complex, Hermitian,
positive definitem×m andn×nmatrix, respectively, andC, D ben×m complex
matrices. Then

∫

Cn×m

DcU etr(−π(AUHBU + CHU + UHD))

= det(A)−n det(B)−m etr(πA−1CHB−1D). (3.23)

Identity 3.8.2 [3] (Hubbard-Stratonovich Transformation) LetA, B, R, andT

be complexm×m matrices. Define the contoursµ(T ,R) for the elements ofR
andT over the real and imaginary axis, respectively. Then,

etr(−AB) =

∫
dµ(T ,R) etr(RT − AT − RB). (3.24)

3.8.2 Identities for Grassmann valued matrices

Identity 3.8.3 [3] (Completing the Square) LetA, B be a complex, Hermitian,
positive definitem×m andn× n matrix, respectively, andΦ, Ξ̄T be Grassmann
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valuedn×m matrices. Then
∫

Gn×m,Gm×n

Dg(Ψ, Ψ̄) etr(AΨ̄BΨ + Ξ̄Ψ + Ψ̄Φ)

= det(A)n det(B)m etr(−A−1Ξ̄B−1Φ). (3.25)

It is important to note that matricesΨ andΨ̄ are independentandnot related by
an involution, like Hermitian conjugation in the complex case.

3.8.3 Supermatrices, superdeterminant and supertrace

Borrowing from [52, p. 82] , we callsupermatrixa matrix composed in part by
complex entries and in part by Grassmann variables. We are interested in particu-
lar to the following block supermatrix:

X =

(
M −Γ
Γ̄ K

)
.

In this case, the superdeterminantsdet (X) and the supertracestr(X) are given
by [52, p. 99]:

{
sdet (X) = det(M) det(K + Γ̄M−1Γ)−1

str(X) = tr(M) − tr(K).
(3.26)

3.8.4 Definition of functions and matrices

f̃(U ,V ) , etr(−π(UHH̃V − V HH̃
H

U))

f̃I(U ,W ) , etr(−π(UHH̃IW − W HH̃I

H
U))

fw,I(U ,W ) , etr(−π(TI
1/2QI

1/2WUHR1/2

× Hw,I − Hw,I
HR1/2UW HQI

1/2TI
1/2)).

(3.27)

h̃I(Ψ, Ψ̄,Ω, Ω̄) , etr(Ω̄H̃I

H
Ψ − Ψ̄H̃IΩ)

hw,I(Ψ, Ψ̄,Ω, Ω̄) , etr(TI
1/2QI

1/2ΩΨ̄R1/2Hw,I

− Hw,I
HR1/2ΨΩ̄QI

1/2TI
1/2).

(3.28)

f(U ,V ) , etr(−π2(V HT̃ V UHRU))

fI(U ,W ) , etr(−π2(W HT̃ IWUHRU)).
(3.29)

hI(U ,W ;Ψ, Ψ̄,Ω, Ω̄) , etr(Ω̄T̃ IΩΨ̄RΨ)

× etr(−π(Ψ̄RUW HT̃ IΩ + Ω̄T̃ IWUHRΨ)).
(3.30)
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K ,




Ira + R̃ H̃ ⊗ Ia H̃I ⊗ Ia

−H̃
H
⊗ Ia Ita + T̃ ⊗ T T

1
0

−H̃I

H
⊗ Ia 0 Iia + T̃ I ⊗ T T

2




M ,

(
Ira − R ⊗ RT

3
−H̃I ⊗ Ia

H̃I

H
⊗ Ia Iia + T̃ I ⊗ T T

3

)

Γ ,

(
R ⊗ ΘT

1
0 0

0 0 T̃ I ⊗ ΘT
2

)

Γ̄ ,




R ⊗ Θ̄T
2

0
0 0

0 T̃ I ⊗ Θ̄T
1




(3.31)

with R̃ , R ⊗ RT
1

+ R ⊗ RT
2
.

M−1 |S=

(
AM BM

CM DM

)
⊗ Ia, (3.32)

with

AM , (Ir + r3R + H̃I(Ii + t3T̃ I)
−1H̃I

H
)−1

BM , (Ir + r3R)−1H̃IDM

CM , − (Ii + t3T̃ I)
−1H̃I

H
AM

DM , (Ii + t3T̃ I + H̃I

H
(Ir + r3R)−1H̃I)

−1.

(3.33)

K−1 |S=




AK BK CK

DK EK FK

GK HK IK


⊗ Ia, (3.34)
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with

AK , (R̂ + H̃T̂−1H̃
H

+ H̃IT̂
−1
I H̃

H

I )−1

BK , − R̂−1(H̃EK + H̃IHK)

CK , − R̂−1(H̃FK + H̃IIK)

DK , T̂−1H̃
H

AK

EK , (T̂ + H̃
H

R̂−1H̃ − H̃
H

R̂−1H̃I

(T̂I + H̃I

H
R̂−1H̃I)

−1H̃I

H
R̂−1H̃)−1

FK , − (T̂ + H̃
H

R̂−1H̃)−1H̃
H

R̂−1H̃IIK

GK , T̂−1
I H̃I

H
AK

HK , − (T̂I + H̃I

H
R̂−1H̃I)

−1H̃I

H
R̂−1H̃EK

IK , (T̂I + H̃I

H
R̂−1H̃I − H̃I

H
R̂−1H̃

(T̂ + H̃
H

R̂−1H̃)−1H̃
H

R̂−1H̃I)
−1.

(3.35)



Chapter 4

On the ergodic capacity region of the
separately correlated Rician fading
multiple access MIMO channel

Giorgio Taricco,Erwin Riegler

4.1 Introduction

An important problem of network information theorem is the derivation of the
achievable rate region of a multiple-access channel. In spite of intense research
efforts carried out through the recent decades, there are several open problems
in this area that have wide implications for the theory of communications and
computation [15].

The multiple access channel achievable rate region is the set of rate vectors
that are achievable by the different channel users and has been studied exhaus-
tively in the literature [15]. The achievable rate region admits a simple expression
for the Gaussian multiple access channel that has been extended to the Gaussian
multiple access MIMO channel by Yuet al. [26] who provided an iterative water-
filling algorithm aimed at finding the optimum user signal covariance matrices
that maximize the sum-rate of the channel. Their result applies when the multiple
access MIMO channel is perfectly known at the transmitter and at the receiver.
However, when only the channel state information at the receiver (CSIR) is avail-
able, the problem of finding the maximum ergodic sum-rate achieving covariance
matrices is still open in the general setting [16]. Nevertheless, a notable result in
this area has been provided by Hösliet al. [2], who proved that the ergodic and
outage achievable rate region increases (as sets) monotonically with the singular
values of the line-of-sight component of the channel matrix.

40
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In this work we assume that the receiver has full CSIR and the transmitter
knows the statistics of the channel, i.e. the transmitter has channel distribution
information (CDIT). Based on these assumptions we provide an algorithm to
find the maximum ergodic sum-rate achieving covariance matrices of a multiple-
access MIMO channel when the number of transmit and receive antennas grow
asymptotically large with finite asymptotic ratios and the number of users and their
SNR’s are finite. In this context we assume that the multiple-access communica-
tion channel is affected by Rician fading with separate spatial correlation (with a
common receive part and different transmit parts). Our results rely on a previous
work [25] where the ergodic capacity achieving covariance matrix was obtained
for a separately-correlated Rician fading MIMO channel with multiple-access in-
terference, which extended previous results due to Moustakaset al. [3] relevant
to the case of Rayleigh fading. Similar results for the separately-correlated Ri-
cian fading MIMO channel (without multiple-access interference) were obtained
independently by Dumontet al.[31], using an asymptotic method based on Stielt-
jes transforms, and by Vu and Paulraj [50], using an interiorpoint with barrier
optimization method [14].

assumptions illustrates the and

4.2 System model

We consider a narrowband multiple access separately-correlated block Rician fad-
ing MIMO channel withK users withtk transmit antennas for each userk ∈ K ,

{1, . . . , K} and a single receiver withr receive antennas. The channel is charac-
terized by the following equation:

y =
∑

k∈K

Hkxk + z. (4.1)

Here,xk ∈ Ctk×1 is the transmitted signal vector of userk, Hk ∈ Cr×tk is the
channel matrix of userk, z ∈ C

r×1 is the additive noise vector, andy ∈ C
r×1 is

the received signal vector. Eachxk is assumed to have zero mean with covariance
matrixQk. We assume that the additive noise vector has zero mean and covariance
matrixQZ = E[zzH].

The channel matricesHk are assumed to be of separately (or Kronecker) cor-
related Rician fading typewith common receive correlation. Thus, they can be
written as

Hk = H̄k + R1/2WkT
1/2
k ∀ k ∈ K,

where, for each userk, H̄k represents the average channel matrix related to the
presence of a line-of-sight signal component in the multipath fading channel, the
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Hermitian positive definite matrixR characterizes the spatial receive correlation
component, and the Hermitian positive definite matricesTk characterize the spa-
tial transmit correlation component. The random matricesWk have iidNc(0, 1)
entries.

Following standard assumptions [1,9,25], we define the RiceFactor of userk
as

KR
k ,

‖H̄k‖2

Tr(Tk) Tr(R)
(4.2)

and the signal-to-noise power ratioSNRk of userk as

SNRk ,
(KR

k + 1) Tr(Tk) Tr(R) Tr(Qk/tk)

Tr(QZ)
. (4.3)

Notice that the latter assumption allows to overcome the difficulties related with
the consideration of the receive SNR

SNRk,RX ,
E[Tr(HkQkH

H

k )]

Tr(QZ)

which arise when we try to make any optimization based on a setof transmit power
constraints of the typeTr(Qk) ≤ Pk since the receive SNRSNRk,RX is not propor-
tional toTr(Qk) (unlessQk is a multiple of the identity matrix). The assumption
Qk = Pk

tk
Itk will be referred to in the following asiid power allocation.

4.3 Ergodic Capacity Region

Let RK , (R1, . . . , RK) ∈ RK
+ be the vector of rates for all usersk ∈ K and

denote byS , {k1, . . . , k|S|} ⊂ K subsets ofK with complementSc , K \ S.
Then, the achievable rate region of the multiple access channel can be defined by
extension of the results from [15] as the set:

R =

{
RK ∈ R

K
+ |
∑

k∈S

Rk ≤ E[I(xS ;y|xSc)] ∀ S ⊂ K

}
, (4.4)

wherexS , (xk | k ∈ S) and

E[I(xS ;y|xSc)] , E[ln det(HSQSH
H
S + QZ)]

− ln det(QZ), (4.5)

with

HS , (Hk | k ∈ S) and QS , diag(Qk | k ∈ S). (4.6)
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We restrict our attention to the dominant face

D , R∩

{
RK ∈ R

K
+ |
∑

k∈K

Rk = E[I(x;y)]

}
, (4.7)

wherex , xK and

E[I(x;y)] = E[ln det(HQHH + QZ)] − ln det(QZ) (4.8)

with H , HK andQ , QK. The reason for this is that every pointRK ∈ R
is dominated by (i.e., it has no rate component higher than) apoint in D. The
ergodic capacity of the multiple access MIMO channel is defined as

C , max
Qk:Tr(Qk)≤Pk

E[I(x;y)], (4.9)

with power constraintsTr(Qk) ≤ Pk (k ∈ K). The corresponding achievable
rate region will be saidergodic capacity region.

In order to solve this optimization problem we resort to a recent result allow-
ing to calculate the average mutual information of a separately-correlated Rician
MIMO channel when the number of transmit and receive antennas grow asymp-
totically large [8,9]. Summarizing, astk, r → ∞ with 0 < tk/r <∞, the asymp-
totic average mutual information with channel matrixH = H̄ + R1/2WT1/2,
noise covarianceQZ = Ir, and signal covarianceQ, is given by

E[I(x;y)] ∼ µI(H̄,R,T,Q) (4.10)

nat/complex dimension, where we defined

µI(H̄,R,T,Q) , ln det

(
Ir + wR H̃

−H̃H It + zT̃

)
− wz (4.11)

whereT̃ , Q1/2TQ1/2 andw, z can be obtained by solving the equations




w = Tr

{
[zIt + T̃−1 + T̃−1H̃H(Ir + wR)−1H̃]−1

}

z = Tr

{
[wIr + R−1 + R−1H̃(It + zT̃)−1H̃H]−1

} (4.12)

with H̃ , H̄Q1/2 andT̃ , Q1/2TQ1/2. The solution of eqs. (4.12) can be shown
to be a pair of positive real numbers. Eqs. (4.11) and (4.12) have been established
independently in [65] for the uncorrelated Rician MIMO channel.

This result can be applied to calculate the average mutual information (4.8):

E[I(x;y)] = µI(H̄Z ,RZ ,T,Q),
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where we defined̄HZ , Q
−1/2
Z (H̄k | k ∈ K), RZ , Q

−1/2
Z RQ

−1/2
Z , andT ,

diag(Tk | k ∈ K). The optimum covariance matrix is obtained by maximizing the
average mutual information (4.8) under the power constraintsTr(Qk) ≤ Pk (k ∈
K).

Then we notice that the constraints of this optimization problem satisfy Slater’s
condition so that the Karush-Kuhn-Tucker (KKT) condition is necessary and suf-
ficient for optimality [14]. Therefore, we define the Lagrangian dual function:

L(Sk | k ∈ K) = ln det

(
Ir + wRZ H̃Z

−H̃H

Z It + zT̃

)

−wz −
∑

k∈K

λk[Tr(S2
k) − P̃k], (4.13)

where0 ≤ P̃k ≤ Pk, Sk , Q
1/2
k , S , Q1/2, H̃Z , H̄ZS, T̃ , STS, and

t ,
∑

k∈K tk. Next, the KKT condition is derived by calculating the first-order
total variation of (4.13):

δL = Tr

[(
A1 B1

C1 D1

)

·

(
RZδw H̄ZδS
−δSH̄H

Z STSδz + z(δSTS + STδS)

)]

−wδz − zδw − 2
∑

k∈K

λk Tr(SkδSk), (4.14)

where [8] 



A1 = [Ir + wRZ + H̃Z(It + zT̃)−1H̃H

Z ]−1

B1 = −(Ir + wRZ)−1H̃ZD1

C1 = (It + zT̃)−1H̃H

ZA1

D1 = [It + zT̃ + H̃H

Z(Ir + wRZ)−1H̃Z ]−1.

(4.15)

Since we have from (4.12) w = Tr(D1T̃), z = Tr(A1RZ), and [25]

(Ir + wRZ)−1H̃ZD1 = [(It + zT̃)−1H̃H

ZA1]
H,

we end up with:

δL = 2 Tr(H[(H̄H

Z(Ir + wRZ)−1H̄Z + zT)SD1]δS)

−2
∑

k∈K

λk Tr(SkδSk), (4.16)
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whereH[A] , (A + AH)/2. Thus, the first order total variationδL is null (and
the KKT condition is satisfied) provided that

Sk = λ−1
k H[(H̄H

Z(Ir + wRZ)−1H̄Z + zT)SD1] |k, (4.17)

whereA|k is the submatrix ofA obtained by extracting the elements of the rows
and columns with indexes from

∑k−1
i=1 ti + 1 to

∑k
i=1 ti, andλk is obtained from

the constraintTr(S2
k) = Pk, namely,1

λk =

√
Tr{{H[(H̄H

Z(Ir + wRZ)−1H̄Z + zT)SD1] |k}2}

Pk
(4.18)

If all Sk (k ∈ K) satisfy equation (4.17), we define

QO , diag(S2
k | k ∈ K) (4.19)

the optimumcovariance matrix, which can be found using the following algo-
rithm:

Algorithm 1 (Iterative water-filling – optimum covariance)
initialize S |k=

√
Pk/tkItk , k ∈ K

repeat
for k = 1 toK

obtainλk from (4.18)
setS |k= λ−1

k H[(H̄H

Z(IN + wRZ)−1H̄Z + zT)SD1] |k
end

until S converges. SetQO = S2.

4.3.1 Jensen approximation

Here we consider an approximation of the mutual informationbased on Jensen’s
inequality and derive the covariance matrices that maximize it. We known from [15,
30,40] that the following inequalities hold for positive definite Hermitian matrices
A,X (with X random):

E[ln det(X)] ≤ ln det(E[X]), (4.20)

E[ln det(I + X−1A)] ≥ ln det(I + E[X]−1A). (4.21)

1 The positive definiteness ofSk derives from the positivity ofw, z.
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Applying inequality (4.21) to the mutual information (4.8) gives:

E[I(x;y)]

= E[ln det(HQHH + QZ)] − ln det(QZ)

= E[ln det(Hk̂Qk̂H
H

k̂
+ QZ)] − ln det(QZ)

+ E[ln det(Ir + (Hk̂Qk̂H
H

k̂
+ QZ)−1HkQkH

H

k)]

≥ E[ln det(Hk̂Qk̂H
H

k̂
+ QZ)] − ln det(QZ)

+ E[ln det(Ir + Q−1
IZ,kHkQkH

H

k )], (4.22)

where we definedHk̂ , HK\{k}, Qk̂ , QK\{k}, andQIZ,k , E[Hk̂Qk̂H
H

k̂
+ QZ ]

for k ∈ K. Then, applying (4.20) to the last term in (4.22), we obtain

E[ln det(Ir + Q−1
IZ,kHkQkH

H

k )]

≤ ln det(Itk + E[HH

kQ−1
IZ,kHk]Qk) (4.23)

Finally, if we treat inequalities as approximations, the mutual information (4.8) is
approximately given by

E[I(x;y)] ≈ E[ln det(Hk̂Qk̂H
H

k̂
+ QZ)] − ln det(QZ)

+ ln det(Itk + E[HH

kQ−1
IZ,kHk]Qk) (4.24)

for anyk ∈ K and the last term can then be maximized by water-filling [15].
Thus, we callJensen approximationthe set of covariance matrices{QJ,k | k ∈

K} that maximize
ln det(Itk + E[HH

kQ−1
IZ,kHk]Qk) (4.25)

for all k ∈ K and denote by

QJ , diag(QJ,k | k ∈ K) (4.26)

theJensen covariance matrixwhere the matricesQJ,k can be found by using the
following algorithm:

Algorithm 2 (Iterative water-filling – Jensen approx.)
initialize Q |k= (Pk/tk)Itk , k ∈ K
repeat

for k = 1 toK
factorE[HH

kQ−1
IZ,kHk] = UkΛkU

H

k

solveTr[(µkItk −Λ−1
k )+] = Pk for µk

2

setQ |k= Uk(µkItk −Λ−1
k )+UH

k

end
until Q converges and then all the terms(4.25) are maximized.

2(A)+ is the matrix with entriesmax{0, (A)ij}
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4.4 Numerical results

In this section we present numerical results illustrating the accuracy of the asymp-
totic analytic optimization of the sum-rate capacity. We consider the following
scenarios:

1. Multiple-access channel withK = 2 users withtk = 4 transmit antennas
and withr = 4 receive antennas, all users have the same SNR.

2. Multiple-access channel withK = 4 users withtk = 4 transmit antennas
and withr = 4 receive antennas, all users have the same SNR.

3. Multiple-access channel withK = 4 users withtk = 4 transmit antennas
and withr = 4 receive antennas. There are threestrong userswith the same
SNR and oneweak userwith SNR10 dB below the strong user SNR. This
scenario allows to assess thenear-far effectof the multiuser MIMO system
considered in [67].

In all scenarios it is assumed that the line-of-sight matricesH̄k have all constant
entries (i.e.,(H̄k)ij = 1 for all k ∈ K), the spatial correlation matrices are of
exponential type (i.e.,(R)ij = α|i−j| and(Tk)ij = α

|i−j|
k with basesα = 0.7 and

αk = 0.7 for all k ∈ K), and the Rice factors areKR
k = 10 dB for all k =∈ K.

4.4.1 First scenario (K = 2), symmetric

Figs. 4.1 and 4.2 refer to the first scenario described above and illustrate the
achievable rate regions corresponding to the optimum covariance and iid power
allocation (Fig.4.1) and to the optimum and Jensen covariance matrices (Fig.4.2)
for several user SNR values. Solid and dashed lines are basedon the analytic
asymptotic approximations with the corresponding covariance matrices. Mark-
ers are based on Monte-Carlo simulations corresponding to the same covariance
matrices. It can be noticed that there is always an excellentagreement between
analytic asymptotic approximations and Monte-Carlo simulations. This also con-
firms the accuracy of the optimum covariance matrices derived with the analytic
asymptotic approximation.

Fig. 4.1 shows a considerable difference between the achievable rate region
corresponding to the optimum covariance matrix and that corresponding to iid
power allocation. As expected, the differences get lower asthe user SNR’s get
larger but are still notable at20 dB. Fig. 4.2 instead shows that Jensen approx-
imation is very close to the optimum for moderate SNR’s though the difference
becomes noticeable above15 dB.
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Figure 4.1: Achievable rate region of the MIMO multiple access channel for sce-
nario 1 (K = 2 users),SNRk ∈ {−10,−5, . . . , 15, 20} dB. Solid lines correspond
to the optimum covariance matrixQO from eq. (4.19). Dashed lines correspond
to iid power allocation. Markers correspond to Monte-Carlosimulations with the
corresponding covariance matrices.
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Figure 4.2: Same as Fig.4.1 but dashed lines correspond to the Jensen approxi-
mation covariance matrixQJ.

4.4.2 Second scenario (K = 4, symmetric)

The capacity of the second scenario (K = 4) is reported in Fig.4.3. In this
case the achievable rate region cannot be illustrated directly, as it would require
a four-dimensional picture. However, it is completely determined by the four
achievable sum-ratesE[I(xS ;y|xSc)] corresponding to|S| = 1 to 4, because of
the symmetric choice of parameters and user SNR’s. In the figure, solid curves
correspond to the asymptotic optimum covariance matrices,dashed curves to iid
power allocation, and dash-dot curves to Jensen approximation. Each type of
curve corresponds to|S| = 1 to 4, from bottom to top. Markers represent cor-
responding Monte-Carlo simulation results. Again, it can be noticed that there is
always an excellent agreement between analytic asymptoticapproximations and
Monte-Carlo simulations, which confirms the accuracy of theoptimum covariance
matrices derived with the asymptotic approximation.

It can be noticed that there is a close correspondence between asymptotic op-
timum and Jensen approximation results over the SNR range considered. On the
contrary, the diagrams display marked differences betweenoptimum/Jensen and
iid results, that confirm the consistent suboptimality of iid power allocation.



50 MASCOT D3.1.3

4.4.3 Third scenario (K = 4, asymmetric)

The capacity of the third scenario is illustrated by Figs.4.4 and 4.5. The as-
sumption of having three strong users and one weak user (witha 10 dB-lower
SNR) implies that the achievable rate region is determined by 7 sum-rates for
every SNR, four of which are included in Fig.4.4 and three in Fig.4.5. More
precisely, Fig.4.4 shows the sum-ratesE[I(xS ;y|xSc)] corresponding toS =
{1}, {k}, {1, k}, {k, k′} with k, k′ 6= 1 (from bottom to top). Fig4.5 shows the
sum-rates corresponding toS = {1, k, k′}, {k, k′, k′′}, {1, 2, 3, 4} with k, k′, k′′ 6=
1 (from bottom to top).

In all cases, iid power allocation is again shown to be considerably suboptimal
while the Jensen approximation covariance matrices turn out to give a very good
agreement with the asymptotic optimum results in the range of SNR considered.
Markers report corresponding Monte-Carlo simulations andconfirm, again, the
accuracy of the asymptotic approximation.

4.5 Conclusions

We presented an asymptotic analytic method to calculate theergodic capacity
region of a multiple-access MIMO channel with correlated Rician fading. The
method applies when the number of antennas goes to infinity but yields very ac-
curate approximations even with a small number of antennas.



WP-3 51

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

SNR
k
 (dB)

A
ve

ra
ge

 m
ut

ua
l i

nf
or

m
at

io
n 

(b
it/

s/
H

z)

 

 
optimum
iid
Jensen

Figure 4.3: Average mutual informationE[I(xS ;y|xSc)] versusSNRk for scenario
2 (K = 4 users) and|S| = 1, . . . , 4 (from bottom to top). The results refer to the
optimum (4.19), Jensen (4.26), and iid power allocation.KR

k = 10 dB, Tk andR
are exponential with base0.7, r = 4, tk = 4 for all k ∈ K. Markers correspond to
Monte-Carlo simulations.
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Figure 4.4: Same as Fig.4.3 but for scenario 3 [asymmetric, weak user 1
with (SNR1)dB = (SNRk)dB − 10]. The curves in this figure refer toS =
{1}, {k}, {1, k}, {k, k′} with k, k′ 6= 1 (from bottom to top).



WP-3 53

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

SNR
k
 (dB)

A
ve

ra
ge

 m
ut

ua
l i

nf
or

m
at

io
n 

(b
it/

s/
H

z)

 

 
optimum
iid
Jensen

Figure 4.5: Same as Fig.4.4 but the curves in this figure refer toS =
{1, k, k′}, {k, k′, k′′},K with k, k′, k′′ 6= 1 (from bottom to top).



Chapter 5

Characterization of Capacity
Regions by Means of Interference
Functions

Holger Boche, Martin Schubert

5.1 Introduction

The analysis of capacity regions is complicated by interference between the com-
munication links (“users”). The achievable capacity of onelink can depend on the
transmission strategies of other links. This typically results in a coupled system
with many degrees of freedom. So well-established communication strategies for
point-to-point links are not always applicable to multiuser systems.

A well-known example is the capacity region of the Gaussian MIMO multiple
access channel (MAC), and its dual broadcast channel (BC) [68–70, 82]. A thor-
ough understanding of the underlying performance trade-offs is often the basis for
the development of efficient multiuser transmission strategies. For example, the
characterization of the aforementioned MIMO broadcast region was accompanied
by a search for optimum communication strategies.

However, these results only hold under certain conditions.For example, the
transmit strategies for MIMO broadcast channels proposed in [68–70] rely on the
BC/MAC duality. If the transmit strategy is constrained to be linear, then the
existence of such a duality is still unknown. If we further constrain the system
by forbidding time sharing or rate splitting, then the capacity region can even
be non-convex [81]. For more complicated channels, e.g. relay channels, the
characterization of the capacity region is an open problem.

This discussion shows that the characterization of wireless capacity regions

54
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can be quite complicated, especially when additional system constraints are con-
sidered. This motivates an abstract approach, which focuses on some core prop-
erties. A typical property, for example, is that the performance of any link can
be reduced without leaving the feasible region. This “monotonicity behavior” is
known ascomprehensivenessin a game-theoretical context [72].

5.1.1 Comprehensive Performance Sets

Before providing detailed definitions for comprehensiveness, we need some nota-
tional conventions.

• K = {1, 2, . . . , K} is the set of users (communication links).

• The set of non-negative reals is denoted byR+. The set of positive reals is
denoted byR++.

• Matrices and vectors are denoted by bold capital letters andbold lowercase
letters, respectively. Lety be a vector, thenyl = [y]l is thelth component.

• A vector inequalityx > y meansxk > yk, for all k. The same definition
holds forx ≥ y.

Definition 1 A setV ⊂ RK is said to beupwards-comprehensiveif for an arbi-
trary v ∈ V,

v′ ≥ v =⇒ v′ ∈ V . (5.1)

The setV is said to bedownwards-comprehensiveif for an arbitrary v ∈ V,

v′ ≤ v =⇒ v′ ∈ V . (5.2)

A useful concept for analyzing interference-coupled comprehensive systems
is the framework of interference functions [71]. A general overview on this frame-
work was already shown in the previous deliverable D.3.1.1 and the related refer-
ence [78].

The main contribution of this deliverable (the corresponding paper was pub-
lished in [77]) is to show that interference functions can beused for the analysis of
capacity regions (and also other performance regions). In particular, every com-
prehensive capacity region can be expressed as a sub-level set of an interference
function. This facilitates a general framework for analyzing performance trade-
offs in multiuser networks.
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5.1.2 Level Sets and Interference Functions

We start with an introduction of general interference functions.

Definition 2 We say thatI : RK
++ 7→ R++ is an interference functionif it fulfills

the axioms:

A1 (positivity) I(p) > 0

A2 (scale invariance) I(αp) = αI(p) ∀α ∈ R++

A3 (monotonicity) I(p) ≥ I(p′) if p ≥ p′

These properties are quite intuitive when we think ofp = [p1, . . . , pK ]T as a
vector of transmission powers, andI(p) as the resulting interference. However,
other interpretations are possible. Some examples are provided, e.g. in [71,73,78].

Let’s analyze the interference functionI(p). It was shown in [77] that every
interference function satisfying A1–A3 has a min-max representation. In order to
explain this result, we need the definition of relative closedness.

Definition 3 A setV ⊂ R
K
++ is said to berelatively closedin R

K
++ if there exists

a closed setA ⊂ RK such thatV = A
⋂

RK
++.

Consider level sets

L(I) = {p̂ > 0 : I(p̂) ≤ 1} (5.3)

L(I) = {p̂ > 0 : I(p̂) ≥ 1} . (5.4)

SinceI(p) is continuous [71], the setsL(I) andL(I) are relatively closed in
RK

++. From property A3, it follows that the sets are comprehensive.
We have the following result [77]

Property 5.1.1 LetI be an arbitrary interference function fulfilling A1–A3, then

I(p) = min
p̂∈L(I)

max
k∈K

pk

p̂k

(5.5)

= max
p̂∈L(I)

min
k∈K

pk

p̂k
. (5.6)

That is, every interference function can be interpreted as an optimization over
elementary interference function, where the variablep̂ is chosen from a closed
comprehensive level set.

Conversely, we can start with a closed comprehensive positive set (e.g. a ca-
pacity region), and show that this set can be expressed as a level set of an interfer-
ence function. This leads to the following observation [77]
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Property 5.1.2 Every closed comprehensive positive setU can be expressed as a
sub-level set

U = {u ∈ R
K
++ : C(u) ≤ 1} . (5.7)

The setU is closed comprehensive positive if and only ifC(u) is an interference
function.

Hence, there is a direct correspondence between interference functions and com-
prehensive performance regions.

An extension to other types of performance regions can be found in [80],
where the supportable region of a multiuser system with log-convex interference
functions is analyzed.

Definition 4 We say thatI : RK
+ 7→ R+ is a log-convex interference functionif

A1–A3 are fulfilled and in additionI(exp{s}) is log-convex onRK .

It was shown in [71] that every convex interference functionis a log-convex in-
terference function, but the converse is not true. Note, that this statement only
holds true with the change of variablep = exp{s}. Thus, the family of log-
convex interference functions is more general than the family of convex interfer-
ence functions. The log-convexity property is useful for the analysis of certain
types of performance regions (e.g. SIR feasible sets). Thisis further investigated,
e.g. in [76,79].

In the context of capacity regions, we are mostly interestedin convex regions.
Convexity simplifies the taks of resource allocation. A common design goal is to
find a Pareto optimal point on the boundary of the region.

The assumption of convexity is typically justified by time sharing are rate
splitting arguments. An analysis of convex performance regions was published
in [75]. In this publication, the following result was shown:

Property 5.1.3 Every closed comprehensive positive convex utility set canbe ex-
pressed as a sub-level set

U = {u ∈ R
K
++ : C(u) ≤ 1} . (5.8)

The setU is closed comprehensive positive convex if and only ifC(u) is a convex
interference function.

This shows how basic properties of interference functions are transferred to prop-
erties of utility sets, and vice versa.
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5.1.3 Discussion

The results of this work package, published in [75, 77, 80], show that there is a
direct correspondence between comprehensive performanceregions and interfer-
ence functions fulfilling the properties A1–A3. Further properties, like convexity
or log-convexity, can be added.

This theoretical framework facilitates a general and unifying approach for the
analysis of different kinds of capacity regions. By focusing on core properties, we
are able to develop a rigorous framework which allows for an analytical treatment.
The results provide intuition and a roadmap for the development of algorithms in
WP1.

An application example is the iterative algorithm for max-min balancing pub-
lished in [74]. Other resource allocation strategies are currently being investi-
gated in WP1. For example, interference functions were successfully applied to
the analysis of resource allocation strategies based on cooperative game theory
in [76,79].



Chapter 6

Asymptotic Ergodic Capacity of
Wideband MIMO Channels with
Separately-Correlated Rician
Fading

Giorgio Taricco,Erwin Riegler

6.1 Introduction

Many research studies in multiple-input multiple-output (MIMO) communica-
tions address the problem of deriving the channel capacity.Probably one of the
most successful results in this area is due to Telatar, who found closed-form ex-
pressions for the capacity of the independent Rayleigh fading MIMO channel [46].
Subsequent studies showed that this channel model is not always appropriate be-
cause it does not take into account spatial correlation and the presence of a line-
of-sight (LOS) component. Many experimental and theoretical works addressed
the issue of channel modeling [16]. A good trade-off betweenmodel complexity
and accuracy is achieved by the so-called separately-correlated channel [18].

Another active research area in MIMO communications targeted the extension
to the wideband channel, in most cases based on an OFDM approach [13,19,22].
Recently, Moustakas and Simon studied the asymptotic mutual information of
the wideband Rayleigh fading correlated MIMO channel in [21], extending one
of their own earlier studies, relevant to the narrowband channel case [20]. The
analytic approach used in these works is based on the so-called replica method,
widely adopted in theoretical physics because of its effectiveness in addressing
complex system scenarios where other methods, such as the one based on Stieltjes

59
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transform proposed in [31], provide equivalent results with a greater mathematical
effort.

In this work we address the case of a wideband Rician fading MIMO channel
with separate correlation (see the System Model section forthe precise assump-
tions). We derive an expression of the average mutual information in the case of
asymptotically large number of antennas. This result represents a nontrivial ex-
tension of earlier results [25] addressing the narrowband channel case. By using
this result, we derive the ergodic capacity of the channel and the corresponding
(optimum) input signal covariance matrix. Then, we study the numerical accu-
racy of the asymptotic approximation proposed and analyze the effectiveness of
covariance optimization with respect to the spatial correlation and the Rice factor.

6.2 System model

We consider a wideband frequency-selective separately-correlated Rician fading
MIMO channel witht transmit andr receive antennas. We assume that the chan-
nel bandwidth isB and the delay spread isτ . Then, the maximum number of
resolvable paths of the channel isL = ⌈Bτ⌉, and the channel equation can be
written as follows:

y[n] =
∑

ℓ∈L

H[ℓ]x[n− ℓ] + z[n], n ∈ N . (6.1)

Here, we defined: the frame lengthN ; the setsL , {0, . . . , L − 1} andN ,

{0, . . . , N − 1}; the transmitted signal vectorx[n] ∈ Ct×1 at timen; the impulse
response channel matrixH[ℓ] ∈ Cr×t, sampled at delay timeℓ; the additive noise
vectorz[n] ∈ Cr×1 at timen; and the received signal vectory[n] ∈ Cr×1 at time
n.

We assume that the additive noise is independent over time and uncorrelated:
z[n] ∼ Nc(0, Ir)

1.
We assume uncorrelated scattering, so that all matricesH[ℓ] are independent.

We consider a separately correlated Rician fading model with common spatial
correlation among the users at the receiver. Thus, we can write

H[ℓ] = E[H[ℓ]] + R[ℓ]1/2Hw[ℓ]T[ℓ]1/2. (6.2)

Here, the matricesHw[ℓ] have all iid entries distributed asNc(0, 1) (in compliance
with the uncorrelated scattering assumption),R[ℓ] is the receive spatial correlation

1 In the presence of spatial correlation,z[n] ∼ Nc(0,ΣZ), we can reduce to the uncorrelated

case pre-multiplyingy[n] by Σ
−1/2

Z . The resulting noise vector will be uncorrelated with identity
covariance matrix and the channel matrices will be all pre-multiplied by the same constant matrix
Σ

−1/2

Z and the resulting problem will be still tractable under our approach.
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matrix, andT[ℓ] is the transmit spatial correlation matrix. Since a nonzeroaverage
channel matrix derives from a line-of-sight component, which typically affects
only the signal path with the lowest delay, it will be assumedthat

E[H[ℓ]] =

{
H̄ ℓ = 0
0 ℓ > 0

. (6.3)

The Rician factor (defined as the ratio between the LOS and thescattered received
power when the input signals are iid with powerP/t) and the signal-to-noise ratio
(SNR) are given by:

K ,
‖H̄‖2

∑
ℓ∈L Tr(R[ℓ]) Tr(T[ℓ])

(6.4)

and

ρ ,
(K + 1)P

∑
ℓ∈L Tr(R[ℓ]) Tr(T[ℓ])

rt
, (6.5)

respectively.

6.2.1 OFDM signaling

We consider a communication system based on orthogonal frequency-division
multiplexing (OFDM). It is well known that OFDM allows to convert the frequency-
selective fading channel into a set of parallel frequency-flat channels. The key
assumption of OFDM is the insertion of a cyclic prefix (CP) in all frames, whose
length is equal to the delay spread. The CP assumption implies the following set
of conditions:

x[n] = x[n+N ] n = −L+ 1, . . . ,−1. (6.6)

It must be noted that the presence of a CP reduces the available throughput by a
factorκ , N

N+L−1
.

Next, we calculate the discrete Fourier transform (DFT) of the channel equa-
tion. Letω , exp(−j 2π/N) so that, in consideration of the CP condition (6.6),
we can transform the channel equation (6.1) into

ŷ[m] ,
∑

n∈N

y[n]ωmn

=
∑

n∈N

∑

ℓ∈L

H[ℓ]x[n− ℓ]ωmn +
∑

n∈N

z[n]ωmn

=
∑

ℓ∈L

H[ℓ]ωmℓ
∑

n∈N

x[n]ωmn +
∑

n∈N

z[n]ωmn

= Ĥ[m]x̂[m] + ẑ[m], (m ∈ N ). (6.7)

Here, we defined the following vector/matrix DFTs:̂H[m] ,
∑

ℓ∈L H[ℓ]ωmℓ,
x̂[m] ,

∑
n∈N x[n]ωmn, andẑ[m] ,

∑
n∈N z[n]ωmn.
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6.2.2 Frequency-domain equivalent channel

First, we notice that the frequency-domain noise vectors are iid since:

E[ẑ[m]ẑ[m′]H] =
∑

n∈N

E[z[n]z[n]H]ω(m−m′)n

=

{
0 m 6= m′

NIr m = m′ . (6.8)

However, the frequency-domain channel matricesĤ[m] may be statisticallyde-
pendent, even though theH[ℓ] matrices are independent. This complicates the
analysis of the mutual information because the resulting channel would be frequency-
varying. However, under assumption (6.3), the frequency-domain channel matri-
ces are marginally identically distributed. In fact, it is easy to see thatE[Ĥ[m]] =

H̄ for all m ∈ N . Moreover, settingh[ℓ] , (H[ℓ]), ĥ[m] , (Ĥ[m]), h̃[ℓ] ,

h[ℓ] − E[h[ℓ]], for ℓ ∈ L andm ∈ N , andh̄ , (H̄), we have:

E

[
ĥ[m]ĥ[m′]H

]

= E

[
ĥ[m]

]
E

[
ĥ[m′]

]H

+
∑

ℓ∈L

E

[
h̃[ℓ]h̃[ℓ]H

]
ω(m−m′)ℓ

= h̄h̄H +
∑

ℓ∈L

TT[ℓ]ξR[ℓ]ω(m−m′)ℓ, (6.9)

which is independent ofm whenm = m′, as required.
Then, we follow the arguments reported in [13]. Assuming every OFDM sym-

bol corresponds to independent realizations of the channelimpulse response ma-
trices, the mutual information will be given (in nat) by

I(Q̂[0], . . . , Q̂[N − 1]) =
1

N + L− 1

·
∑

m∈N

ln det(Ir + Ĥ[m]Q̂[m]Ĥ[m]H), (6.10)

whereQ̂[m] = E[x̂[m]x̂[m]H].
Typically, the ergodic channel capacity is calculated under an average time-

domain power constraint:
∑

n∈N

E[Tr(x[n]x[n]H)] ≤ P. (6.11)

However, applying the inverse DFT (IDFT)

x[n] =
1

N

∑

m∈N

x̂[m]ω−mn,
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we can obtain the following equivalent average frequency-domain power con-
straint:

P ≥
∑

n∈N

E[Tr(x[n]x[n]H)]

=
∑

n∈N

∑

m∈N

∑

m′∈N

E[Tr(x̂[m]x̂[m′]H)]

N2
ω−(m−m′)n

=
1

N

∑

m∈N

E[Tr(x̂[m]x̂[m]H)]. (6.12)

Therefore, the MIMO-OFDM ergodic capacity is defined as the maximum of
E[I(Q̂)] under the constraint

∑

m∈N

Tr(Q̂[m]) ≤ NP. (6.13)

Furthermore, in accordance with [21, Sec. III-A], we can show that the ergodic
capacity achieving matrices are independent ofm. In fact, let use define:

φ(Q̂) , E[ln det(Ir + Ĥ[m]Q̂Ĥ[m]H)].

This is a concave function of̂Q from [15, Th. 17.9.1]. Hence, we can apply
Jensen’s inequality and obtain:

E[I(Q̂[0], . . . , Q̂[N − 1])] =
1

N + L− 1

∑

m∈N

φ(Q̂[m])

≤ κφ

(
1

N

∑

m∈N

Q̂[m]

)
.

Since the last matrix argument is independent ofm, we conclude that the ergodic
capacity is achieved by a covariance matrix that is constantfor all values ofm.
Therefore, we restrict to consider the case of equal covariance matriceŝQ[m] = Q̂

with the power constraint
Tr(Q̂) ≤ P.

6.3 Asymptotic Analysis

In this section we provide an analytic method to calculate the asymptotic ergodic
mutual information of the OFDM-MIMO fading channel described above. The
method proposed is a generalization of the one presented in [8, 9] relevant to the
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narrowband channel. Recalling that each frequency-domainchannel matrix̂H[m]
has the same probability distribution, our goal is to calculate the mean

E[ln det(Ir + ĤQ̂ĤH)],

where

(Ĥ) ∼ Nc

(
h̄,
∑

ℓ∈L

TT[ℓ]ξR[ℓ]

)
,

according to (6.9). The ergodic mutual information of our OFDM-MIMO fading
channel model is obtained as

E[I(Q̂)] = κE[ln det(Ir + ĤQ̂ĤH)].

6.3.1 Asymptotic CGF

Repeating the main steps of the asymptotic analysis developed in [8, 9], we write
the cumulant generating function (CGF) of the mutual information as follows:

G(ν) , E

[
det(Ir + ĤQ̂ĤH)−ν

]

= E

[ ∫

Cr×ν

dU

∫

Ct×ν

etr
{
− π(UHU + VHV)

}

etr
{
− π(UHĤQ̂1/2V − VHQ̂1/2ĤHU)

}
dV

]
.

Using the following result (see, e.g., [8,9]):

E[etr(MW −WHMH)] = exp(−‖M‖2),

which holds for any random matrixW with iid Nc(0, 1) entries, we obtain:

G(ν) =

∫

Cr×ν

dU

∫

Ct×ν

dVetr[−π(UHU + VHV)]

etr

{
− π(UHH̄Q̂1/2V − VHQ̂1/2H̄HU)

−π2
∑

ℓ∈L

UHR[ℓ]UVHT̃[ℓ]V

}

=

∫

Cr×ν

dU

∫

Ct×ν

dVetr[−π(UHU + VHV)]

etr[−π(UHH̄Q̂1/2V − VHQ̂1/2H̄HU)]
∏

ℓ∈L

∫
dµ(Wℓ,Zℓ)etr

{
WℓZℓ − πWℓU

HR[ℓ]U
}

etr
{
− πZℓV

HT̃[ℓ]V
}
.
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Here, integration overWℓ is carried out onRν×ν + Wℓ,0 for someWℓ,0 ∈
Cν×ν , and the integration overZℓ is carried out on(j R)ν×ν + Zℓ,0 for some
Zℓ,0 ∈ C

ν×ν . Moreover,dµ(Wℓ,Zℓ) = dWℓd(Zℓ/(j 2π)). Applying the iden-
tity Tr(MXHNY) = (X)H(MTξN)(Y) [17] in the last integral, we obtain the
following result:

G(ν) =

∫ {∏

ℓ∈L

etr(WℓZℓ)dµ(Wℓ,Zℓ)

}
× (6.14)

det

(
Iνr +

∑
ℓ∈L WℓξR[ℓ] IνξH̄Q̂1/2

−IνξQ̂
1/2H̄H Iνt +

∑
ℓ∈L ZℓξT̃[ℓ]

)−1

Here and in the following we definẽT[ℓ] , Q̂1/2T[ℓ]Q̂1/2.

6.3.2 Ergodic mutual information

We assume that the saddlepoint of the integrand in (6.14) corresponds to the
replica symmetric pointWℓ = wℓIν ,Zℓ = zℓIν , for ℓ ∈ L. Under this assump-
tion, we can get the values ofwℓ, zℓ by solving the following set of fixed-point
equations:






wℓ = Tr

{[
It +

∑
ℓ∈L zℓT̃[ℓ] + Q̂1/2H̄H

×
(
Ir +

∑
ℓ∈LwℓR[ℓ]

)−1

H̄Q̂1/2
]−1

T̃[ℓ]
}

zℓ = Tr

{[
Ir +

∑
ℓ∈LwℓR[ℓ] + H̄Q̂1/2

×
(
It +

∑
ℓ∈L zℓT̃[ℓ]

)−1

Q̂1/2H̄H

]−1

R[ℓ]
}

(6.15)

for all ℓ ∈ L. The resulting asymptotic approximation of the ergodic capacity is
given by:

µI(Q̂) = ln det

{
Ir +

∑

ℓ∈L

wℓR[ℓ]

}

+ lndet

{
It +

[∑

ℓ∈L

zℓT[ℓ] + H̄H

(
Ir +

∑

ℓ∈L

wℓR[ℓ]

)−1

H̄

]
Q̂

}

−
∑

ℓ∈L

wℓzℓ (6.16)
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6.3.3 Ergodic capacity

To maximize the ergodic mutual information (6.16) with respect to the input co-
variance matrixQ̂ we have to solve the following optimization problem:

maximize µI(Q̂)

subject to Q̂ ≥ 0,Tr(Q̂) ≤ P.

Paralleling the approach of [26], we can see that the objective function is concave
with respect toQ̂ and the constraints satisfy Slaters qualification condition [14].
Thus, the Karush-Kuhn-Tucker (KKT) conditions are necessary and sufficient for
optimality [14]. Then, to derive the KKT conditions, we formthe Lagrangian

L(Q̂, λ,Ψ) = µI(Q̂) − λ[Tr(Q̂) − P ] + Tr(ΨQ̂) (6.17)

for λ ≥ 0,Ψ ≥ 0. After nulling the variation ofL(Q̂, λ,Ψ) with respect toQ̂,
we obtain the KKT conditions:




(It + ΞQ̂)−1Ξ = λIt − Ψ

Tr(Q̂) = P

Tr(ΨQ̂) = 0

(6.18)

where we defined the matrix

Ξ ,
∑

ℓ∈L

zℓT[ℓ] + H̄H

(
Ir +

∑

ℓ∈L

wℓR[ℓ]

)−1

H̄.

The solution of eqs. (6.18) depends on the rank of the matrixΞ. Let us as-
sume thatΞ = UH

xΛxUx is the orthogonal decomposition ofΞ with Λx =

diag(Λ̃x, 0) and unitaryUH

x , whereΛ̃x is a positive definite diagonal matrix.
Then, ifPx =rank(Ξ) ≤ t, we can see that

ln det(It + ΞQ̂) = ln det(Iρx
+ Λ̃xQ̂1),

whereQ̂1 is theρx × ρx upper left submatrix ofUxQ̂UH
x . Finally, the ergodic

capacity achieving covariance matrix is given by

Q̂ = Uxdiag
(
(λ−1Iρx

− Λ̃−1
x )+, 0

)
UH

x (6.19)

where(·)+ denotes the elementwise positive part of the elements of thematrix
argument, i.e.,(x)+ = x for x ≥ 0 and0 otherwise. The Lagrange multiplierλ is
determined by solving the constraint equationTr(Q̂) = P . It can be noticed that
eq. (6.19) can be written as

Q̂ = Ux(λ
−1It −Λ−1

x )+UH

x

by assuming that matrix inversion maps the null entries on the main diagonal of
Λx to positive infinity.
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Remark 6.3.1 It is worth noting that the ergodic capacity achieving covariance
matrix found has the typicalwaterfilling form arising in many information theo-
retic optimization problems (see [15, 26]). The ergodic channel capacity is found
by solving the joint set of equations given by (6.15) and (6.19). This can be
achieved by an iterative algorithm that starts from an initial value of the variables
(wℓ, zℓ, Q̂) and proceeds by applying (6.15) and (6.19) alternately until it con-
verges.

Remark 6.3.2 In the special case whenR[ℓ] = R, constant for allℓ ∈ L, we
have a substantial simplification of the asymptotic mutual information equations.
In fact, eqs. (6.15) and (6.16) become

{
w = Tr{[It + zT̃ + Q̂1/2H̄H(Ir + wR)−1H̄Q̂1/2]−1T̃}

z = Tr{[Ir + wR + H̄Q̂1/2(It + zT̃)−1Q̂1/2H̄H]−1R}
(6.20)

and

µI(Q̂) = ln det(Ir + wR)

+ ln det{It + [zT + H̄H(Ir + wR)−1H̄]Q̂} − wz,

(6.21)

respectively. In those equations we setT ,
∑

ℓ∈L T[ℓ] andT̃ , Q̂1/2TQ̂1/2.

6.4 Numerical results

We present some numerical results to illustrate the accuracy of the asymptotic
analytic method proposed to determine the capacity of the wideband MIMO com-
munication channel considered. Here we disregard the rate reduction due to CP
insertion (equivalently, we assumeN → ∞). Specifically, we study the effects of
spatial correlation with a strong LOS component corresponding to a Rice factor
K = 0 dB. We consider the following parameters of the communication scenar-
ios:

• N. of antennas:t = r = 4, n. of paths:L = 3.

• Mean channel matrix:(H̄)ab = h0 (constant).

• Correlation:(R[ℓ])ab = α
|a−b|
ℓ and(T[ℓ])ab = ρℓβ

|a−b|
ℓ , with ρℓ = 0.9ℓ.

The effects of spatial correlation are assessed by comparing the ergodic capacity
and the iid mutual information (corresponding tôQ = qIt) in three different sce-
narios: i) uncorrelated (Fig.6.1); ii) partly correlated (i.e., correlated only over
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the paths without a LOS component, Fig.6.2); andiii) completely correlated (i.e.,
correlated over all paths, Fig.6.3). In all figures, solid and dashed lines with mark-
ers correspond to the ergodic capacity and to the iid mutual information, respec-
tively, obtained in both cases via the asymptotic analytic approach developed in
this work. Square markers represent the corresponding Monte-Carlo simulation
results. We can see that, in all cases considered, simulation results are in close
agreement with the analytic ones. The figures also plot the optimum covariance
matrix eigenvalue distribution (solid lines without markers, with sum normalized
to 1). These curves confirm the well known fact thatbeamforming(correspond-
ing to a single dominant eigenvalue, only one curve stuck to1) is optimal below
a certain SNR. These results show that the threshold increases as the correlation
increases, too. The optimization of the covariance matrix is more effective as the
level of spatial correlation increases. The results show that covariance optimiza-
tion can compensate almost completely the iid mutual information degradation
due to increased correlation. Similar results, not reported for space limitation,
show that the effectiveness of covariance optimization increases as the Rice factor
increases. On the contrary, with Rayleigh fading, the advantage is more limited.

6.5 Conclusions

We provided an analytic asymptotic (in the number of antennas) method to ap-
proximate the mutual information of a wideband Rician fading separately corre-
lated MIMO channel. By using this method, we obtain the asymptotically opti-
mum input signal covariance matrix, yielding the ergodic capacity of the chan-
nel considered. As noticed in [31], the asymptotic method issubstantially more
efficient than numerical optimization methods such as the one proposed in [50]
(interior point with barrier). We show by numerical resultsthat the asymptotic
approximation is accurate even when the number of antennas is small. Finally,
using our proposed method, we analyze the effectiveness of covariance optimiza-
tion related to the level of spatial correlation and the Ricefactor.
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Figure 6.1: System capacity and iid mutual information versus the SNR for the
uncorrelated scenario. Optimum covariance normalized eigenvalues are also re-
ported.
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Figure 6.2: Same as Fig.6.1for the partly correlated scenario.
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Figure 6.3: Same as Fig.6.1for the completely correlated scenario.



Chapter 7

Asymptotic Ergodic Capacity
Region and Rate Optimization of a
Multiple Access OFDM MIMO
Channel with Separately-Correlated
Rician Fading

Giorgio Taricco,Erwin Riegler

7.1 Introduction

An important problem of network information theory is the derivation of the ca-
pacity region of a multiple access channel. In spite of intense research efforts
carried out through the recent decades, there are several open problems in this
area that have wide implications to the theory of communications and computa-
tion [15].

The multiple access channel capacity region is the largest set of rate vectors
that are achievable by the different channel users and has been studied exhaus-
tively in the literature [15]. It admits a simple expressionfor the Gaussian multi-
ple access channel that has been extended to the Gaussian multiple access MIMO
channel by Yuet al. [26], who provided an iterative water-filling algorithm aimed
at finding the optimum user signal covariance matrices that maximize the sum rate
of the channel. Their result applies when the multiple access MIMO channel is
perfectly known at the transmitter and at the receiver.

However, in many situations it is more reasonable to assume that only the
channel state information at the receiver (CSIR) and the channel distribution in-

72
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formation at the transmitter (CDIT) are available. In this case, the problem of
finding the optimum covariance matrices is still open in the general setting [16].
A notable result in this area has been provided by Hösliet al. [2], who proved
that the ergodic and outage achievable rate region increase(as sets) monotoni-
cally with the singular values of the line-of-sight (LOS) component of the channel
matrix. In this contribution we assume that full CSIR but only CDIT is available.
The channel matrix for each user includes a LOS component andseparate spatial
correlation at the transmitter and the receiver for each delay tap. In particular, we
also allow different receive correlation matrices at the receiver for each delay tap
and for each user, which is done by introducing ”virtual delays”. Note that con-
trary to the semi-correlated case [13], where either the spatial correlation matrix
at the transmitter or at the receiver is the identity matrix,the channel matrices in
the frequency domain are no longer of the Kronecker type.

Based on these assumptions we provide two algorithms to compute the opti-
mum covariance matrices which maximize the (weighted) ratesums in order to
obtain the asymptotic ergodic capacity region. Our analysis is based on a recent
result [11] which allows to calculate the wideband asymptotic capacity in the
single-user case when the number of transmit and receive antennas grows asymp-
totically large though the number of users and their SNR’s are finite.

Our results generalize previous works where we derived the optimum covari-
ance matrices for a MIMO channel with interference [10] and for the dominant
face of a multiple access channel [7] in the narrowband case assuming a common
receive correlation matrix. Related works on the asymptotic approximation of the
mutual information in the single-user case are [3] and [5] for the separately-
correlated Rayleigh fading narrowband and wideband channel, respectively, [4]
for the Rician fading narrowband channel without spatial correlation, and [6,8,9]
for the separately-correlated Rician fading channel. Similar single-user capacity
results were also obtained in [31] using an asymptotic method based on Stielt-
jes transforms and in [50] using the Newton barrier method [14] combined with
Monte-Carlo simulations.

An expression for the asymptotic sum mutual information forarbitrary input
distributions of a multiple access narrowband seperately-correlated Rayleigh fad-
ing MIMO channel has been derived in [12].

7.2 System model

We consider a wideband frequency selective multiple accessseparately-correlated
Rician fading MIMO channel withK users transmitting to a single receiver. User
k, for k ∈ K , {1, . . . , K}, is endowed witht(k) transmit antennas and the
receiver withr receive antennas. We assume that the maximum number of re-
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solvable paths of the channel isL = ⌈Bτ⌉ = |L , {0, . . . , L − 1}| (whereB
is the signal bandwidth andτ the is the delay spread), so that the channel can be
modeled by the following equation:

y[n] =
∑

k∈K

∑

ℓ∈L

Hk[ℓ]xk[n− ℓ] + z[n] (7.1)

for n ∈ N , {0, . . . , N − 1}. Here,n is a discrete time index;xk[n] ∈ Ct(k)×1

is the transmitted signal vector of userk at timen; Hk[ℓ] ∈ C
r×t(k) is the channel

matrix impulse response of userk sampled at delay timeℓ; z[n] ∈ Cr×1 is the
additive noise vector at timen; andy[n] ∈ Cr×1 is the received signal vector at
timen. We assume stationary and white (in time) noise samples with

QZ , E[z[n]z[n]H].

We also assume uncorrelated scattering and no correlation between the chan-
nel matrices for different users. Spatial correlation is taken into account by setting

Hk[0] = H̄k + Rk[0]1/2Wk[0]Tk[0]1/2

Hk[ℓ] = Rk[ℓ]
1/2Wk[ℓ]Tk[ℓ]

1/2 ∀ ℓ ∈ L \ {0}
(7.2)

whereH̄k , E[Hk[0]], Rk[ℓ] is the receive spatial correlation matrix of userk at
delay timeℓ, andTk[ℓ] is the transmit spatial correlation matrix of userk at delay
time ℓ. The matricesWk[ℓ] are iid with entries distributed asNc(0, 1).

Furthermore, we assume that the communication system is based on an orthogonal-
frequency-division multiplexing (OFDM) scheme allowing to convert the fre-
quency selective fading channel into a set of independent (conditionally on the
channel matrices) frequency flat channels. A key assumptionis the insertion of
a cyclic prefix (CP) with length equal to the delay spread, which amounts to the
following set of conditions:

xk[n] = xk[n +N ] n = −L+ 1, . . . ,−1. (7.3)

The CP condition limits the information throughput by a factor of κ , N
N+L−1

.
Next, we calculate the discrete Fourier transform (DFT) of the channel equation.
Letω , exp(−j2π/N) so that, in consideration of the CP condition (7.3), we can
transform the channel equation (7.1) into

ŷ[m] ,
∑

n∈N

y[n]ωmn
∑

n∈N

∑

k∈K

∑

ℓ∈L

Hk[ℓ]xk[n−ℓ]ω
mn =

∑

k∈K

Ĥk[m]x̂k[m]+ẑ[m]

(7.4)



WP-3 75

for m ∈ N , where we defined the DFTŝHk[m] ,
∑

ℓ∈L Hk[ℓ]ω
mℓ, x̂k[m] ,∑

n∈N xk[n]ωmn, andẑ[m] ,
∑

n∈N z[n]ωmn with Q̂Z , NQZ = E[ẑ[m]ẑH[m]].
We assume an average power constraint for each userk ∈ K:

Pk ≥
∑

n∈N

Tr(E[xk[n]xk[n]H]) =
1

N

∑

m∈N

Tr(Q̂k[m])

with Q̂k[m] , E[x̂[m]x̂[m]H].
Note that the entries of̂Hk[m] are again Gaussian and

Ĥk[m] ∼ Ĥk , H̄k +
∑

ℓ∈L

Rk[ℓ]
1/2Wk[ℓ]T

1/2
k [ℓ] (7.5)

for all m ∈ N . Following standard assumptions [1, 9, 10], we define the Rice
Factor of userk as

KR
k ,

‖H̄k‖2

∑
ℓ∈L

Tr(Tk[ℓ]) Tr(Rk[ℓ])
(7.6)

and the signal-to-noise power ratioSNRk of userk as

SNRk ,

Pk(K
R
k + 1)

∑
ℓ∈L

Tr(Tk[ℓ]) Tr(Rk[ℓ])

t(k) Tr(QZ)
, (7.7)

which corresponds to the received SNR when the transmitted input signal is iid,
see the discussion in [7].

7.3 Achievable rate region

From the transformation property of the entropy under linear transformations
h(Ax) = h(x) + log | det(A)| ( [15, p. 254]) and the fact that we have inde-
pendent channels (conditionally on the channel matrices) in the frequency domain
(7.4) it is plain to see that the mutual information can be calculated either in the
time domain or in the frequency domain:

I ,
κ

N
I(x̂1[0], . . . , x̂K [N − 1]; ŷ[0], . . . , ŷ[N − 1] | S)

=
κ

N
I(x1[0], . . . ,xK [N − 1];y[0], . . . ,y[N − 1] | S)

=
κ

N

∑

m∈N

I(x1[m], . . . ,xK [m];y[m], . . . ,y[m] | Sm)

with Sm , {Hk[m] | k ∈ K} andS ,
⋃

m∈N

Sm. The ergodic capacity region

can therefore be derived in the frequency domain:
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Proposition 1 Denoting byS ⊂ K an ordered subset ofK and bySc , K \S its
ordered complement inK, the ergodic capacity region is given by the following
union of polytopes:

C =
⋃

Tr(Q̂k≤Pk)

{RK |
∑

k∈S

Rk ≤

κ

N

∑

m∈N

E[I(x̂S[m]; ŷ[m] | x̂Sc [m],Sm)] ∀ S ⊂ K}

=
⋃

Tr(Q̂k≤Pk)

{RK |
∑

k∈S

Rk ≤

κE[ln det(ĤSQ̂SĤ
H

S + Q̂Z)] − κ ln det(Q̂Z) ∀ S ⊂ K}

whereRK , (R1, . . . , RK) denotes the rate vector of all usersk ∈ K, x̂S [m] ,

(x̂k[m]T | k ∈ S)T, ĤS , (Ĥk | k ∈ S), Q̂S , diag(Q̂k | k ∈ S), and
Q̂k[m] = Q̂k is the same for allm ∈ N .

Proof The proof follows from:

1

N

∑

m∈N

E[I(x̂S[m]; ŷ[m] | x̂Sc [m],Sm)]

=
1

N

∑

m∈N

(E[ln det(ĤSQ̂S [m] ĤH

S + Q̂Z)] − ln det(Q̂Z))

≤ E[ln det(ĤSQ̂SĤ
H

S + Q̂Z)] − ln det(Q̂Z),

with Q̂S [m] , diag(Q̂k[m] | k ∈ S), where we used the fact that:

1. The average mutual information depends only on the statistics of the chan-
nel matrices defined in (7.5).

2. The average mutual information is concave in the covariance matrices.

3. Jensen’s inequality.

4. 1
N

∑
m∈N

diag(Q̂k[m]) is independent ofm so that we can assume thatQ̂k[m] =

Q̂k∀m ∈ N .

The convex hull operation may be omitted because any convex linear combination
of rate vectors is in the polytope defined by the same convex linear combination
of covariance matrices (see the proof of Theorem 2 in [26] which holds for any
concave function of positive semidefinite matrices).
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To maximize the extreme points in each polytope we introduceweighted rate sums
[26]. For each permutationπ of K let w ∈ Dπ where

Dπ , {w = (wk | k ∈ K) ∈ R
K
+ |

∑
wk = 1, wπ(K) ≥ · · · ≥ wπ(1) ≥ 0}.

Then the extreme point corresponding tow is achieved by the set of covariance
matrices{Q̂w

k | k ∈ K} that maximize the weighted rate sum
∑

k∈K

wkRk

≤
∑

k∈K

∆π(k)E[ln det(ĤSπ(k)
Q̂Sπ(k)

ĤH

Sπ(k)
+ Q̂Z)]

−wπ(K) ln det(Q̂Z)

, Iw (7.8)

subject to

Tr(Q̂k ≤ Pk) and Q̂k ≥ 0 ∀k ∈ K

whereSπ(k) is the ordered set defined asSπ(k) , {π(j) | j ∈ K, j ≥ k},
wπ(0) , 0, and∆π(k) , wπ(k) − wπ(k−1).

7.4 Optimization

In order to solve this optimization problem we use a recent result allowing to
calculate the average mutual information of a single-userwidebandseparately-
correlated Rician MIMO fading channel when the number of transmit/receive an-
tennas grows asymptotically large:

Proposition 2 The asymptotic single-user ergodic mutual information when the
channel matrix is of the form

H = H̄ +
∑

ℓ∈L

R[ℓ]1/2W[ℓ]T[ℓ]1/2 ∈ C
r×t (7.9)

the noise covariance isQZ ∈ Cr×r, and the signal covariance isQ ∈ Ct×t, is
given by

E[I(x;y | H)] ∼

µI(Q
−1/2
Z H̄, {Q−1/2

Z R[ℓ]Q
−1/2
Z }, {T[ℓ]},Q)



78 MASCOT D3.1.3

nat/complex dimension, where we defined

µI(H̄, {R[ℓ]}, {T[ℓ]},Q) , ln det(Ir +
∑

ℓ∈L

wℓR[ℓ])+

ln det(It + (
∑

ℓ∈L

zℓT[ℓ] + H̄H(Ir +
∑

ℓ∈L

wℓR[ℓ])−1H̄)Q)

−
∑

ℓ∈L

wℓzℓ.

Here,{wℓ} and{zℓ} are the positive solutions of the fixed point equations:

wℓ = Tr

{
T̆[ℓ][It +

∑
ℓ∈L

zℓT̆[ℓ] + H̆H(Ir +
∑
ℓ∈L

wℓR[ℓ])−1H̆]−1
}

zℓ = Tr

{
R[ℓ][Ir +

∑
ℓ∈L

wℓR[ℓ] + H̆(It +
∑
ℓ∈L

zℓT̆[ℓ])−1H̆H]−1
}

with H̆ , H̄Q1/2 andT̆[ℓ] , Q1/2T[ℓ]Q1/2.

Proof see [11]

.
Applying this result to the upper bound on the weighted rate sum in equation

(7.8) yields:

Iw ∼
∑

k∈K

∆π(k)µI(H̃Sπ(k)
, {R̃[ℓ]}, {TSπ(k)

[ℓ]}, Q̂Sπ(k)
)

where we defined

H̃S , (Q̂
−1/2
Z H̄k | k ∈ S)

TS [ℓ] , diag(δk,jTj[ℓ] | j ∈ S) ∀ℓ ∈ L

R̃[ℓ] , Q̂
−1/2
Z Rk[ℓ]Q̂

−1/2
Z ∀ℓ ∈ L

for subsetsS ⊂ K. Here, we introduced “virtual delays”ℓ , (k, ℓ) ∈ LS , S×L
to cope with the fact that we allow for different received correlation matrices for
the transmitting users. Note that there are several systemsof fixed point equations,
each of which corresponding to a certain setS. To distinguish them we write{wS

ℓ }

and{zSℓ } with ℓ ∈ LS for the corresponding solution of the system:

wS
ℓ =Tr

{
T̆S [ℓ][ItS+

∑
ℓ∈L

zSℓ T̆S [ℓ]+ H̆H

S(Ir+
∑
ℓ∈L

wS
ℓ R̃[ℓ])−1H̆S ]−1

}

zSℓ =Tr

{
R̃[ℓ][Ir+

∑
ℓ∈L

wS
ℓ R̃[ℓ] + H̆S(ItS+

∑
ℓ∈L

zSℓ T̆S [ℓ])−1H̆H

S ]−1
}
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with H̆S , H̃SQ
1/2
S , T̆S [ℓ] , Q

1/2
S TS [ℓ]Q

1/2
S , andtS ,

∑
k∈S t(k) for S ⊂ K.

To proceed we define the quantities

XS ,
∑

ℓ∈LS

zℓTS [ℓ] + H̃H

S(Ir +
∑

ℓ∈LS

wℓR̃[ℓ])−1H̃S .

Furthermore, for eachS = {i1, . . . , i|S|} ⊂ K andk ∈ S we define the matrices

Q̃k,S , diag(0t(i1), . . . Q̂k, . . .0t(i|S|))

Q̃c
k,S , Q̂S − Q̃k,S.

Noting that(I + AB)−1A ≥ 0 for arbitrary positive semidefinite matricesA,B
of the same size [17, p. 19] we can rewrite the expressions:

ln det(ItS + XSQ̂S) − ln det(ItS + XSQ̃c
k,S)

= ln det(ItS + (ItS + XSQ̃c
k,S)−1XSQ̃k,S)

= ln det(It(k) + Ak,SQ̂k) (7.10)

with Ak,S , [(ItS + XSQ̃c
k,S)−1XS ]k for arbitraryS ⊂ K with k ∈ S, where

[A]k denotes the submatrix ofA obtained by extracting the elements of the rows
and columns with indexes from

∑j<k
j∈S t(j) + 1 to

∑j≤k
j∈S t(j). Using these manip-

ulations and the fact that

∂µI

∂wS
ℓ

= 0 and
∂µI

∂zSℓ
= 0 ∀ ℓ ∈ LS

we further get:

∇
Q̂π(k)

Iw

∼ ∇
Q̂π(k)

k∑

j=1

∆π(j)µI(H̃Sπ(j)
, {R̃[ℓ]}, {TSπ(j)

[ℓ]}, Q̂Sπ(j)
)

= ∇
Q̂π(k)

φπ(k)(Q̂π(k)) (7.11)

with

φπ(k)(Q̂π(k)) ,

k∑

j=1

∆π(j) ln det(It(π(k)) + Aπ(k),Sπ(j)
Q̂π(k)) (7.12)

for fixed{w
Sπ(j)

ℓ } and{z
Sπ(j)

ℓ } (j = 1, . . . , k). This implies that we can alternately
solve the systems of fixed point equations and maximize the expressionsφπ(k)

with respect toQ̂π(k), resulting in the following optimization algorithm:
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Algorithm 3 (Optimization for arbitraryw)
initialize Q̂K = diag(Pk/t(k)It(k) | k ∈ K)
repeat

solve fixed point equations{wSπ(k)
ℓ } and{zSπ(k)

ℓ } ∀ k ∈ K
for k ∈ K

for fixed{wSπ(j)
ℓ } and{zSπ(j)

ℓ } wherej = 1, . . . , k

solveQ̂w
π(k) = arg max(φπ(k)(Q̂π(k)))

subject toTr(Q̂π(k)) ≤ Pπ(k) andQ̂π(k) ≥ 0
end
setQ̂k = Q̂w

k ∀ k ∈ K
until the desired accuracy is reached.

For arbitrary weights noexplicitwater-filling solution exists unless all the ma-
tricesAk,Sπ(j)

which appear in the objective function in equation (7.12) commute,
which would imply that we could diagonalize them simultaneously. Nevertheless,
this objective function is concave and we can use the Newton barrier method [14,
Chapter 11.3] to maximize it. This method has the advantage of avoiding the
(highly non-linear) inequality constraints{Q̂k ≥ 0}. When the positive semidef-
inite constraint is tight we replace the objective functionφπ(k) by

φ′
π(k)(Q̂π(k)) , φπ(k)(Q̂π(k)) + (1/t) ln det(Q̂π(k)) (7.13)

with barrier function(1/t) ln det(Q̂π(k)) (t > 0) and iterate Algorithm3 over t,
as proposed in [14, Algorithm 11.1]. Thanks to the manipulations in equations
(7.10), the gradient and the Hessian of the objective function (7.13) can be com-
puted with little effort, see [50] equations (9) and (10), respectively.

7.4.1 Simultaneous water-filling

Assume that we want to maximize the rate sum of a subset of usersS = {i1, . . . , i|S|} ⊂
K with equalweights:

wk =

{
1/|S| if k ∈ S
0 otherwise,

i.e. we want to maximize thesum rate. The sum in the objective function (7.12)
then collapses to a single term and we get:

Q̂sum
π(k) = arg max(φπ(k)(Q̂π(k)))

= arg max(ln det(It(π(k)) + Aπ(k),SQ̂π(k))
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for all k ∈ S. Furthermore, we can apply Hadamard’s inequality [15, p. 680]
and get the following standard water-filling solution for the optimum covariance
matrices:

Q̂sum
k = Uk[

1

λk

It(k) − Λ−1
k ]+UH

k , (7.14)

where we used the eigenvalue decomposition

Ak,S = UkΛkU
H

k

and defined(Λ−1
k )i , ∞ in the case of(Λk)i = 0. This gives us the following

algorithm:

Algorithm 4 (Simultaneous water-filling)
initialize Q̂K = diag(Pk/t(k)It(k) | k ∈ K)
repeat

solve fixed point equations for{wS
ℓ } and{zSℓ }

for k ∈ K
for fixed{wS

ℓ } and{zSℓ }

solveQ̂sum
k = Uk[

1
λk

It(k) − Λ−1
k ]+UH

k

end
setQ̂k = Q̂sum

k ∀ k ∈ S
until the desired accuracy is reached.

7.5 Numerical simulations

In this section we present numerical results illustrating the accuracy of the asymp-
totic optimization of the (weighted) rate sum. Figure7.1 illustrates the two-user
asymptotic ergodic capacity regions for several SNR values, bounded by the thick
curves. Red chain dotted lines bound the achievable rate regions using simulta-
neous water-filling (Algorithm4), where the optimum covariance matrices maxi-
mize the sum rates. Magenta solid curves are obtained by weighted rate sum op-
timization (Algorithm3), where we iteratedw2 within w2 ∈ {0, 0.05, . . . , 1} and
plotted the curves connecting the corresponding extreme points. Blue dashed lines
report single-user bounds onR2 andR1 corresponding tow2 = 1 andw2 = 0, re-
spectively. Black thin dashed lines show the bounds on the achievable rate regions
for iid power allocation. ”x”- and ”o”- markers refer to Monte-Carlo simulations
and label the extreme points and faces in the polytopes, respectively to confirm
the accuracy of the asymptotic approximation.

We have chosen the following parameters for our simulations:
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1. The number of transmit/receive antennas is equal tot(1) = t(2) = r = 4.

2. The number of paths isL = 3 with spatial correlation

(Tk[ℓ])a,b = ρ(ℓ)αk(ℓ)
|a−b| (Rk[ℓ])a,b = βk(ℓ)

|a−b|

for k ∈ K andℓ ∈ L. Here,ρ(ℓ) , 0.7ℓ corresponds to a power delay profile
with exponential decay. Furthermore, we setα1(ℓ) = α2(ℓ) = β1(ℓ) =
β2(ℓ) with α1(0) = 0.7, α1(1) = 0.8, andα1(2) = 0.9.

3. For the line-of-sight components we took the all one matrix normalized such
thatKR

1 = KR
1 = 0 dB.

4. The signal to noise ratio is iterated withinSNR1 = SNR2 ∈ {5, 10, 15, 20, 25}
dB, QZ = Ir, andκ = 1.
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Figure 7.1: Asymptotic ergodic capacity regions of a two user scenario with
SNR1 = SNR2 ∈ {5, 10, 15, 20, 25} dB.

It can be noticed that there is a considerable distance between the dominant faces
of the iid rate regions and thew2 = 0.5 rate regions, which are obtained by si-
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multaneous water-filling, in the low SNR regime. The effect of weighted rate sum
optimization is mainly visible in the high SNR regime.

7.6 Conclusion

We investigated the ergodic capacity region of a multiple access separately-correlated
Rician fading MIMOwidebandchannel using an asymptotic approach. The chan-
nel model we used is sufficiently general to allow for considering different spatial
correlation matrices for each user and delay at the transmitter and the receiver.
Two algorithms have been proposed to optimize the covariance matrices for the
(weighted) rate sums in order to obtain the asymptotic ergodic capacity region.
We showed by numerical simulations that our approach is veryaccurate even for
a small number of antennas.
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[67] S. Verdú,Multiuser Detection.Cambridge, UK: Cambridge Univ. Press,
1998.

[68] G. Caire and S. Shamai (Shitz), “On the Achievable Throughput of a Multi-
Antenna Gaussian Broadcast Channel,”IEEE Trans. Inform. Theory, vol. 49,
no. 7, pp .1691–1706, Jul. 2003.

[69] S. Vishwanath, N. Jindal and A. Goldsmith, “Duality, Achievable Rates, and
Sum-Rate Capacity of Gaussian MIMO Broadcast Channels,”IEEE Trans.
Inform. Theory, vol. 49, no. 10, pp .2658–2668, Oct. 2003.

[70] W. Yu and J. M. Cioffi, “Sum Capacity of Gaussian Vector Broadcast Chan-
nels,”IEEE Trans. Inform. Theory, vol. 50, no. 9, pp .1875–1892, Sep. 2004.

[71] Martin Schubert and Holger Boche, “QoS-Based ResourceAllocation and
Transceiver Optimization,”Foundations and Trends in Communications and
Information Theory, vol. 49, no. 10, pp .383–529, 2005.

[72] William Thomson,Handbook of Game Theory, Vol. 2, Elsevier Science,
1994.

[73] Roy D. Yates, “A Framework for Uplink Power Control in Cellular Radio
Systems,”IEEE J. Select. Areas Commun., vol. 13, no. 7, pp. 1341–1348,
Sep 1995.

[74] Holger Boche and Martin Schubert, “Multiuser Interference Balancing for
General Interference Functions – A Convergence Analysis,”ICC Conference
2007, Glasgow, Scotland, Jun, 2007.

[75] Holger Boche, Martin Schubert, Eduard A. Jorswieck andAydin Sezgin, “A
General Framework for Concave/Convex Interference Coordination Prob-
lems and Network Utility Optimization,”ITG-SA-WORKSHOP, Vienna,
Austria, Feb, 2007.

[76] Holger Boche, Martin Schubert, Nikola Vucic and Siddharth Naik, “Non-
Symmetric Nash Bargaining Solution for Resource Allocation in Wireless
Networks and Connection to Interference Function Calculus,” EUSIPCO
conference 2007, Poznań, Poland, Sep, 2007.
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