Registration

Participation at the workshop is free, including coffee breaks and dinner, but registration is required.

- **Dead-line for registration:** December 15, 2013
- **Capacity limited** to 60 persons

Contact

Sébastien SAVOYE, CEA
• tel: 33 1 69 08 77 51
• Email: sebastien.savoye@cea.fr

- CatClay WebSite: www.catclay.org

Accommodation

The FIAP has a total capacity of 200 rooms capable of accommodating from 1 to 7 persons /room (www.fiap.asso.fr)

Hotels close to the conference center

- Marriot (www.marriott.fr)
- Mercure (www.mercure.com)

Transportation

Venue:
The workshop will take place at FIAP, Paris

Address: 30 rue Cabanis
75014 PARIS (www.fiap.asso.fr)

Access: Orly Bus or
RER B: Denfert-Rochereau station
Metro: Line 6 – Glacière Station
Line 4 – Denfert-Rochereau station
Background

Clayrock formations (Opalinus Clay in Switzerland, Callovo-Oxfordian claystones in France, Boom Clay in Belgium) are under consideration as host formations and geological barriers for deep geological repositories for radioactive wastes because of their very low permeability and capacity to retain most radionuclides by adsorption on their clay minerals. While the scientific basis for explaining and modelling the diffusion-driven transfer of non-sorbing anionic species can be considered as solid for all spatial scales considered in safety cases, the picture is not so clear for cationic radionuclides, especially for strongly-sorbing ones.

Therefore, the overall objective of the EU CATCLAY project is to provide the experimental evidence and phenomenological understanding needed to justify the parameter values used in safety cases for representing diffusion-driven transfer of actinides and other strongly-sorbing cationic radionuclides in clayrocks.

Meeting Objective

The scientific approach is of the ‘bottom-up’ type, in which simpler, analogous systems (here a compacted ‘pure’ clay mineral - illite) are experimentally studied and modelled, and then the transferability of these results to more complex materials (the three above-mentioned clayrocks) is verified. The cations of interest have been chosen to cover a representative range of cation-types considered in performance assessment, from a moderately sorbing cation, Sr\(^{+2}\), to two strongly sorbing cations, Zn(II) and Eu(III).

Day 1 Wednesday 21\(^{st}\) May
(14:00 to 18:30)

Welcome

Keynotes (1h) Issues of cation migration in performance assessment

Experimental quantification of cation transfer in clays and clayrocks
 • Challenges
 • Results and lessons learned in EU CATCLAY

Evening Dinner in Paris

Day 2 Thursday 22\(^{nd}\) May
(beginning at 9:00)

Continuation of the previous day session (1h)

Models for understanding cation transfer
 • Challenges
 • Results and lessons learned in EU CATCLAY

Round table (12:00-12:45)

Wrap-up (ending at 13:00)