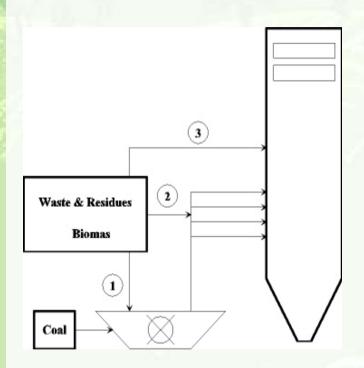
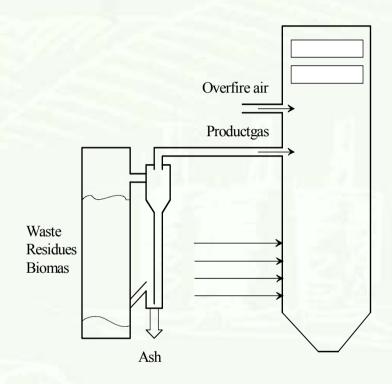
Overcoming Technical Barriers Related to Biomass Co-combustion in Large-Scale Power Plants

Sven Unterberger, Jörg Maier, Klaus R.G. Hein

Institut fuer Verfahrenstechnik und Damfpkesselwesen (IVD)
Institute of Process Engineering and Power Plant Technology
Universitaet Stuttgart, Germany

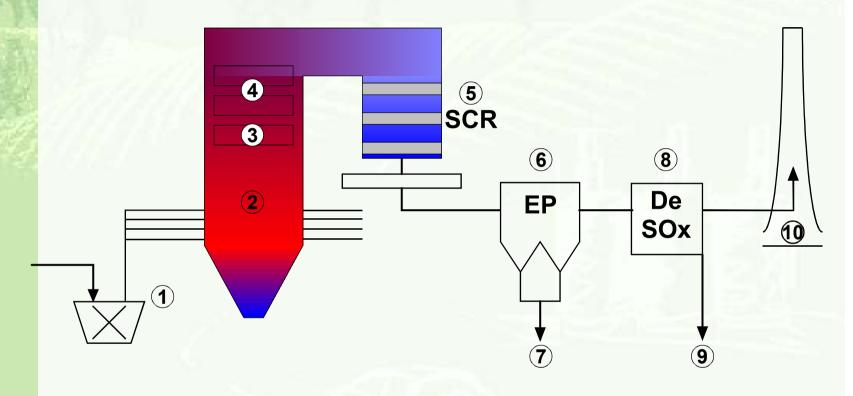


Why Biomass Co-Combustion?


- Large, already existing capacities
- Comparable low investment costs
- High (electric) efficiency, low emissions
- Low operational effects at low biomass shares
- Seasonal fluctuations of biomass can be minimised
- Substitution of coal for CO₂ reduction

Co-Combustion Techniques

Direct co-combustion



Indirect Co-Combustion

- Pyrolysis
- Gasification
- Pre-Combustion

Areas of Concern

- 1 milling system: capacity, wear
- 2 furnace: slagging
- 3 super heater: corrosion
- 4 convective heat exchanger: fouling, erosion
- 5 DeNOx: deactivation, capacity, erosion

- 6 precipitator: capacity
- 7 ash: utilisation
- 8 DeSOx: capacity
- 9 DeSOx-residues: utilisaton
- 10 flue gas: emissions

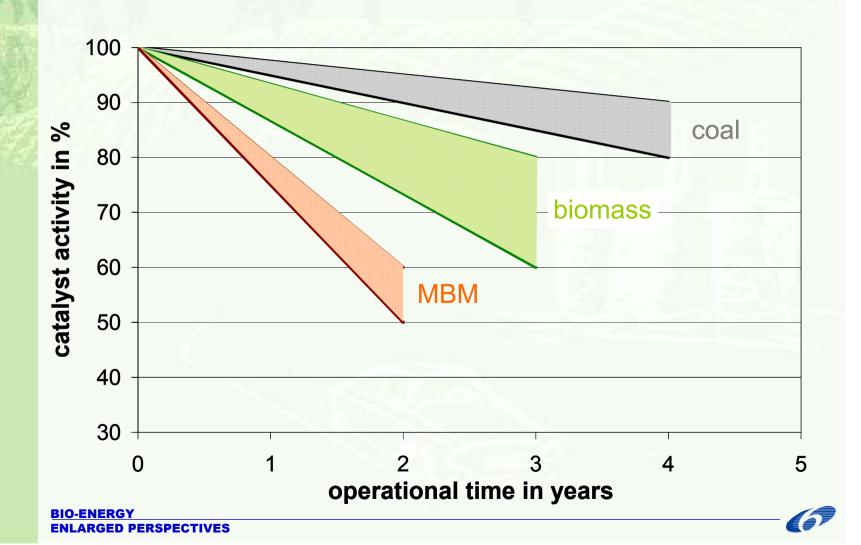
Previous EC-Projects @ IVD

- Co-Utilisation of Coal, Biomass and Waste
 APAS, 1993 1994
- Operational Problems, Trace Emissions and By-Product Management of Industrial Biomass Co-Combustion
 OPTEB, 01.01.1996 - 31.12.1998
- Prediction of ash and deposit formation for biomass co-combustion
 DEPOSIT PREDICTION, 01.07.1998 - 30.06.2000
- Slagging and Fouling Prediction by Dynamic Boiler Modelling SLAGMOD, 01.06.2000 - 31.05.2002
- Quality of Secondary Fuels for Pulverised Fuel Combustion SEFCO, 01.08.2000 - 31.07.2002
- Utilisation of Residues from Biomass Co-Combustion UCOR, 01.10.2000 - 30.09.2003

Conclusions

- Biomass preparation and co-firing with coal technically feasible
- Limited operational problems at lower shares of biomass (< 10 %_{th})
- Effects of biomass constituents on
 - by-product quality (UCOR)
 - air pollution control devices (CATDEACT)
 - emissions of toxic metals (TOMERED)
 are not completely understood
- Co-utilisation of bio-wastes and refuse-derivedfuels (RDF) not investigated

Influence of Biofuel (Co-)Combustion on Catalytic Converters in Coal-Fired Power Plants


CATDEACT

ENK5 - CT2001 - 559

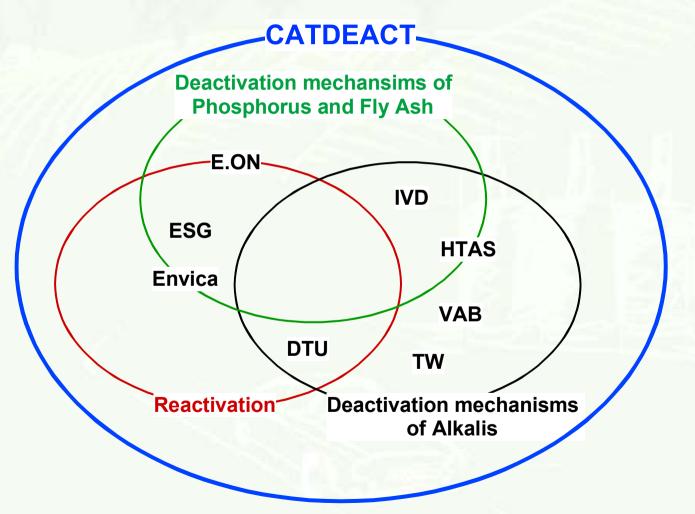
01/11/2001 - 31/10/2004

Background

Motivation

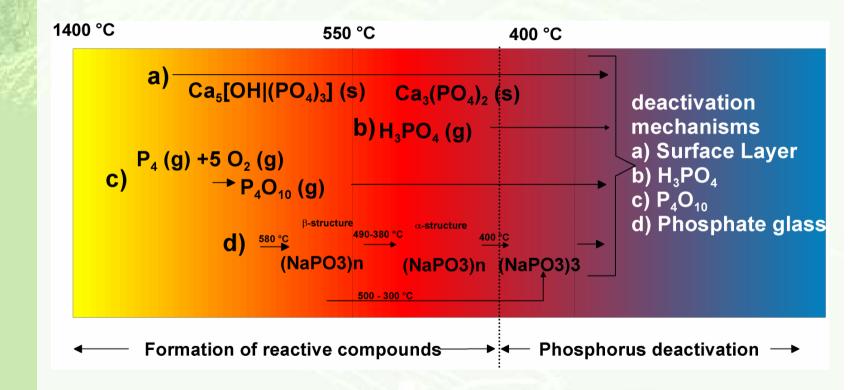
- Biomass contains catalyst poisons
 K, Na (wood, straw, ...)
 P (MBM, sewage sludge, ...)
- Costs for total replacement of a three layer SCR approx. 8 - 12 Mio.€
- Costs for regeneration about 4 6 Mio.€
- Higher operational costs due to NH₃ consumption and fly ash enrichment

Project Partners



- 1 Universität Stuttgart, IVD (co-ordinator)
- 2 Technical University of Denmark
- 3 Energy Solutions GmbH
- 4 Vattenfall AB
- 5 Haldor Topsoe A/S
- 6 E.ON Engineering GmbH
- 7 ENVICA GmbH
- 8 Techwise A/S

BIO-ENERGY ENLARGED PERSPECTIVES



Work Content

Lab-Scale Tests

Full-scale Tests

- 4 slip stream reactors on identical 350 MW_{el} units (Techwise):
 - one 100% coal, one co-fired with up to 10 %_{th} straw
 - two high dust and two low dust reactors
 - exposure times: 2000, 3500 and 5000h
- analysis of deactivated catalysts by E.On and HTAS
- regeneration by ENVICA, ESG and DTU
- deactivated catalyst samples available, analysis and regeneration still ongoing

Expected Results

- Advanced analysis methods
- Mechanisms leading to deactivation during co-combustion:
 - secondary fuel characteristics
 - operational parameters
- Countermeasures
 - regeneration
 - operational parameters
 - additives

