Holistic Integration Of Molten Carbonate Fuel Cells Technology Towards A Most Effective Systems Compound Using Biogas As A Renewable Source Of Energy

DI (FH) Steven Trogisch

Profactor Produktionsforschungs GmbH / Austria

Budapest ,16-17 October 2003

Contents

- Biogas a renewable energy
- Why MCFC?
- Synergy potential for the combination of biogas and fuel cells
- The EFFECTIVE Project
 - Gas upgrading
 - Test beds
 - Preliminary results
- Conclusions

What is biogas?

- A methane rich gas
- resulting from the anaerobic digestion of organic wastes in biogas plants which are common in
 - Waste water treatment plants
 - Agricultural farms
 - Anaerobic biowaste treatment facilities
 - Landfills

Biogas: Advantages

- Renewable energy with the highest potential (1) for green house gas reduction
- Decentralised energy production (<1MWel)
- Cost reduction of waste disposal and new income for the agricultural sector
- Closing of the nutrient cycle (agriculture)
- Several directives encourage biogas utilisation

¹Greenhouse gas emissions (IEA Bioenergy Task 25, G. Jungmeier gerfried.jungmeier@joanneum.ac.at)

Biogas use in Molten Carbonate Fuel Cells

Biogas composition(s)

Gas type	H2	CH4	CnHm	CO2	N2	CO	H2S	NH3	Others
	Vol%	Vol%	Vol%	Vol%	Vol%	Vol%	ppm	ppm	

Biogas from fermentation									
¹ Biogas from agricultural biogas plants	0	55-70	-	30-45	0-2	-	500	100	Siloxane, Oxigen
Waste water gas	-	65	-	35	-	-	1000	100	Siloxane, Oxigen
² Landfill gas	-	50-60	-	40-50	-	-	0-50	-	Aromates, Chlor comp., Siloxanes

Biogene gas from thermal gasification									
³ Biomass-	4,5	14,8	-	10,6	39,6	19,1	100	2000	Dust, Tar
gasification									(3000ppm)

Fossil									
Natural gas	-	93	4,9	1	1,1	-	1	-	Inert gas

1 Jensen, J.K., Jensen, A.B.: Biogas and natural gas – fuel mixture for the future, 1st World Conference and Exhibition on Biomass for Energy and Industry, Sevilla, 2000

2 Christenson, T.H., Cossu, R., Stegmann, R.: Landfilling of Waste, Biogas, E&FN Spon, London 1996

3 Kivisaari, T., Björmbom, P., Sylwan, C.: Studies of Biomass MCFC Systems, Journal of Power Sources, 104 (2002) p. 114-124

Why MCFC?

	Low Tem	perature	FC ←	→ High temperature FC				
-Тур	PEFC 80	AFC 100	PAFC 200	MCFC 650	ITSOFC 800	TSOFC 1000		
H2	F	F	F	F	F	F		
CH4, CnHm	IG	poison	IG	IG/F	F	E		
CO2	IG	poison	IG	React.	IG	IG		
со	poison (<50ppm)	poison	poison (<500ppm)	F	F	F		
H2S, COS	nd	poison	poison (<50ppm)	poison (<0.5ppm)	poison	poison (<1.0ppm)		
NH3	poison	F	poison	F	F	F		

Analysis on siloxanes, halides, tar, dust, and other contaminants are missing!!!

F.....Fuel, IG.... Inert gas, React. Takes part in electrode reaction

Why MCFC ?

- High temperature FC
- Ideally suitable for biogas (due to the biogas composition)
- High system efficiency (~49%), due to beneficial impact of carbon dioxide as well as internal reforming
- Near to market

Synergies Biogas – MCFC

- Utilisation of RES in FC Technology
- Efficient and clean energy conversion of valuable RES
- High user potential for utilising the process heat which is released from the MCFC-process

Biogas use in Molten Carbonate Fuel Cells

The Effective Project

- Holistic integration of MCFC technology towards a most EFFECTIVE systems compound using biogas as a renewable source of energy.
- Project start: 07 / 2000
- Duration: 4 years
- Budget: ~ 3.5 Mio Euro
- Consortium: PROFACTOR (Co), Linz AG, Studia, MTU CFC Solutions GmbH, Seaborne, Ciemat, Urbaser, University of Nitra

Financing: Own contribution, EU - Commission, bm:bwk

EFFECTIVEs Approach

- Development and construction of 2 gas upgrading systems for H₂S removal
- Construction of two test beds:
 - One mobile system to be installed in Germany, Austria and Spain
 - One stationary system in which long term tests are made at the Univ. of Nitra (Slovakia)
- Tests (endurance and performance) with different gas qualities on basis of lab scale stacks (300 W)
- Socio technical integration of biogas-FC technology in Spain and Slovakia

EFFECTIVEs Biofilter

Biological biotrickling filter, built by Profactor:

18 month endurance operation, achieving the aim of less than 10 ppm H_2S in the outlet gas

EFFECTIVEs Chemical Filter

Chemical filter, built by Seaborne:

6 month endurance operation, also achieving the aim of less than 10 ppm H_2S in the outlet gas

EFFECTIVEs Testbed

Designed and constructed by MTU CFC Solutions

Right Control Unit

Center Operator

Left Operation Unit

EFFECTIVEs Stack

Biogas use in Molten Carbonate Fuel Cells

EFFECTIVEs Process

BIO-ENERGY ENLARGED PERSPECTIVES

Biogas use in Molten Carbonate Fuel Cells

BIO-ENERGY ENLARGED PERSPECTIVES

EFFECTIVEs Conclusions

- **Biogas Operation of MCFC without any Problems**
- Posttest analyzes indicates no severe interaction between biogas and fuel cell system components
- NH₃ reduction by catalytic decomposition (labscale single cell experiments)

Thank you for your attention

