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Figure 15: CFD calculation, fluid/wall-transition modelling parameter
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Figure 16: CFD calculations by different partners
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Process the plant files

Test signal 
ranges

Calculate virtual 
signals

Integrate modules and fatigue 
assessment

Man-machine interface

Figure 17:  Virtual sensors, software application



WP2

WP4WP1

WP5

VTT
FANP-

F
IWM

FNS
MPA

JRC

FANP-
D

CEA

TECN

SPG

Load 

determination

Damage measurement

Figure 18: WP 3 partner roles
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Figure 19: Integrity evaluation (“forward” and “backward” approach)



“Fortum train”

VTT, FNS, TEC

VTT-CFD

Stress calculation

Temperature fields

Stress/fatigue assessment

Crack initiation

Crack propagation

Figure 20: “Fortum train” workflow, VTT, FNS, TEC
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Figure 21: “Fortum train”, thermal shock experiment mock-up  



Cold jet penetrating into the primary pipe

Steep oscillating temperature gradient in the round-off region of the T joint
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Figure 22: VTT, CFD analysis on pipe/nozzle connection



FEA: The full model (CFD + pressure)

218 880 elements
241 863 nodes
725 589 variables

8-node linear brick 
elements

• overpressure 122.6 bar
• main pipe temperature 300 oC
• cold-leg temperature 20 oC
• turbulent cycle 50 Hz

Material
properties
temperature
dependant

Figure 23: “Fortum train”,  FE model and loads



Elastic strain in 
global 1 direction

Max. strain = 0.18 % Min. strain = 0.08 %

Figure 24: “Fortum train”, stress analysis, elastic strains



Primary 
circuit pipe

Purification 
line nozzle

Figure 25: “Fortum train”,  thermal shock experiment

First cracks occurred after more than 10 000 load cycles
Final condition: crack length: 34.5 mm (estimated depth: 15 mm)



Figure 26: “Fortum train”, thermal shock experiment, crack monitoring



Figure 27: “FANP-D/F train” and “CEA train” workflow
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FANP-D: CFD calculation based on 
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DN 50:50

Figure 28: “SPG/TEC/FHG train” workflow
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Figure 29: TEC, stress/crack analysis based on SPG Data

Results of experiments carried 
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Figure 30: TEC, experimental versus analytical results
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Configuration analysed by FEM

3.9 kg/s

0.015 kg/s

∆Tmain leak ≅ 90 K

• Austenitic steel piping
• Wall thickness

– experiments: 1 mm
– calculations: 10 mm

This combination turned out 
to be the most damaging one

Figure 31: TEC, relevant T configuration analysed by FE analysis



ASME Code, Section III, Appendix I: Design fatigue curve for austenitic steels
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Figure 32: TEC; fatigue analysis of through-wall stresses; α experiment = 2000 W/(m²K)



Fatigue analysis

Figure 33: TEC; fatigue analysis of through-wall stresses; α Colburn = 16 700 W/(m²K)

ASME Code, Section III, Appendix I: Design fatigue curve for austenitic steels
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Temperature and stress for the SPG geometry

Figure 34: FHG, 3D-FE model for stress analysis and crack initiation/propagation



Figure 35: FHG, elastic-plastic analysis

Stress variation: elastic-plastic analysis

∆T = 250 °C

Da = 59 mm, t = 10 mm

α = 5 kW/(m2K), f = 0.1 Hz
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Figure 36: EDF-INTHERPOL “turning cylinder” test



First cracks after 
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Figure 37: EDF, long-term damage test results



Figure 38: JRC test workflow, JRC, JSI, MPA, FHG
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JRC thermal shock experiment (pipe specimen)

Instrumented specimenSpecimen geometry

Material: A316L austenitic steel

48 mm

14 mm20 mm

224 mm

F (axial load)

Tpipe

Tfluid

∆T = Tpipe-Tfluid

∆T = 380 K
First cracks after 
20 000 load cycles

Figure 39: JRC, long-term damage tests



Figure 40: JSI, micro-structure modeling, analysis of the JRC experiment



Figure 41: WP 4.2 Compilation of thermal load tests and additional MPA specimen experiment
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Figure 42: VTT, fatigue assessment according to experimental and analytic results
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Figure 43: Overall integrity concept for safety-relevant structures in NPPs

Basic component/system quality by design and 
manufacturing

Evaluation of current component/system quality
status according to current quality requirements

Proactive surveillance/registration/recording of 
root causes of potential operational degradation 
mechanisms

• actual mechanical/thermal loads

Integrity evaluation using actual operational 
loading input

• e.g. stress analysis, fatigue analysis, fracture 
mechanics

Stipulating measures to monitor consequences
of operational degradation mechanisms

• stress/fatigue-relevant locations, NDE methods, 
NDE intervals

Reactive surveillance of consequences of potential operational degradation mechanisms

• e.g. non-destructive examinations, loose-part monitoring, destructive examinations of 
replaced parts
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Figure 44: Integrity concept: the “integrity building”


