

Figure 15: CFD calculation, fluid/wall-transition modelling parameter

Figure 16: CFD calculations by different partners

Figure 17: Virtual sensors, software application

Figure 18: WP 3 partner roles

Figure 19: Integrity evaluation ("forward" and "backward" approach)

Figure 20: "Fortum train" workflow, VTT, FNS, TEC

Fortum train: Mock-up

Figure 21: "Fortum train", thermal shock experiment mock-up

Cold jet penetrating into the primary pipe

Steep oscillating temperature gradient in the round-off region of the T joint

FEA: The full model (CFD + pressure)

Figure 23: "Fortum train", FE model and loads

Figure 24: "Fortum train", stress analysis, elastic strains

First cracks occurred after more than 10 000 load cycles Final condition: crack length: 34.5 mm (estimated depth: 15 mm)

Figure 25: "Fortum train", thermal shock experiment

Figure 26: "Fortum train", thermal shock experiment, crack monitoring

Figure 27: "FANP-D/F train" and "CEA train" workflow

Figure 29: TEC, stress/crack analysis based on SPG Data

Configuration analysed by FEM

- Austenitic steel piping
- Wall thickness
 - experiments: 1 mm
 - calculations: 10 mm

Figure 31: TEC, relevant T configuration analysed by FE analysis

Fatigue analysis

Fatigue analysis

Figure 33: TEC; fatigue analysis of through-wall stresses; α Colburn = 16 700 W/(m²K)

Temperature and stress for the SPG geometry

Stress variation: elastic-plastic analysis

 $\Delta T = 250 \ ^{\circ}C$ D_a = 59 mm, t = 10 mm α = 5 kW/(m²K), f = 0.1 Hz

Figure 35: FHG, elastic-plastic analysis

EDF: WP4 test mock-up INTHERPOL description

Figure 36: EDF-INTHERPOL "turning cylinder" test

Figure 37: EDF, long-term damage test results

Figure 38: JRC test workflow, JRC, JSI, MPA, FHG

JRC thermal shock experiment (pipe specimen)

Figure 40: JSI, micro-structure modeling, analysis of the JRC experiment

Institution	EdF	MPA (not within THERFAT)	JRC	HUT/VTT (not within THERFAT)	G, TX8 IM - 1
T _{max} /°C	230	280	300/400	300	
T _{min} /°C	110	120	20/20	20	31
ΔΤ / Κ	120	160	275/375	280	
T _{mean} =0.25T _{min} +0.75T _{max}	200	240	230/305	230	
Axial strain amplitude / m/m	unknown	0.0046	0.0018/÷	0.0032	30 De
Number to Initiation /cycles	125000	2500	55600/20000	10000	poliert
Source	THERFAT, Cadarache meeting	Thesis Mangold	Paffumi, Nilsson, Taylor; ASTM2002	Thesis Virkkunen	

Table 1: Compilation of experimental data from thermal fatigue tests

Test series	Strain amplitude	Expected number	Temperature
1	0.0032	10000	230
2	0.0018	50000	230
3	0.0016	100000	200
4	0.0009	2000000	200

Detail X

Table 2: MPA test matrix for additional isothermal mechanical tests

Figure 41: WP 4.2 Compilation of thermal load tests and additional MPA specimen experiment

Figure 42: VTT, fatigue assessment according to experimental and analytic results

Figure 43: Overall integrity concept for safety-relevant structures in NPPs

Figure 44: Integrity concept: the "integrity building"