EXECUTIVE SUMMARY

Figure 1: Innovations at the core of UNIQUE project

Figure 2. Newly developed Al₂O₃ based catalytic filter candle of catalytic layer design of the dimension 60/40 x 1500 mm

Figure 3: 8 MWth biomass CHP plant Güssing

Figure 4: 1 MWth UNIQUE prototype DESCRIPTION OF THE MAIN S & T RESULTS/FOREGROUNDS

Table 1: Olivine, 10% Fe/olivine and 3.9% Ni/olivine activity in toluene (T) or methylnaphthale	ene
(1-MN) steam reforming in complex gas mixtures (T = 825° C) (tars: 30 g.Nm ³).	

		Conversion	V _{H2}	Dry product distribution (%vol)				
Samples	Tar	(%)	$(mol_{H2}/h/g_{cat})$	H ₂	СО	CO ₂	CH ₄	
Initial composition				35.0	34.5	17.5	10.0	
olivine	Т	36.9	0.010	39.5	31.8	20.0	9.4	
	1-MN	4.9	0.002	34.4	34.6	21.6	9.5	
10%Fe/olivine	Т	90.1	0.080	47.5	28.0	19.7	4.8	
	1-MN	37.6	0.005	39.3	36.0	14.8	10.6	
3.9 Ni/olivine	Т	90.4	0.080	48.8	31.1	20.0	0.1	
	1-MN	39.8	0.007	37.2	35.3	18.8	8.7	

Table 2: Overview on experimental units and experimental aspects

	bench-scale unit	pilot plant scale unit	DCFB system
reference materials	silica sand,	silica sand, olivine	olivine
	olivine		
		model gas mixture	
process parameter	temperature,	temperature, steam/fuel ratio,	
variation with Fe-	steam/fuel ratio	solid inventory, mixture	
olivine		(olivine/Fe-olivine), l _{Riser}	
Sorbents	not applicable	sulphur, alkali	-

Gasification Silica sand Olivine Fe-olivine Temperature (°C) 800 800 750 850 750 800 850 Tar content 16.8 8.3 5.5 7.8 5.5 3.7 2.7 (g/Nm_{db}^3)

Figure 3: Example of the tars produced for different bed materials

Table 3: Brief summary on experiments at pilot scale								
Gas composition in [vol% _{db}]	H_2	CO	CO_2	CH_4	tar [g/Nm ³ _{db}]			
Silica sand	~ 35	~ 34	~ 14	~ 11	10 – 11			
Olivine	~ 40	~ 19	~ 25	~ 9	~ 7			
Fe-olivine	37 – 38	23 - 24	23 - 24	~ 8	2 - 3			

bla 2. Briaf • at pilot cool .

Figure 4: Photographs of the catalytic filter elements of fixed bed design tested at the CSIC.

Figure 5: Effect of filter on tar recovered.

Figure 6: P & I flow sheet of the filter candle test module

Table 4.	Dagian one		data
1 able 4	Design and	I DROCESS	(lala
1 4010 1.	Dobigii uno		uuuu

Volume flow over filter	4.5 – 5 Nm/h	Filter candle	length: 1520 mm
candle/face velocity:	$60 \pm 5 \text{ m/h}$	dimensions:	diameter: 70 mm
Back pulsing:	nitrogen, at 400 °C,	Pipe system:	trace heating up to
	time controlled: 20		500 °C
	min. interval		

Filter candle notation	Design
DeTarCAT FB	Silicon carbide based filter candle with fixed bed design (Ni-
	catalyst)
DeTarCAT CL	Silicon carbide based filter candle with catalytic layer design (Ni-
	catalyst)
DeTarCAT CL-Al	Al ₂ O ₃ based filter candle with catalytic layer design (Ni-catalyst)

Figure 7: Progress of process parameters during test run with DeTarCAT CL-Al

vol% _{db}	O ₂	N ₂	CH ₄	C ₂ H ₄	C ₂ H ₆	CO	H ₂	CO ₂
raw	0.3	1.7	10.4	3.5	0.3	18.7	42.9	26.2
clean	0.3	4.3	7.7	0.5	0.1	18.8	43.7	24.4

Table 6: Gas composition, raw and clean gas, DeTarCAT CL-Al

Figure 8: Plant layout including the filter system.

Figure 9: Performance of the SOFC cell fuelled with the syngas from the O_2/H_2O blown biomass gasifier under 0.25 A/cm² electric current load during the tests at ENEA Trisaia Research Centre.

Figure 10: The effect of 1.5 ppm H₂S on the performance of the anode supported SOFC cell fuelled with the 47.5%H₂+47.5%N₂+3%H₂O gas at 750 °C. Dotted lines – linear fit for the selected regions of cell performance response to H₂S introduction to fuel stream (at 10³ min.)

