

Figure 1 Project development flow-chart from initial concept to full-scale commercial deployment, showing environmental considerations (top), engineering assessment (middle) and economic assessment (bottom)

Table 1 The EquiMar protocol numbering system

I	Environmental	
I.A		Resource Assessment
I.B		Impact Assessment
II	Engineering	
II.A		Tank (controlled environment) Testing
II.B		Sea (uncontrolled environment) Trials
II.C		Large Scale (multi-MW) Deployment
III	Economic	
II.A		Project Assessment

Technology	TRL Definition	Description					
Readiness							
Level TRL 1	Basic principles observed and reported	Scientific research beginning to be translated into applied R&D. Initial proposal of concept derived from observations of					
TRL 2	Technology concept and/or application formulated	physical principles Paper and analytical studies of technology applied in marine environment					
TRL 3	Analytical and experimental critical function and/or characteristic proof of concept	Active research and development is initiated, including analytical studies and laboratory tests / tank tests to physically validate the analytical predictions. Parts of the system may be representatively tested, such as the use of discs instead of rotors, or orifice plates instead of air turbines					
TRL 4	Component and/or system validation in laboratory environment	The basic technological components are integrated at the laboratory scale to establish that the pieces will work together. The outputs should be analyses of how the experimental test results differ from the expected system performance goals					
TRL 5	Laboratory scale, similar system validation in relevant environment	System tested at laboratory scale in a range of relevant environments. The outputs should include behavioural studies and comparisons with analytical results.					
TRL 6	Engineering/Pilot scales, similar (prototype) system validation in relevant environment	Engineering scale models tested in a relevant environment. Outputs should include a comparison between the predicted analytical results and the results from the trials					
TRL 7	Full-scale, similar (prototype) system demonstrated in relevant environment	Demonstration of system operating in relevant environment, such as full scale prototype operating for a number of months and developing and improving operating procedures and settings					
TRL 8	Actual system completed and qualified through test and demonstration	The technology has been proven to work in its final form and under expected conditions, such as with a full scale prototype in similar configuration to the final machine operating for a number of years to demonstrate continued operation and reliability					
TRL 9	Actual system operated over the full range of expected conditions	The technology is in its final form and operated under the full range of operating conditions, in a multi-device array configuration as for the nine technology readiness levels					

Table 2 Definitions and descriptions for the nine technology readiness levels

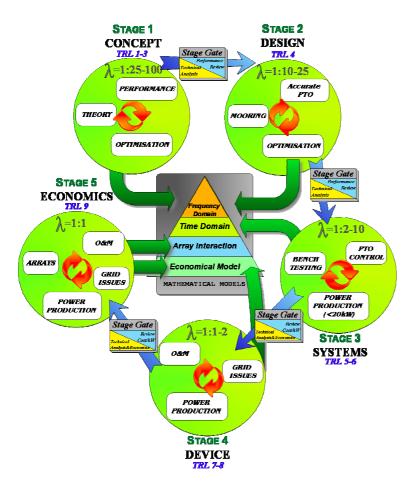


Figure 2 Engineering assessment of technology

Table 3: Specific Objectives of the Work Packages

WP	Objectives
1	- To analyse results from previous National, European and International activities in the field
	of pre-normative research for marine energy
	- To identify lessons learnt from other sectors, which can be applied to produce harmonised
	testing, and assessment of marine energy extraction devices.
	- To understand and take account of explicit stakeholders' needs and practical constraints for
	matching different system designs to various marine environments.
2	- To establish and apply methodologies which characterise the nature of the local sea states
	and of tidal levels and streams at device deployment locations, to underpin resource
	assessment at a site-specific scale.
	- To produce protocols which guide the industry in the use of physical and numerical methods
	for resource assessment allowing fair comparison between both sites and device types.
3	- To deliver common practices for the computational assessment of conceptual device
	performance; and procedures for undertaking tank testing of small prototype ocean energy
	devices.
4	- To establish standard monitoring approaches, best practice sea trial techniques and agreed
	analysis and presentation methodologies.
5	- To deliver protocols which provide guidance for developers - prior to deployment - on how
	to integrate their device designs into farms or arrays on a multi-megawatt scale
	- To provide standardized methods for assessing the performance of the arrays or farms as a
	whole.
6	- To develop a common framework regarding environmental impact assessment issues in order
7	to produce Best Practice Protocols.
/	- To develop a framework for evaluating the long-term economic viability of marine energy
	technologies To review the main drivers of cost of electricity generated by marine energy farms
	- To develop methods for quantifying long-term cost-reduction of alternative generating
	technologies which evaluate cost drivers for civil engineering infrastructure for several device
	types, explore the relationship between device performance limitations and long-term revenue,
	and describe procedure for comparing technologies in terms of their scope for cost reduction
	- To evaluate influence of technology selection and deployment scale on economic viability.
8	A set of protocols for methods of assessment in five key areas of marine renewable
	development will be established. This WP will synthesise past knowledge, new research and
	the needs of the industry and government to produce:
	1. A review of stakeholder perception of the requirement and content of protocols
	2. Protocols for: (i) Physical environment assessment (wave and tidal), (ii) Device
	performance assessment (wave and tidal), (iii) System and component reliability assessment
	(generic for both technologies), (iv) Economic assessment (wave and tidal), (v) Environmental
	assessment (wave and tidal)
	3. A critique of how these can be combined to provide an assessment of the suitability of
	different technologies matched to specific sites.
9	- To increase public awareness of Ocean Energy through the news media and to increase
	understanding of the benefits, environmental and economic impacts of this emerging industry.
	- To engage with the Ocean Energy Community.
	- To present the final project outcome, the EquiMar protocols, to the wider ocean energy
	community.

Diagrams from Description of Work Performed and Main Scientific and Technical Results

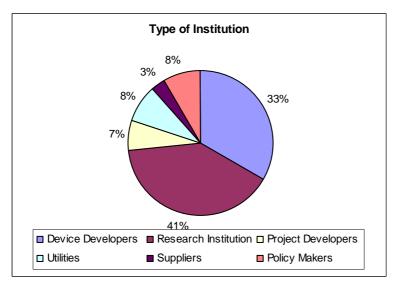
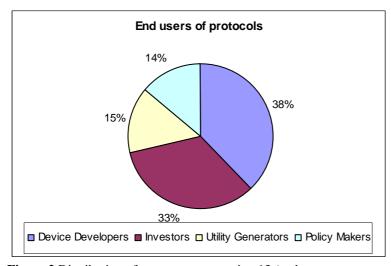



Figure 1 Distribution of responses to question A (type of organisation of the respondent)

Figure 2 Distribution of responses to question 13 (end users of the protocols

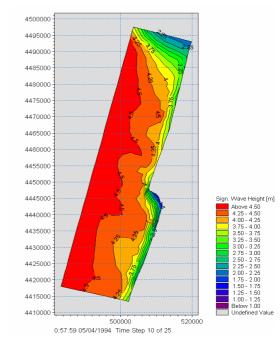


Figure 3 Wave modelling at Figueira da Foz, Portugal

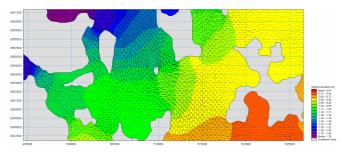
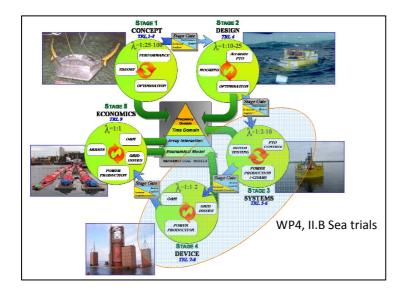
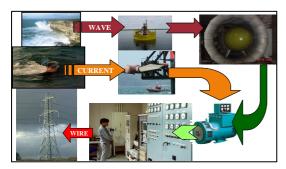



Figure 4 Tidal modelling for Orkney

Table 4 Resource assessment requirements


				Early	Development			Operation		
		Modelling	Measurement	Resource Characterisation '	Engineering Design	Site Assessment	Operational Planning	Level of Resource	Ongoing Operation & Maintenance	Prediction & Tuning
Summary statistics		•	•	✓	✓	✓	✓	✓	1	
Spectra	Directional	•	•		✓	✓		✓		✓
	Non- directional	•	•		✓	✓		~	✓	✓
Elevation	Directional		•		✓					✓
Time series	Non- directional		•		✓					✓
Extremes		•			~	\				
Long-term temporal variation		•		✓		✓				
Mean and maximum • currents		•	~	~	>	✓		1	~	
Tidal level •		•	•	~	~	>	✓		/	
Wind (model input) •		•	•	✓		>	✓		/	✓

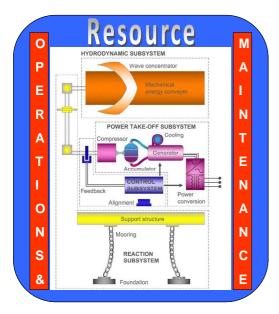

Figure 5 Structured Development Programme for a Wave Energy Device.

Figure 6 to accomplish the development process a device must progress through 3 phases

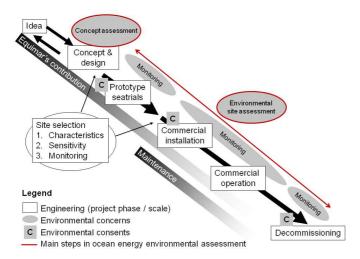

Figure 7 depicts the various energy conversion stages that occur in typical wave and tidal machines and clearly shows the multi-disciplinary nature of the two technologies

Figure 8 each type of converter, WEC or TEC, split into sub-systems representing each of the energy conversion phases

Fig. 9 – Fish collision with turbine blades: the probability of collision evasion for fish length 30 cm.

 $\textbf{Fig. 10}-S cope \ and \ time \ line \ of \ the \ environmental \ assessment \ throughout \ wave \ and \ tidal \ project \ phases.$

Fig 11 EquiMAR Workshop at ICOE 20010, Bilbao

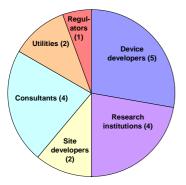


Fig 12 Stakeholders who responded to the questionnaire.

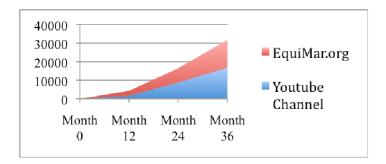


Table 2: Hits on the EquiMar.org and the YouTube Channel over the duration of the project.

Fig 13 BBC Wildlife Magazine September 2009