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Figure 1: scheme of the multifactorial process leading to sarcopenia
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Figure 2.1. The association between different diagnostic criteria of sarcopenia and whole body bone mineral density (BMD) in young men
(a), old men (b), young women (c) and old women (d). ALM in percentage is the appendicular lean mass as percentage of body mass. ALM
percentage, ALM/height2 (kg/mz), knee extension torque (Nm) and walking speed (m/s) are presented in country, sex, and age group
specific tertiles. Bars represent the adjusted means and s.e. P values were calculated with linear regression models with adjustments for

age and country. *=p<0.01. **=p<0.001.



Young Old P-value

(n=182) (n=322)
Age (years) 23.4(2.9) 74.4 (3.3) <0.0005
Females, n (%) 96 (52.7) 161 (50.0) 0.554
Living with partner, n (%)° 40 (26.8) 173 (64.8) <0.0005
Highly educated, n (%)b 134 (87.6) 119 (44.6) <0.0005
Anthropometry
Height (m) 1.73 (0.09) 1.67 (0.09) <0.0005
Body mass (kg) 68.7 (12.3) 71.6 (12.7) 0.014
Body mass index (kg'mz) 22.8(3.0) 25.6 (3.3) <0.0005
Lifestyle
High alcohol use %, n (%) 22 (12.1) 28 (8.7) 0.221
Current smoking, n (%) 24 (13.2) 14 (4.3) <0.0005
Comorbidities
Number of diseases, median (IQR) 0 (0-0) 1(0-1) <0.0005
Number of medications, median (IQR) 0(0-1) 1(0-3) <0.0005
Mental state
MMSE score (points), median (IQR) 30 (29-30) 29 (28-30) <0.0005
GDS score (points), median (IQR)OI 0(0-1) 1(0-2) <0.0005
Diagnostic criteria for sarcopenia
Lean mass percentage (%) ° 72.8 (9.1) 66.6 (8.3) <0.0005
ALM percentage (%)f 33.1(4.7) 28.6 (4.1) <0.0005
ALM/height? (kg/m?) 7.5(1.3) 7.2(1.1) 0.013
Total lean mass (kg) 50.1 (11.4) 47.4 (9.9) 0.008
Knee extension torque (Nm) & 196.6 (69.6) 126.5 (46.0) <0.0005
Handgrip strength (Kg) ® 42.3(12.3) 33.1(9.6) <0.0005
Physical performance
TUG (s) " 4.85 (0.91) 6.24 (1.16) <0.0005
Walking speed (m/s) 1.85 (0.30) 1.49 (0.23) <0.0005
One-leg balance with eyes open (sec), median (IQR) ¢ 30.0 (30-30) 30.0 (15-30) <0.0005
One-leg balance with eyes closed (sec), median (IQR)®  30.0 (20-30) 4.0 (2-6) <0.0005

Variables are presented as mean (standard deviation), unless indicated otherwise. For strength and performance
measurements the best effort has been used for analysis. Independent samples t-tests were used to assess
differences between young and old. ® Data available in n=416. ® Data available in n=420. © High alcohol use defined
as for males > 21 units/week and females > 14 units/week. 94 Data available in n=411. ® Total lean mass as
percentage of total body mass. fALM (appendicular lean mass) as percentage of total body mass. & The highest
value from the duplicate measurements has been used for analysis. & The fastest time from the duplicate
measurements has been used for analysis. MMSE: mini mental state examination. GDS: geriatric depression scale.

TUG: Timed Up and Go test.

Table 2.1: Participant characteristics, stratified by age (n=504).



ALM  ALM/ht2 QVol Q:Bone MVC MVC/BM Power Power/BM
YF &e6MWD| 0.034 0 0.007 0.018 0.003 0.011 0.139 0.004
TUG| 0.024 0.011 0.206 0.003 0.156 0.012 0.073 0.116
OF oMWD| 0.039 0.029 0.122 0.021 0.134 0.128 0.221 0.409
TUG| 0.017 0 0.078 0.026 0.081 0.088 0.179 0.338
¥YM eMWD| 0.035 0.0237 0.04 0.001 0 0.034 0.01 0.025
TUG 0.01 0.011 0.313 0.109 0.131 0.076 0 0.022
oM oeMwWD| 0.118 0.052 0.009 0.003 0 0.055 0.057 0.284
TUG| 0.122 0.177 0.002 0.001 0.083 0.001 0.195 0.097

Young female (YF); old female (OF); young male (YM); old male (OM). Significant relationships shown in red text.

Table 2.2. Mobility in relation to muscle size and function.



Figure 2.2. Magnetic resonance images of the mid-thigh. A young man is shown in A (age 24 yrs, with quadriceps muscles
highlighted), an older man is shown in B (aged 80 yrs). All muscles were visibly smaller in the thigh of the older man, and
also typical of ageing is the increased adipose tissue.

Modified from McPhee et al 2013., Biogerontology



12.001

10.007 7

8.001

6.001

4.00

2.007

Appendicular lean mass / height2

.00 T T I
25.00 50.00 75.00

Figure 2.3A. Appendicular lean Age sured using DXA and
normalised to height2 to estimate the prevalence of sarcopenia in
the MYOAGE cohort.

The green line represents men and the red line women. The solid
lines are the mean and the dashed lines are 2 standard deviations
below the mean of the young.

Only 5% of older participants were below the dashed line and
classified as sarcopenic
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Figure 2.3B. Quadriceps muscle volume measured using MRI and
normalised to femur volume to estimate the prevalence of
sarcopenia in the MYOAGE cohort.
The green line represents men and the red line women. The solid
lines are the mean and the dashed lines are 2 standard deviations
below the mean of the young.
74% of older men and 58% of older women were below the dashed
lines and classified as sarcopenic.
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lower specific tension (Po/csa) and lower velocity of shortening (Vo). Myosin concentration did not differ between young and
old.



1]

n 187
o
g 16 1 OYoung, n=5-6
° ®0ld, n=14-17
=9 1.4 1
c 121
:‘3
e 101
2 o8
s + ¥
(1] 0.6 1 *
e
r.u
Q041
£
% 024
8 00

FAK FRNK Gamma-  Meta Tenascin-C

VINCULIN

Figure 2.6. Costameric proteins in young and older muscles. Cross indicates significant difference between groups.



Sex

<
.g 250~ o o female
E o = male
L
I o
§g 200 Coo
oV
22 .
22 1507 e
:E
e
S 100
=
E ©
e
@ 50
E
'—
Y | T T T

Age (years)
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Figure 2.8. Older and young people showed similar fatigue after 60 brief intermittent contractions.
Women fatigued less than men.



OYoung, n=6
m0ld, n=17

fiaiesa R A

OOk =t NN W0 fe
ocnmouvmomownmowmo
1

COl coll col cov Tenascin-C

protein expression per skeletal alpha actin
[young =1]
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Figure 2.10. Achilles tendon and young’s modulus were lower in old compared with young.
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Medial gastrocnemius fascicle length:
Bmwt =0.304, p=0.034

6mwt r=0.392, p=0.005
TUG =-0.302, p=0.035

Soleus fascicle length:
Gmwt r=0.322, p=0.024

Achilles tendan stiffness:
6mwt r=0.507, p<0.001,
TUG r=-0,383, p=0.007

Atarﬂexlon MVC farce:
Grrowt =0.488, p<0.001
TUG r=0.427, p=0.002

Figure 2.11. Association between characteristics of the lower leg and mobility.
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Figure 3.2 Aged satellite cells although are able to proliferate (A), display a delayed response to activating stimuli
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serum (D).
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Figure 3.3. Schematic representation of pathologic alterations associated with aging, which create an hostile
microenvironment that in turn affects the activity of stem cells.
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Figure 4.2. |GF1 isoform distribution and S6 phosphorylation differ in skeletal muscle from very old (800-
day-old) mice compared to adult (200-day-old) animals. (A) Skeletal muscles from very old mice show a
difference in IGF-1 isoform expression, with significant reduction in Ea and Eb C-terminal E peptides. (B)
Increased S6 phosphorylation in muscles from very old mice points to increased mTOR-S6K activity during
ageing. (Sandri et al, Biogerontology 2013).
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Figure 4.3. Muscle-specific knockout of the autophagy gene, Atg7, causes muscle atrophy (A), reduced muscle
force (B), accumulation of protein aggregates visualized by p62 immunofluorescence (C), and accumulation of
abnormal mitochondria with aberrant membranous structures visualized by electron microscopy (D). These
findings indicate that the autophagy flux is important to preserve muscle mass and maintain myofibre

integrity, whereas the inhibition of autophagy leads to myofibre degeneration and weakness (Masiero et al,
Cell Metab 2009).
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Figure 4.4. The scheme illustrates a novel concept in muscle growth regulation, which emerged during the last
phase of activity of WP4. We found that muscle mass is controlled by the balance between myostatin
signalling, acting as a negative regulator of muscle growth, and BMP signalling, acting as a positive regulator of
muscle growth. Both myostatin and BMPs are TGF-R ligands and bind to type | receptors, such as activin
receptor 2 (ACVR2) or bone morphogenetic protein receptor 2 (BMPR2), which in turn recruit type Il
receptors, such as ALK4 or ALK3. Active receptor complexes formed upon myostatin or BMP binding induce
the phosphorylation of Smad 2/3 or Smad1/5/8, respectively. Phosphorylated Smad2/3 or Smad1/5/8 bind in
turn to Smad4 and the heterodimers translocate to the nucleus and activate target genes, which differ
between the two pathways and lead to opposite effects on muscle mass: activation of the myostatin pathway
leads to muscle atrophy, while the activation of the BMP pathway leads to muscle hypertrophy. The analysis
of these pathways is complicated by the existence of multiple ligands (myostatin-like factor, such as activin A,
and multiple BMPs) and antagonistic factors (myostatin antagonists, such as follistatin, and BMP antagonists,

such as noggin). (Sartori et al, Nature Genet, in press).
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Figure 4.5. A. Inhibition of the BMP pathway leads to muscle atrophy. Muscles transfected with Noggin (BMP
antagonist) show decreased myofibre size. B. Activation of the BMP pathway induces muscle hypertrophy. Intra-
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adult mouse muscles and prevents muscle atrophy after nerve section. (Sartori et al, Nature Genet, in press)
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Figure 5.2. Comparison of the effects of TNF-a, IL-1B and IL-6 on respiratory parameters of the myogenic cells of the old
and young persons cultured either in the presence of ITS (control, +ITS) or ITS and one of three cytokines. The
respiratory parameters were normalized on protein.
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Figure 5.3. Comparison of the effects of TNF-a, IL-1B and IL-6 on respiratory parameters of the myogenic cells of the old
and young persons cultured either in the presence of ITS (control, +ITS) or ITS and one of three cytokines. The respiratory
parameters were normalized on the content of citrate synthase (CS).
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Data mining of the expression proteomics analysis
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Figure 6.2. |dentification and data mining of modified
proteins. A) Venn diagram depicting the distribution of
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Analysis. The bars represent the biological functions
identified, named in the x-axis. The dotted line
represents the threshold above which there are
statistically significantly more proteins in a biological
function than expected by chance.

B myofibril

B myosincomplex

W cyloskelelon

M cylosol

m 7 disc

W sarcomerg

Figure 6.3. Anomalous protein accumulation in Atrogin-1 knock-out mice.SILAC-based proteomics showed

anomalous accumulation of proteins from different cellular compartments in adult Atrogin-1 KO.

28



Figure 7.1 The 1% on Tor, caloric restriction and anabolism in ageing periodic Workshop was organised in Split from
September 22™ to 25" 2010.

Figure 7.2 The 2nd periodic Workshop on Muscle Mass Regulation was organized in Acaya, near Lecce, Italy from September
23" to 25" 2011.
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Figure 7.3 The 3" periodic Workshop on Inflammation and ECM remodelling in Ageing was organised in Barcelona, Spain
from December 1% to 2™, 2011.

Figure 7.4 Last workshop in the serie, the 4" periodic Workshop entitled The aging human muscle: An integrated machinery
was organised in Copenhagen, Denmark from August 30" to 31%, 2012.
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Figure 7.5 MYOAGE participation to the EMC meeting in Rhodes September 1°* to 5" 2013
A- Prof. Stefano Schiaffino (VIMM) giving the opening keynote presentation to the EMC participants

B- Dr. Gillian Butler-Browne (Inserm) and Prof. Marco Narici (MMU) chairing the muscle aging session
C-Dr. Gillian Butler-Browne opening the ageing muscle session at the EMC

D- the MYOAGE WP leaders ready to answer the questions following their presentations. From left to right: Pr. Claudio
Franceschi, Pr. Marco Sandri, Pr. Sarianna Sipild, Pr. Roberto Bottinelli, Pr. Antonio Musaro and Pr. Bertrand Friguet.
E- Group photo of the EMC 2012 Participants including MYOAGE members.
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Table 1 Quadriceps MV C, voluntary activation capacity, PCSA and specific force and baseline, post-ULLS and post-RT. Data are

mean £+ SEM

ULLS (n = 8) Control (n=8)

Baseline 3 weeks post-ULLS 6 weeks post-RT Pre Post
MVC 299 + 14 221 £+ 14%* 291 + 1477 311 £ 21 294 + 26
VA 87 £ 35 83 +£35 88+ 3 - -
EMGrumsm-wave 0.073 £ 0.02 0.0614 £ 0.02 0.073 + 0.02 0.070 £ 0.01 0.070 £ 0.01
PCSA 2086 203 £ 8 218 £ 14 199.98 &+ 18.0 202.66 £ 21.7
SF 32+2 24 + 1* 35 + 37 380+ 44 371 £63

* Significantly different from baseline; p < 0.05; ** significantly different from baseline p < 0.005; T significantly different from
post-ULLS p < 0.05; T significantly different from post-ULLS p < 0.005

Relative change from baseline (%)
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