
ESL_STR

Final Report

ESL_STR FINAL SUMMARY REPORT

Nikolaos Bellas

Department of Computer and Communication Engineering

University of Thessaly, Volos, Greece

Email: nbellas@inf.uth.gr

Web: http://inf-server.inf.uth.gr/~nbellas/

The problem of automatically generating hardware modules from a high level representation of

an application has been at the research forefront in the last few years. The challenge is to close the

“architectural gap” between the formal specification of a platform system and its architectural

synthesis and final implementation. Such a methodology would potentially enable the large pool of

software engineers and algorithm IP experts without architectural and hardware expertise to design

and implement platform systems, thus dramatically reducing time to market and increase

productivity.

ESL_STR project produced an end-to-end CAD tool that utilizes concepts of the stream and data-

parallel paradigms to generate synthesizable co-processors targeting a commercial platform SoC

FPGA. We used OpenCL, an industry supported data-parallel programming standard for writing

programs that execute on heterogeneous platforms and accelerators comprising CPUs, GPUs and

other forms of accelerators. Our architectural synthesis tool, dubbed SOpenCL (Silicon OpenCL),

adapts OpenCL into a novel hardware design flow which efficiently maps coarse and fine-grained

parallelism of an application onto an FPGA reconfigurable fabric.

SOpenCL objective is to allow a software programmer to develop an OpenCL application once,

and deploy it on any platform, without the need for modifications. The tool consists of a two level

compilation process: High Level Compilation (HLC) and Low Level Compilation (LLC). The high

level compiler processes an OpenCL application and partitions its kernels as appropriate across the

available computing platforms (CPU, GPU, and FPGA). The low level compiler processes OpenCL

kernels selected to run on FPGA platforms. The task of the LLC is to compile an OpenCL kernel,

and generate an equivalent hardware design that fits the target FPGA device and fulfills

performance requirements. SOpenCL tool infrastructure also provides runtime environments for

each of the target platforms to facilitate their integration and the execution of OpenCL kernels. The

target architecture consists of a general purpose processor and an application-specific accelerator

connected to the processor through an interconnect bus (Figure 1).

Our experimentation with a variety of OpenCL and C kernel benchmarks also reveals that area,

throughput and frequency optimized hardware implementations are attainable using our

methodology. The experimental evaluation showed that our methodology generates fast, area

efficient and highly structured hardware accelerators even in the case of complex kernels. Our

compiler exploits the structure of OpenCL kernels to generate reconfigurable data path and stream

units that match the characteristics of the application and the user requirements in terms of

throughput and area limitations.

For example, SOpenCL was used to quickly implement complex algorithms such as Low-

Density Parity-Check (LDPC) decoders used in modern communication systems. OpenCL was used

as a common programming model for developing parallel kernels on multicore CPUs, GPUs and

FPGAs without code readjustment or hand tuning across different parallel platforms. In this context

SOpenCL allows code portability across different multicore platforms at no extra programming

effort or particular need of code hand tuning interventionn

mailto:nbellas@inf.uth.gr

ESL_STR

Final Report

The main target objective of ESL_STR was to investigate the applicability of a single

programming representation of an application to be ported both in a heterogeneous platform

consisting of fixed architectures, and also as hardware accelerator in a reconfigurable platform.

Using OpenCL as a programming abstraction for heterogeneous platforms consisting of both fixed

and reconfigurable architectures promises to place novel technologies like FPGAs at the forefront

of mainstream and high performance computing.

L1 $

L2 $

SCP

Interconnect Bus

HW ACC

Inp.Stream

Units

Out. Stream

Units

Data Path

Main Memory

Figure 1. The target System On Chip design. SCP stands for Scalar Processor.

