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Hardware performance counters are hardware-resident counters that record
various events occurring on a processor. Todays general-purpose CPUs in-
clude a fair number of such counters, which are capable of recording events,
such as the number of instructions executed, the number of branches taken,
the number of cache hits and misses experienced, etc. To activate these coun-
ters, programs issue instructions indicating the type of events to be counted
and the physical counters to be used. Once activated, hardware counters
count the events of interest and store the counts in a set of special purpose
registers. These registers can then be read and reset programmatically at
runtime.

Hardware performance counters have been traditionally leveraged to per-
form low-level performance analysis and tuning of software systems. In this
project, we, on the other, hand use them in a novel way, exploiting them as
an abstraction mechanism for program executions.

Many data-driven program analysis approaches have been proposed in the
literature. These approaches instrument the source code and/or binaries of
programs, collect execution data from program executions every time the in-
strumentation code is exercised, and analyze the collected data, often referred
to as program spectrum, to help shape future software development efforts.

Many types of data-driven approaches operate by comparing program exe-
cutions. Program spectra are collected from a number of program executions,
models that capture the patterns in these executions are inferred by using the
program spectra collected, and similarities to these models and/or deviations
from them are used to improve software quality.

A fundamental assumption of these and similar approaches is that there are
identifiable and repeatable patterns in program executions and that similari-
ties and deviations from these patterns can be used to perform many quality
assurance tasks.

One common theme in program spectrum-based approaches is that, in order
to compare program executions, these approaches need to abstract away
many details. This is due to the fact that a program execution is a complex
event, which can be considered to be a sequence of state transformations each
of which comes to existence as a result of complex interactions between many
factors. Therefore, it is genuinely hard to find the right level of abstraction
for program executions.

In general, it is possible to collect detailed information at runtime to come
up with better abstractions. However, the overhead cost both in terms of
the time overhead required to collect the spectra and the space overhead
required to store them often makes it impractical. Even if the runtime cost



is manageable, it is often unclear what to collect and how to analyze such
large amount of heterogenous information to identify meaningful patterns
in program executions.

In this project we conjecture that the execution data collected from hardware
performance counters (hardware-based program spectra) can be used to capture
certain types of patterns in program executions in an unobtrusive manner.
Note that since using hardware performance counters pushes substantial
parts of the data collection task onto the hardware, it helps reduce the run-
time overhead.

In this project, to test our conjecture, we developed a number of various
quality assurance approaches using hardware-based program spectra and
evaluated the proposed approaches by conducting large-scale experiments
on open source widely-used subject applications. We furthermore compared
the performance of hardware-based program spectra to that of traditional
software instrumentation-based program spectra (software-based program spec-
tra).

In [8], [9], [7], we developed an approach for fault detection to distinguish
failed program executions from successful executions in an offline manner
(i.e., after the executions have terminated). In [3], we developed an approach
to cluster program failures such that failures that stem from the same or
closely related causes are grouped together, facilitating program debugging.
In [6], we developed an approach for fault localization to reduce the space of
possible root causes for failures, which can in turn reduce the turn-around
time for defect fixes. In [2], [4], we developed a lightweight runtime failure
prediction approach to predict the manifestation of failures at runtime before
they actually occur (i.e., on-the-fly while the program is running). In [5], [1],
we developed an approach to identify likely causes of information leakage
that can can be exploited in side channel attacks. In [10], we developed an
approach to identify “spy” processes that attack cryptographic applications
to reveal the secret keys processed by these applications.

In all these studies, one technical challenge we faced was that hardware
performance counters are hardware-resident counters. Therefore, they do not
distinguish between the instructions issued by different processes. In this
project, we dealt with this by using virtual hardware performance counters
that can track hardware events on a per-process basis. Virtual hardware
performance counters are typically implemented by operating systems.

A related challenge was that hardware performance counters have limited
visibility into the programs being executed, e.g., by themselves they do not
know, for example, to which program function the current instruction be-
longs. Therefore, raw hardware performance counters-based spectra are gen-
erally too coarse to be useful. In this project, we dealt with this by associating
counter values with code segments in programs. For example, in [8], [9],
[7], we associated counter values with functions. In [2], [4], we not only
associated counter values with functions, but also itemized the counter value
associated with a function to reflect the number of events occurred in the
body of the function as well as in each callee. In [1], we associated counter
values with arbitrary code segments in the program. In [10], we associated
counter values with time intervals during which the CPU is allocated to a
particular process.



We also observed that hardware-based program spectra are not as flexible
as software-based spectra. At the end, a hardware performance counter is
a simple counter counting the number of low-level events occurring on the
CPU. It is not possible to programmatically extend the capabilities of these
counters or to programmatically develop new counters. Yet, they can count
events that may not be counted with traditional software-based instrumen-
tation, such as the number of misses/hits in data and instruction caches, and
the number of pipeline stalls and flushes.

Furthermore, hardware performance counters provide an unobtrusive means
(to the extend possible) of collecting information from inside program execu-
tions. In a study, we observed that it takes only 45 clock cycles on average to
read the value of a virtual counter on our test platform [8]. Note that even
though the cost of reading counters is low, the cost is paid each time the
counters need to be read. Therefore, this fact should be taken into account
when designing new hardware-based program spectra.

Due to these limitations, hardware-based program spectra may not be suit-
able for all types of quality assurance tasks.

However, despite these limitations, for the quality assurance approaches
developed in the project and the hardware-based program spectra, software-
based program spectra, subject applications, defects, and test cases used in
the experiments, the results of our experiments strongly support our basic
hypotheses:

1) There are identifiable and repeatable patterns in program executions,
2) Hardware-based program spectra can reliably capture these patterns

at a lower runtime overhead, compared to traditional software-based
program spectra,

3) Identifying similarities to these patterns and/or deviations from them
can help quality assurance tasks improve software quality.
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