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WP1 Phenotypes of DCM subtypes
Figure.1.1

Kaplan-Meier Event-Free Survival From Date
of First Visit to Cardiologist

Kaplan-Meier event-free survival stratified by
3 independent risk factors (RF): nonsustained
ventricular tachycardia, left ventricular
ejection fraction <45% at the first visit to the
cardiologist, and being male. Event:
occurrence of malignant ventricular
arrhythmias, defined as appropriate
implantable cardioverter-defibrillator
treatment, cardiopulmonary resuscitation, or

sudden cardiac death.

Kaplan-Meier Event-Free Survival All 4 Risk Factors
Kaplan-Meier event-free survival stratified by 4
independent risk factors (RF): nonsustained
ventricular tachycardia, left ventricular ejection
fraction <45% at the first visit to the cardiologist,
being male, and non-missense mutations (ins-
del/truncating or mutations affecting splicing). Event:
occurrence of malignant ventricular arrhythmias,
defined as appropriate implantable cardioverter-
defibrillator treatment, cardiopulmonary resuscitation,

or sudden cardiac death.
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Figure. 1.2

SD Primary prevention in DCM, NYHA classes II-lIl, on OMT for at least 3 months,
with survival expection >1 year, and absence of important comorbidities

TWA abnormal or LGE-CMR fibrosis Waiting for a further study including:

TWA, LGE-CMR, genetic tests, others?
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Figure 1.3

Kaplan-Meier Event-Free Survival and Cum Inc | Kaplan-Meier Event-Free Survival and Cum Inc
for Competing Events for Competing Events

Kaplan-Meier event-free survival curve for the Cumulative incidence (Cum Inc) for the
combined event of death and heart transplantation | competing events of death and HTX.

(HTx). The number of patients at risk is reported | Cumulative incidence (Cum Inc) (95%

at the bottom of the figure immediately above the | confidence interval [CI]) at the end of the
X-axis. follow-up is reported for each outcome.
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WP2 Genetic testing
Figure. 2.1
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Figure. 2.1 : Variability in 454 sequence coverage. Total read coverage (redundant and non-redundant) is
plotted at each mtDNA position (1 to 16569) and graphed as a continuous thin grey trace for each case
(different shades for each case). The mean coverage for all 20 cases is represented by a thick dark black
trace. The shape of the traces shows coverage variability both between cases and along the same mtDNA.
The black horizontal lines (A, B & C) above the graph represent the three mtDNA PCR fragments used for
454 sequencing. Greater coverage was noted in the regions in which the PCR fragments overlap compared to

coverage in non-overlapping regions.

Figure. 2.2

ont distrip,
o U’/o,)

w

‘Sweden.’
[ a9

France
92

mapping

indel
realigment

mark
duplicates

calling
variants

annotation

filtering
dbSNP

prediction

2
n
=
g
2
[
®
o

Patient

Figure. 2.2: The NGS plan in INHERITANCE.



Figure.2.3
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Figure 2.3: The figure shows the key phenotypical traits of the novel cardiomyopathy. (A) Surface ECG
with complete atrial standstill: bradycardic (39 bpm) junctional rhythm without atrial activity and narrow
QRS (patient A:V:1). (B) Giant atria are shown by ultrasound examination and by 3-dimensional cardiac
tomography (3DCT) imaging. On the left, the apical 4-chamber view of the patient A:1V:5. On the right,
3DCT reconstruction of the cardiac chambers24 of patient A:V:1. Colours inner surfaces of the districts are
shown in right posterior view. Right atrial (RA) and left atrial (LA) volumes are 744 and 426 mL,
respectively; left (LV) and right ventricular (RV) volumes are 138 mL and 252 mL, respectively (see online-
only Data Supplement Video). Pulmonary arteries (PA) and pulmonary veins (PVs) are shown at the top. (C)
Scars in the RA are shown by 3D voltage mapping (right anterior projection) in patients D:1V:2 (at the left)
and A:V:1 (at the right) with Brady—Tachy syndrome and complete atrial standstill, respectively. In the



former, the scar is localized at lateral wall, whereas in the latter, the scar is diffused (red colour indicates

voltages <0.05 mV).

WP3 Genome-wide association studies
Figure 3.1 - GWAS Paris
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Figure 3.1: Variants in BAG3 found in index patients with familial dilated cardiomyopathy (DCM). (A)
Genomic structure of the BAG3 gene. The four exons are presented as boxes (white for UTR, grey for
coding). Upper horizontal lines indicate sequenced regions. (B) BAG3 transcript with all missense and frame
shift variants positions identified in familial DCM cases indicated. The variants are classified as likely
disease causing (red), possibly disease causing (black), or probably neutral (green) as explained in the
Results section. *Indicates SNPs associated with sporadic DCM in the GWAS. All likely and possibly
disease-causing variants were found each in a single independent individual at the heterozygous state. The
electrophoregrams representative of heterozygous mutated (upper) and homozygous wild-type (lower)
sequences are shown for each DCM mutation. The arrows indicate the modified nucleotides and the
sequenced strand orientation. (C) Schematic representation of the BAG3 protein with referenced domain
signature according to UniprotKB database38 and dark grey boxes. The consequences of the DNA variants
in (B) are shown as resultant predicted amino acid changes with the same colour code. (D) The ClustalW

multiple alignments of orthologous BAG3 sequences from different species restricted to the immediate



vicinity of each missense variant (red boxes) with MAF > 5% is shown. Interspecies conservation is

indicated as blue boxes (dark blue: identical; light blue: similar; white: not conserved amino acid).

Figure 3.2 — GWAS Heidelberg
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Figure 3.2 : A manhattan plot of the genome-wide association study for dilated cardiomyopathy. Minus
log10 P-values based on an additive genetic model are shown for single nucleotide polymorphisms that
passed the quality control criteria for the screening cohort. Probability values were based on a logistic
regression model, which also included age and sex. The red line indicates the genome-wide significance
level of P = 1.7 x 10~ and the blue line indicates the suggestive significance level of P = 10,



Figure 3.3

miRNA expression levels correlate with disease miRNA expression levels correlate with disease
severity. Matrix plots visualize the correlation of severity. Matrix plots visualize the correlation of
miRNAs from the signature with cardiac systolic miRNAs from the signature with cardiac systolic
function and with NYHA functional class. MiR-622, | function and with NYHA functional class. MiR-622,
miR-520d-5p, miR-519e* and miR-200b* miR-520d-5p, miR-519e*, miR-200b*, miR-122*

significantly correlate with left-ventricular ejection | and miR-558 significantly correlate with left-
fraction (P < 0.05). No significant correlation could | ventricular ejection fraction (P < 0.05). No
be found between miRNA expression levels and the | significant correlation could be found between

corresponding NYHA class, although a trend can be | miRNA expression levels and the corresponding

observed. NYHA class, although a trend can be observed.
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WP4 Transcriptomics
Figure.4.1

Expression studies

Peripheral Blood RNA Myocardial RNA Protein expression in myocardial tissue samples
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Figure 4.1: The figure summarizes the flow chart of the research for quantitative expression of

LMNA in myocardial samples and in peripheral blood samples.
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Figure 4.2: QGELMNA Study (A to C) First part of the study: QGELMNA (2 ““* + SEM) in total RNA from
peripheral blood of 67 DCMLMNA"", 96 DCMLMNA"", and 115 CTRLLMNA"". (B) QGELMNA levels
did not vary in patients with different types of mutations, and (C)with mutations localized upstream or
downstream of the nuclear localizing sequence (NLS). (D) Second part of the study: receiver-operating
characteristic (ROC) curve analysis for the QGELMNA in the peripheral blood RNA from the 311
consecutive cases. At the threshold value with the highest sensitivity, the area under the curve (AUC) was
0.957 (p < 0.001). (E) Third part of the study: myocardial samples of DCMLMNAM" versus CTRLLMNA"T,
CTRL = normal control; DCM = dilated cardiolaminopathy; PTC = premature termination codon; QGE =

guantitative gene expression.

Figure. 4.3
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Figure. 4.3 : The panels shows the most striking results in dystrophinopathies in which
immunohistochemistry strongly supports the diagnosis (mut vs. WT); in cardiolaminopathies in which
immunohistochemisrty can contribute to suspect a mutation in LMNA (mut vs. WT); in cardiozaspopathies
(LDB3) and trpoponinopathies in which immunohistochemistry does not discriminate or show significant
difference of the expression of the protein in mutated and wild type control samples. The translational
impact of these results is therefore relevant for cardiodystrophinopathies and cardiolaminopathies but non-
contributory to cardiozaspopathies.

WP5 Proteomics & metabolomics
Figure. 5.1
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Figure. 5.1: Scores plot comparing aqueous metabolites detected by HILIC mode chromatography from
heart tissue from wild type and heterozygous mice (one group) with homozygous laminopathic mouse hearts
at the 5-week time point (model parameters R>X=41%, R?Y=93%, Q*=78%).
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Figure. 5.2: Histograms summarising the significant metabolic changes between the homozygous and the
combined group of heterozygous and wild type mice when analysed by HILIC chromatography. Standard

error bars are shown and Student’s t tests have been carried out (Key: * =p <0.05, ** =p<0.01, *** =p <

0.001, **** = p < 0.0001).

WP6 Animal models: zebra fish

Figure. 6.1
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Figure.6.1: Knockdown of PINCH1 or PINCH2 leads to cardiomyopathy and heart failure. (A to C) MO1-

pinchl- and MO2-pinch2-injected embryos develop pericardial oedema (*) and pericardial blood congestion

due to disturbed cardiac contractility. Lateral Views of MO-control-injected (A), MO1-pinchl-injected (B)
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and MO2-pinch2-injected (C) embryos at 72 hours hpf (v, ventricle; a, atrium). (D) After injection of MO1-

pinchl or MO2-pinch2, 88% and 75% of morphant embryos, respectively, develop heart failure. (E) FS of

the ventricular chambers of MO-control-, MO1-pinchl-, and MO2-pinch2-injected embryos measured at the

indicated developmental stages. FS is significantly reduced in PINCH mophants after 48 hpf and further

declines by 96 hpf.

Figure 6.2

A

recombinants LG 15 wild-type
in 2100 meiosis —oungee v
29p» 2p 1» 0 0«1 <2
I H i HIEH I
234586 i : P 223908
Zv6_scaffold2206 CATGCCTATCTG
* : : o * H A Y L
: bn
zpkd2 vg
T»A,
A—HHHHHH—H- ;. AT GCCAATCTS
5 3 H A N L
pkd2
48 hpf

Figure 6.2 :bng encodes protein kinase D2 (pkd2) and is expressed in the zebrafish atrioventricular canal

(AVC). A, Integrated genetic and physical map of the bng locus on zebrafish chromosome 15.

The bng mutation interval is flanked by the microsatellite markers 234586 and z23908 and encodes 2 open

reading frames, zebrafish pkd2 and an unknown protein (zgc:152692). The genomic structure of

zebrafish pkd2 (zpkd?2) is displayed at the bottom. The bng missense mutation (T—A) in the 17th exon

of zpkd2 is indicated. B, The bng missense mutation at cDNA position 2545 translates into an amino acid

exchange from tyrosine (T) to asparagine (N). An arrowhead marks the mutated base. C through E, Whole-

mount antisense RNA in situ hybridization of zebrafish pkd2 expression in the brain, gastrointestinal tract,

and AVC (black arrow) of the heart of zebrafish embryos at 48 hours after fertilization (hpf; C and D). E,

Detection of pkd2 in atrioventricular endocardial (AV en) but not AV myocardial (AV my) cells at 72 hpf by

whole-mount antisense RNA in situ hybridization of a sagittal section through the atrioventricular canal of a

zebrafish heart.
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WP7 Animal models: LMNA KO mice

Figure 7.1 LMNA
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Figure. 7.1: Embryonic and postnatal phenotypical characterization of the LMNAGT—/—mouse.

(A) LMNA promoter activity is visualized by p-galactosidase staining in LMNAGT+/— embryo's (E8.0, E9.0,
E11.0). LMNAGT+/— placental tissue is indicated by an asterisk.

(B) B-galactosidase stained LMNAGT+/—embryo E11.0 tissue section (7 pm) counterstained with Azo
Phloxine (magnification 2.5%), including a close-up image (magnification 5.0x) of the heart, the heart's
outflow tract (OFT), liver and dorsal aorta (D. Aorta).

(C) Macroscopical view of WT, LMNAGT+/—and LMNAGT—/- siblings 12 days post partum (PP12).

(D) Body weight over time graph (PP2-PP18). Asterisks indicate a significant difference for
LMNAGT—/—to LMNAGT+/—and WT littermates (N = 10, p < 0.05).

(E) Survival curves for all three genotypes (N = 10) during the first 3 weeks post partum.
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WHPS8 Structural studies

Figure. 8.1

Figure. 8.1: Docking model of the E358K mutant (the mutated residue is represented in purple)

Figure. 8.2

Figure.8.2: Crystal structures of E347K. View of the mutated region. Substituted residue is in red.
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WP9 Therapeutics and improvement of medical management
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Figure 9.1: Graphs of described echocardiographic measures over nine months in male Mypn K
mice of the three genotypes. Homozygous measures were generally significantly different to wild-
type at all time points across each of the variables shown, using 2-way ANOVA (p < 0.05 to 0.001),
and heterozygous values were often significantly different to wild-type values.

Over time, values for all three genotypes did not differ significantly — except for posterior wall
systolic thickness in heterozygous mice — indicating that a cardiac phenotype may not be
appreciably worsening. All parameters shown were generally not significantly different between
heterozygote and homozygote animals. WT = wild-type, Htz = heterozygote, Hmz = homozygote.
Error bars are SEM, n = 7 to 8 animals per group.

Figure. 9.2

Heart to bodyweight ratio at 6 months
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Figure 9.2: Heart to body weight ratio at six months. Homozygous and heterozygous mouse hearts

are respectively ~11 to 30% larger at the age of six months compared to wild-type mice; p < 0.05
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only for WT vs. Htz mice, Student’s unpaired t-test. WT = wild-type, Htz = heterozygotes, Hmz =
homozygotes. n = 7 to 8 mice for each group.

Figure. 9.3
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Figure 9.3: Allele-specific gPCR results indicating that A. The qPCR is specific, and that equal
amounts of WT and mutant alleles are expressed in the heterozygous mouse, and that
B. Myopalladin expression is limited to skeletal and cardiac muscles, excepting very low expression

in the testes.

Figure.9.4
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Figure 9.4: Experimental outline for testing AAV2.9 viruses.

Six-week-old Mypn KI mice will be infected with AAV2.9-shALS9-dsRed, AAV2.9-shLuc-dsRed,
AAV2.9-dsRed or a mock injection via the retro-orbital route.

Six weeks post-injection, the mice with undergo echographic analysis, and will then be sacrificed

for molecular analysis.
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WP 10 Bioinformatics Database
Figure 10.1
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lWeIcome to the Demo Inheritance Database

The International Register for Inheritance Project (INtegrated HEart Research In TrANslational genetics of dilated Cardiomyopathies in Europe) from
European Community's 7th Framework Programme, is a Database, web-based (internet access), designed to collect, exploit and export anonymised data of
patients and families with Dilated Cardiomyopathy, offering the ability to produce customized reports with data collected. This is a organized by families
database, that will look for synergy with other existing databases and that will have guality controls established by the participating investigators.

The inserted data is exclusive property of each investigator, who will decide the use or not of his data for the possible studies or substudies that can be made.
Each investigator and/or hospital center will have each own personalized access key.

The Administrator and Developer of the Database (Health in Code, 5.L.) is committed to maintaining the privacy of data, ensuring total confidentiality of them.
There will not have direct access to the data without the permission of each investigator.

Identifier

Password

Begin session

- 803 patient participants | 11 groups of work participants -

INHERITANCE Project. VIl Framework Programme UE. Developed by Version 1.

Figure 10.2

Mot Loged in

Precardia

This is a multicentre European double-blind, randomized and controlled trial with 2 parallel groups (1 study medication, 1 placebo) in order to analyse
the impact of ACE inhibitors (ACEi) in subjects who carry 2 mutation but have not yet developed DCM (dilated cardiomyopathy).

Objective of the trial: Study the impact of ACE inhibitors (ACEI) in subjects who carry a mutation (leading to a genetic form of heart failure) but have not
yet developed DCM.

Context. Dilated Cardiomyopathy (DCM) is one of the leading causes of Heart Failure due to systolic dysfunction and at least 30% of DCM are of
familial /genetic origin, usually with autosomal dominant inheritance, and underlying genes and mutations are increasingly identified. Familial Dilated
Cardiomyopathy (fDCM) is characterized by age-related penetrance (or delayed-onset), that means that the cardiac expression of the disease
(echocardiographic abnormalities) is usually absent for a long period and progressively appears with advanced age, usually after 20 years of age.

Hypothesis : ACEi may delay or prevent the occurrence of DCM in these subjects (pre-clinical stage).
Expected results: If the hypothesis is confirmed, and as a consequence, the knowledge derived from basic research (genes identification in DCM) will be
translated into clinical practice (early identification of subjects at high risk of developing heart failure through predictive genetic testing) with the

development of new therapeutic management (early ACE) that will help to decrease the morbidity and mortality associated with the disease. This will
constitute a paradigm of the development of preventive medicine thanks to the development of genetics in the cardiovascular field.

Subjects who are concerned are =18 years of age and =60 years, carry a mutation responsible for DCM and are at a preclinical stage of the disease. Total
duration of treatment (perindopril versus placebo) is 3 years. A total number of 200 participants will be enrolled (100 in each group) in 7 centres.
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Genetic cardiomyopathies

As the leading cause of congestive heart failure, cmdlomyopathles represent a heterogeneous group of heart muscle disorders. This review spotlights the current state-of-the-art
understa of the of dilated new in experimental genetics. Clinically, dilated cardiomyopathy (DCM) Is
charactes by left ventricular dilation assoclated with dmnnmuon of systolic luncuon anlnnl DCM demonstrates a broad genetic Mur:genmy and accounts for an
estimated one third of all DCM cases [1, 2]. Histopathologically, DCM shows such as yte hypertrophy, ¢ loss | fibrosis. In p
with DCM, more than 40 dln‘omnt genes have been Identified with autosomal-dominant inheritance being Jw pattel by
r Xlinked and fal modes of inheritance [3]. Most of these genes encode for two major subgroups cyloskeleml nnd sarcomeric proteins. Clinically, the most
important mutations are found in the gene encoding lamin A and C nuclear lope pt (H1uewll), al with in [vst] and (eil) (2 and ?
myosin heavy chains), {[Meecal) (lhlck filament myosin binding protein-C), and (tmar2)) d type 2) for app ly 75% of known genetic causes of DCM [4, 5).
Lamins and alternatively spliced zu roducts from ({Umal] are type V intermediate filament proteins rosldmg in the inner membrane, being a major component of the nuclear lamina
separating the nuclear envelope from the nuclear matrix {6, 7]. However, the functional roles of lamin A and C are controversially debated. As such, more than 200 different
pathogenic mutations are found within the [{usal) gene, being responsible for over 20 different phenotypes, summarized with the term ?laminopathies? [4]. DCM patients
carrying ()] mutations often exhibit an aggravated disease pheno! or progression when compared to DCM patients carrying a mutation in other genes [8]. The
ultrastructural characteristics of disturbed lamin A/C expression In cardiomyocyte nuclel can include minor nu:loar unvnlope dumngo. such as focal dhmpuom and nuclear pore
cluswnng. as far as crucial morphol ic alterations, such as complete loss of the nuclear lope with and/or liy n the
8, 9 otal. (10]d in a murine model that the lack of lamin A/C causes apoptosis pnmcular?' in lhn cardiac conduction systom, ln gering
atrial ﬂhnllnuon. heart faflure, and sudden cardiac death, which is also fr ly observed in , Gupta et al, (8) described patients with [iusal) mumuom
without cardiomyocyte nuclear abnormalities, indicating that (L]} mutations may not nmmnly load to mnjor cardiomyo nuclear envelope defects. Besides these
thoroughly explored genes causative for DCM, recent findings have drawn our attention to novel key mechanisms in DCM etiology [11]. Mutations in |[fA binding setif pretein 2011
(1m0l 1), found in up to 3% of individuals with idiopathic DCM, is often d with a fast prog of heart fallure [12) or increased prevalence of atrial fibrillation [13).
[irmgo)] IS hl?hly oxpressed in cardmc tissue and acts as a cardiac lPllcll? hence sel splice sites in eukaryotic pre-mRNA for regulation of the isoform
expression of genes related to d il and lon ! port [14). Al in gene and isoform expression are crucial to luﬁport adaptive effects of
cardlac physiology and cardiac disease, including alternative spllclng of the mRNA encoding the glant protein [iritinl 1111 (LT™M1). [ITitinl1 L)) spans the half-sarcomere from
-dlsc to M-line in heart and skeletal muscle and controls the length of the sarcomere du muscle and r Its lnrqa slm?wlth a sequence of

roximately 100 kb?encodes the largest human protein with about 35,000 amino acids, which has bl h to the th of its
ro @ in DCM. By using ?exon-capture? techniques, it is now for the first time possible to comprohamtvoly unalym (i) in all cardlomyopnt'hy patients (15]). By using this
approach, Herman et al. [16] could recently identify (177w} truncating variants in 67 subjects with DCM,
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Potential Impact
Potential Impact Figure 1.

The figure summarizes the key issues in INHERITANCE: at the centre, a dilated heart excised at
transplantation; the logo on its left is a miniature of a family tree, DNA, disease genes, cells.
Around the heart and logo, family trees before and after family screening and follow-up. The pair of
upper pedigrees correspond to a LMNA family before and after genetic testing; the lower pedigrees
correspond to a DYS family before and after genetic testing and follow-up; electropherograms as in
Sanger sequencing; loss of protein expression in mutated hearts (Lamin AC , western blot of wild
type and mutated Lamin AC on the right; immunohistochemistry: Lamin AC on the left; dystrophin
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Potential Impact Figure 2.

A) The discipline-centred model of care obligates patients and families to search multispecialty
support

Genetics

Cardiology Pathology

Neurology Pneumology
Immunology Surgeries
4 >
Radiology Immunology
Neurology Nefrology
Hematology Gastroenterology

Ophtalmology

B) The patient/family-centred model of care places the patient and his/her family at the middle core

of the diagnostic work-up, plans specialist interventions on the individual needs and care plans.

Genetics
Cardiology Pathology
Neurology ' Pneumology
Immunology Surgeries
Radiology Immunology
Neurology ‘ Nefrology
Hematology Gastroenterology

Ophtalmology
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Potential impact Figure 3

In a few weeks after publication, MOGE (S) attracted the attention of the scientific international

community and

opened the discussion about the need of a novel nosology system that describes

both phenotype and genotype (Panel from the web sites).
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