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INHERITANCE LOGO 

 

WP1 Phenotypes of DCM subtypes 

Figure.1.1 

Kaplan-Meier Event-Free Survival From Date 

of First Visit to Cardiologist 

Kaplan-Meier event-free survival stratified by 

3 independent risk factors (RF): nonsustained 

ventricular tachycardia, left ventricular 

ejection fraction <45% at the first visit to the 

cardiologist, and being male. Event: 

occurrence of malignant ventricular 

arrhythmias, defined as appropriate 

implantable cardioverter-defibrillator 

treatment, cardiopulmonary resuscitation, or 

sudden cardiac death. 

Kaplan-Meier Event-Free Survival All 4 Risk Factors 

Kaplan-Meier event-free survival stratified by 4 

independent risk factors (RF): nonsustained 

ventricular tachycardia, left ventricular ejection 

fraction <45% at the first visit to the cardiologist, 

being male, and non-missense mutations (ins-

del/truncating or mutations affecting splicing). Event: 

occurrence of malignant ventricular arrhythmias, 

defined as appropriate implantable cardioverter-

defibrillator treatment, cardiopulmonary resuscitation, 

or sudden cardiac death. 
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Figure. 1.2 
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Figure 1.3 

Kaplan-Meier Event-Free Survival and Cum Inc 

for Competing Events 

Kaplan-Meier event-free survival curve for the 

combined event of death and heart transplantation 

(HTx). The number of patients at risk is reported 

at the bottom of the figure immediately above the 

x-axis. 

Kaplan-Meier Event-Free Survival and Cum Inc 

for Competing Events 

Cumulative incidence (Cum Inc) for the 

competing events of death and HTx. 

Cumulative incidence (Cum Inc) (95% 

confidence interval [CI]) at the end of the 

follow-up is reported for each outcome. 

 
 

Figure. 1.4 
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WP2 Genetic testing 

Figure. 2.1  

 

Figure. 2.1 : Variability in 454 sequence coverage. Total read coverage (redundant and non-redundant) is 

plotted at each mtDNA position (1 to 16569) and graphed as a continuous thin grey trace for each case 

(different shades for each case). The mean coverage for all 20 cases is represented by a thick dark black 

trace. The shape of the traces shows coverage variability both between cases and along the same mtDNA. 

The black horizontal lines (A, B & C) above the graph represent the three mtDNA PCR fragments used for 

454 sequencing. Greater coverage was noted in the regions in which the PCR fragments overlap compared to 

coverage in non-overlapping regions. 

 

 

Figure. 2.2 

Germany 
98 

Denmark 
100 

France 
92 

Spain 
82 

  Italy 
78 

UK  
 70 

Sweden 
49 

Netherlands 
70 

 

mapping 

indel 

realigment 

mark 

duplicates 

calling 

variants 

annotation 

filtering 

dbSNP 

prediction 

ACTG 

T A C 

G A T 

 

 

Figure. 2.2: The NGS plan in INHERITANCE. 
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Figure.2.3 

 

 

 

 

Figure 2.3: The figure shows the key phenotypical traits of the novel cardiomyopathy. (A) Surface ECG 

with complete atrial standstill: bradycardic (39 bpm) junctional rhythm without atrial activity and narrow 

QRS (patient A:V:1). (B) Giant atria are shown by ultrasound examination and by 3-dimensional cardiac 

tomography (3DCT) imaging. On the left, the apical 4-chamber view of the patient A:IV:5. On the right, 

3DCT reconstruction of the cardiac chambers24 of patient A:V:1. Colours inner surfaces of the districts are 

shown in right posterior view. Right atrial (RA) and left atrial (LA) volumes are 744 and 426 mL, 

respectively; left (LV) and right ventricular (RV) volumes are 138 mL and 252 mL, respectively (see online-

only Data Supplement Video). Pulmonary arteries (PA) and pulmonary veins (PVs) are shown at the top. (C) 

Scars in the RA are shown by 3D voltage mapping (right anterior projection) in patients D:IV:2 (at the left) 

and A:V:1 (at the right) with Brady–Tachy syndrome and complete atrial standstill, respectively. In the 
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former, the scar is localized at lateral wall, whereas in the latter, the scar is diffused (red colour indicates 

voltages <0.05 mV). 

 

WP3 Genome-wide association studies 

Figure 3.1 - GWAS Paris 

 

 

 

 

Figure 3.1: Variants in BAG3 found in index patients with familial dilated cardiomyopathy (DCM). (A) 

Genomic structure of the BAG3 gene. The four exons are presented as boxes (white for UTR, grey for 

coding). Upper horizontal lines indicate sequenced regions. (B) BAG3 transcript with all missense and frame 

shift variants positions identified in familial DCM cases indicated. The variants are classified as likely 

disease causing (red), possibly disease causing (black), or probably neutral (green) as explained in the 

Results section. *Indicates SNPs associated with sporadic DCM in the GWAS. All likely and possibly 

disease-causing variants were found each in a single independent individual at the heterozygous state. The 

electrophoregrams representative of heterozygous mutated (upper) and homozygous wild-type (lower) 

sequences are shown for each DCM mutation. The arrows indicate the modified nucleotides and the 

sequenced strand orientation. (C) Schematic representation of the BAG3 protein with referenced domain 

signature according to UniprotKB database38 and dark grey boxes. The consequences of the DNA variants 

in (B) are shown as resultant predicted amino acid changes with the same colour code. (D) The ClustalW 

multiple alignments of orthologous BAG3 sequences from different species restricted to the immediate 
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vicinity of each missense variant (red boxes) with MAF > 5% is shown. Interspecies conservation is 

indicated as blue boxes (dark blue: identical; light blue: similar; white: not conserved amino acid). 

 

 

Figure 3.2 – GWAS Heidelberg 

 

 

 

 

Figure 3.2 : A manhattan plot of the genome-wide association study for dilated cardiomyopathy. Minus 

log10 P-values based on an additive genetic model are shown for single nucleotide polymorphisms that 

passed the quality control criteria for the screening cohort. Probability values were based on a logistic 

regression model, which also included age and sex. The red line indicates the genome-wide significance 

level of P = 1.7 × 10
−7

 and the blue line indicates the suggestive significance level of P = 10
−5

. 
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Figure 3.3  

miRNA expression levels correlate with disease 

severity. Matrix plots visualize the correlation of 

miRNAs from the signature with cardiac systolic 

function and with NYHA functional class. MiR-622, 

miR-520d-5p, miR-519e* and miR-200b* 

significantly correlate with left-ventricular ejection 

fraction (P < 0.05). No significant correlation could 

be found between miRNA expression levels and the 

corresponding NYHA class, although a trend can be 

observed. 

miRNA expression levels correlate with disease 

severity. Matrix plots visualize the correlation of 

miRNAs from the signature with cardiac systolic 

function and with NYHA functional class. MiR-622, 

miR-520d-5p, miR-519e*, miR-200b*, miR-122* 

and miR-558 significantly correlate with left-

ventricular ejection fraction (P < 0.05). No 

significant correlation could be found between 

miRNA expression levels and the corresponding 

NYHA class, although a trend can be observed. 
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WP4 Transcriptomics 

Figure.4.1 

Expression studies 

Peripheral Blood RNA 

First part of the 
study 

67 DCMLMNAMut 

96 DCMLMNWT 

115 CRTLsLMNAWT 

Second part of the 
study 

311 cases blind to 
mutation and family, 

including 
consecutive 

probands with DCM 
as well as  affected 

and unaffected 
relatives undergoing 

clinical screening 
and blood sampling 
for genetic testing 

Myocardial RNA 

20 DCMLMNAMut 

20 CTRLLMNAWT 

Protein expression in myocardial tissue samples 

Immunohistochemistry 

25 DCMLMNAMut 

20 DCMLMNAWT 

20 CRTLLMNAWT 

Western Blot   

12 DCMLMNAMut  

hearts excised at 
transplantation 

9 heart samples 
from  

CRTLLMNAWT  

 

Figure 4.1: The figure summarizes the flow chart of the research for quantitative expression of 

LMNA in myocardial samples and in peripheral blood samples.  

 

Figure.4.2 
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Figure 4.2: QGELMNA Study (A to C) First part of the study: QGELMNA (2
−ΔCt

 ± SEM) in total RNA from 

peripheral blood of 67 DCMLMNA
Mut

, 96 DCMLMNA
WT

, and 115 CTRLLMNA
WT

. (B) QGELMNA levels 

did not vary in patients with different types of mutations, and (C)with mutations localized upstream or 

downstream of the nuclear localizing sequence (NLS). (D) Second part of the study: receiver-operating 

characteristic (ROC) curve analysis for the QGELMNA in the peripheral blood RNA from the 311 

consecutive cases. At the threshold value with the highest sensitivity, the area under the curve (AUC) was 

0.957 (p < 0.001). (E) Third part of the study: myocardial samples of DCMLMNA
Mut

 versus CTRLLMNA
WT

. 

CTRL = normal control; DCM = dilated cardiolaminopathy; PTC = premature termination codon; QGE = 

quantitative gene expression. 

 

Figure. 4.3 
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Figure. 4.3 : The panels shows the most striking results in dystrophinopathies in which 

immunohistochemistry strongly supports the diagnosis (mut vs. WT); in cardiolaminopathies in which 

immunohistochemisrty can contribute to suspect a mutation in LMNA (mut vs. WT); in cardiozaspopathies 

(LDB3) and trpoponinopathies in which immunohistochemistry does not discriminate or show significant 

difference of the expression of the protein in mutated and wild type control samples.  The translational 

impact of these results is therefore relevant for cardiodystrophinopathies and cardiolaminopathies but non-

contributory to cardiozaspopathies. 

 

WP5 Proteomics & metabolomics 

Figure. 5.1 

 

Figure. 5.1: Scores plot comparing aqueous metabolites detected by HILIC mode chromatography from 

heart tissue from wild type and heterozygous mice (one group) with homozygous laminopathic mouse hearts 

at the 5-week time point (model parameters R
2
X=41%, R

2
Y=93%, Q

2
=78%). 

 
Figure 5.2 
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Figure. 5.2: Histograms summarising the significant metabolic changes between the homozygous and the 

combined group of heterozygous and wild type mice when analysed by HILIC chromatography. Standard 

error bars are shown and Student’s t tests have been carried out (Key: * = p < 0.05, ** = p< 0.01, *** = p < 

0.001, **** = p < 0.0001). 

 

WP6 Animal models: zebra fish   

Figure. 6.1  

 

 

Figure.6.1: Knockdown of PINCH1 or PINCH2 leads to cardiomyopathy and heart failure. (A to C) MO1-

pinch1- and MO2-pinch2-injected embryos develop pericardial oedema (*) and pericardial blood congestion 

due to disturbed cardiac contractility. Lateral Views of MO-control-injected (A), MO1-pinch1-injected (B) 
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and MO2-pinch2-injected (C) embryos at 72 hours hpf (v, ventricle; a, atrium). (D) After injection of MO1-

pinch1 or MO2-pinch2, 88% and 75% of morphant embryos, respectively, develop heart failure. (E) FS of 

the ventricular chambers of MO-control-, MO1-pinch1-, and MO2-pinch2-injected embryos measured at the 

indicated developmental stages. FS is significantly reduced in PINCH mophants after 48 hpf and further 

declines by 96 hpf. 

 

Figure 6.2 

 

 

Figure 6.2 :bng encodes protein kinase D2 (pkd2) and is expressed in the zebrafish atrioventricular canal 

(AVC). A, Integrated genetic and physical map of the bng locus on zebrafish chromosome 15. 

The bng mutation interval is flanked by the microsatellite markers z34586 and z23908 and encodes 2 open 

reading frames, zebrafish pkd2 and an unknown protein (zgc:152692). The genomic structure of 

zebrafish pkd2 (zpkd2) is displayed at the bottom. The bng missense mutation (T→A) in the 17th exon 

of zpkd2 is indicated. B, The bng missense mutation at cDNA position 2545 translates into an amino acid 

exchange from tyrosine (T) to asparagine (N). An arrowhead marks the mutated base. C through E, Whole-

mount antisense RNA in situ hybridization of zebrafish pkd2 expression in the brain, gastrointestinal tract, 

and AVC (black arrow) of the heart of zebrafish embryos at 48 hours after fertilization (hpf; C and D). E, 

Detection of pkd2 in atrioventricular endocardial (AV en) but not AV myocardial (AV my) cells at 72 hpf by 

whole-mount antisense RNA in situ hybridization of a sagittal section through the atrioventricular canal of a 

zebrafish heart. 
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WP7 Animal models: LMNA KO mice 

 

Figure 7.1 LMNA 

 

 

 

 

Figure. 7.1: Embryonic and postnatal phenotypical characterization of the LMNAGT−/−mouse.  

(A) LMNA promoter activity is visualized by β-galactosidase staining in LMNAGT+/− embryo's (E8.0, E9.0, 

E11.0). LMNAGT+/− placental tissue is indicated by an asterisk.  

(B) β-galactosidase stained LMNAGT+/−embryo E11.0 tissue section (7 µm) counterstained with Azo 

Phloxine (magnification 2.5×), including a close-up image (magnification 5.0×) of the heart, the heart's 

outflow tract (OFT), liver and dorsal aorta (D. Aorta).  

(C) Macroscopical view of WT, LMNAGT+/−and LMNAGT−/− siblings 12 days post partum (PP12).  

(D) Body weight over time graph (PP2–PP18). Asterisks indicate a significant difference for 

LMNAGT−/− to LMNAGT+/− and WT littermates (N = 10, p < 0.05).  

(E) Survival curves for all three genotypes (N = 10) during the first 3 weeks post partum. 
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WP8 Structural studies 

Figure. 8.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 8.1: Docking model of the E358K mutant (the mutated residue is represented in purple)  

 

Figure. 8.2 

 

 

 

 

 

 

 

 

 

 

 

Figure.8.2: Crystal structures of E347K. View of the mutated region. Substituted residue is in red. 
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WP9 Therapeutics and improvement of medical management 

Figure.9.1 

 

Figure 9.1: Graphs of described echocardiographic measures over nine months in male Mypn KI 

mice of the three genotypes.  Homozygous measures were generally significantly different to wild-

type at all time points across each of the variables shown, using 2-way ANOVA (p < 0.05 to 0.001), 

and heterozygous values were often significantly different to wild-type values.   

Over time, values for all three genotypes did not differ significantly – except for posterior wall 

systolic thickness in heterozygous mice – indicating that a cardiac phenotype may not be 

appreciably worsening. All parameters shown were generally not significantly different between 

heterozygote and homozygote animals.  WT = wild-type, Htz = heterozygote, Hmz = homozygote. 

Error bars are SEM, n = 7 to 8 animals per group. 

 

Figure. 9.2 

 

Figure 9.2: Heart to body weight ratio at six months. Homozygous and heterozygous mouse hearts 

are respectively ~11 to 30% larger at the age of six months compared to wild-type mice; p < 0.05 
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only for WT vs. Htz mice, Student’s unpaired t-test. WT = wild-type, Htz = heterozygotes, Hmz = 

homozygotes. n = 7 to 8 mice for each group. 

 

Figure. 9.3 

 

 

 

Figure 9.3: Allele-specific qPCR results indicating that A. The qPCR is specific, and that equal 

amounts of WT and mutant alleles are expressed in the heterozygous mouse, and that  

B. Myopalladin expression is limited to skeletal and cardiac muscles, excepting very low expression 

in the testes. 

 

Figure.9.4 

 

Figure 9.4: Experimental outline for testing AAV2.9 viruses.  

Six-week-old Mypn KI mice will be infected with AAV2.9-shALS9-dsRed, AAV2.9-shLuc-dsRed, 

AAV2.9-dsRed or a mock injection via the retro-orbital route.  

Six weeks post-injection, the mice with undergo echographic analysis, and will then be sacrificed 

for molecular analysis. 

 

 



 18 

WP 10 Bioinformatics Database 

Figure 10.1 

 

 

Figure 10.2 
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WP 11 Knowledge management Bioinformatics Database and data analysis 

Figure. 11.1 

 

 

Figure 11.2 
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Potential Impact 

 

Potential Impact Figure 1. 

 

The figure summarizes the key issues in INHERITANCE: at the centre, a dilated heart excised at 

transplantation; the logo on its left is a miniature of a family tree, DNA, disease genes, cells. 

Around the heart and logo, family trees before and after family screening and follow-up. The pair of 

upper pedigrees correspond to a LMNA family before and after genetic testing; the lower pedigrees 

correspond to a  DYS family before and after genetic testing and follow-up; electropherograms as in 

Sanger sequencing; loss of protein expression in mutated hearts (Lamin AC , western blot of wild 

type and mutated Lamin AC on the right; immunohistochemistry: Lamin AC on the left; dystrophin 

on the right. 

 

Centre	for	Inherited	Cardiovascular	
Diseases	

IRCCS	Fondazione	Policlinico	San	Ma eo	–	

Pavia	-	Italy	

EU-INHERITANCE	-	FP7	
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Potential Impact Figure 2. 

 

A) The discipline-centred model of care obligates patients and families to search multispecialty 

support 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B) The patient/family-centred model of care places the patient and his/her family at the middle core 

of the diagnostic work-up, plans specialist interventions on the individual needs and care plans. 
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Potential impact Figure 3 

 

In a few weeks after publication, MOGE (S) attracted the attention of the scientific international 

community and opened the discussion about the need of a novel nosology system that describes 

both phenotype and genotype (Panel from the web sites). 
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