
FP7-SME-2008-2 – 243768

OPEN-SME
“Open-Source Software Reuse Service for SMEs”

Final Report

Deliverable Type: PU*
Nature of the Deliverable: R**

Date: August 30th, 2012
Distribution: WP1

Code: OPEN-SME/EMHPEE/WP1/FR
Editor: EMHPEE

Contributors: Consortium

* Deliverable Type: PU= Public, RE= Restricted to a group specified by the Consortium, PP= Restricted to other program

participants (including the Commission services), CO= Confidential, only for members of the
Consortium (including the Commission services)

** Nature of the Deliverable: P= Prototype, R= Report, S= Specification, T= Tool, O= Other

Abstract: This is the Final Report of the project, according to the specified format

 Copyright by the OPEN-SME Consortium.

The OPEN-SME Consortium consists of:

Enosi Mihanikon Pliroforikis & Epikinonion Ellados Project Coordinator Greece

Drustvo za informacione sisteme I racunarske mreze-Informaciono drustvo Srbije Partner Serbia

Epistimoniko Techniko Epimelitirio Kyprou (Technical Chamber of Cyprus) Partner Cyprus

Teknikbyn Science Park Vasteras AB Partner Sweden

SOLINET GmbH Telecommunications Partner Germany

GNOMON Informatics SA Partner Greece

Maelardalens Hoegskola Partner Sweden

Teletel S.A. - Telecommunications and Information Technology Partner Greece

Aristotelio Panepistimio Thessalonikis Partner Greece

Universiteit Maastricht

BITGEAR Wireless Design Services DOO

Partner

Partner

Netherlands

Serbia

Final Report Page 2 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

PROJECT FINAL REPORT

Grant Agreement number: FP7-SME-2008-2-243768

Project acronym: OPEN-SME

Project title: Open Source Software Reuse Service for SMEs

Funding Scheme: Research for SME associations/groupings

Period covered: from 01/07/2010 to 30/06/2012

Name, title and organisation of the scientific representative of the project's coordinator:

Prof. Michalis Loupis, Greek Association of Computer Engineers

Greek Association of Computer Engineers, Karageorgi Servias 7, Athens 10563, Greece

Tel: +30-210 3325230

Fax: +30-210 7560324

E-mail: open-sme@computer-engineers.gr

Project website address: http://opensme.eu

Final Report Page 3 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

Contents
CONTENTS ... 3

1 FINAL PUBLISHABLE SUMMARY .. 5

1.1 EXECUTIVE SUMMARY ... 6
1.2 SUMMARY DESCRIPTION OF PROJECT CONTEXT AND OBJECTIVES ... 7

1.2.1 Overview ... 7
1.2.2 OCEAN .. 7
1.2.3 COPE ... 8
1.2.4 COMPARE ... 8
1.2.5 System Architecture as a whole ... 8

1.3 DESCRIPTION OF THE MAIN S&T RESULTS/FOREGROUNDS .. 10
1.3.1 Domain Engineering Process (RODE) .. 11

1.3.1.1 Introduction... 11
1.3.1.2 RODE: A domain engineering process based on OSS projects ... 12

1.3.2 Application Engineering Process .. 18
1.3.2.1 Introduction... 18
1.3.2.2 Overview ... 20
1.3.2.3 PROPOSED APPLICATION ENGINEERING PROCESS .. 21

1.3.3 OCEAN .. 36
1.3.3.1 Introduction... 37
1.3.3.2 OCEAN High Level Design .. 38
1.3.3.3 Implementation Details ... 38
1.3.3.4 The System in Use ... 40

1.3.4 COPE ... 41
1.3.5 COMPARE ... 48

1.3.5.1 Introduction... 48
1.3.5.2 Technology platform ... 48
1.3.5.3 Architecture Overview .. 48
1.3.5.4 The Infrastructure Module .. 50
1.3.5.5 Asset Metadata Repository ... 50
1.3.5.6 Asset Manager ... 51
1.3.5.7 Notifier module ... 51
1.3.5.8 User Module .. 51
1.3.5.9 Consumption Module .. 51
1.3.5.10 The Asset Searching Module ... 51
1.3.5.11 Component Search Module ... 51

1.3.6 References .. 52
1.4 POTENTIAL IMPACT, DISSEMINATION AND EXPLOITATION OF RESULTS .. 55

1.4.1 Potential Impact ... 55
1.4.2 Exploitation plans ... 57

1.4.2.1 Overview ... 57
1.4.2.2 Proposed SME‐AGs Business Strategy ... 59
1.4.2.3 OPEN‐SME Business Model and Exploitation Strategy .. 59
1.4.2.4 Customer Segments .. 60
1.4.2.5 Channels .. 61
1.4.2.6 Customer Relationships ... 62
1.4.2.7 Key Activities ... 63
1.4.2.8 Key Partnerships .. 64
1.4.2.9 Key Resources.. 64
1.4.2.10 Revenue Streams ... 66

1.4.3 Dissemination ... 67
1.4.3.1 Project Web Site .. 67
1.4.3.2 Dissemination Events .. 70
1.4.3.3 Publications ... 74

1.5 OPEN‐SME PUBLIC WEB SITE AND CONTACT ... 76

2 USE AND DISSEMINATION OF FOREGROUND .. 77

Final Report Page 4 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

2.1 SECTION A (PUBLIC) .. 78
2.2 SECTION B (PUBLIC) .. 82
2.3 REPORT ON SOCIETAL IMPLICATIONS ... 86

3 FINAL REPORT ON THE DISTRIBUTION OF THE EUROPEAN UNION FINANCIAL CONTRIBUTION 93

Final Report Page 5 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

1 Final Publishable Summary

Final Report Page 6 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

1.1 Executive Summary

The OPEN-SME main idea is to introduce a reuse service that will be operated by SME
Association Groups (AGs) on behalf of their SME software development members. This service
will be operated by software experts of the SME AGs who will produce components from OSS
projects, test them, generate documentation, resolve licensing etc. asynchronously to application
development by SMEs and independently from the SMEs. The components will be related to
domains that are relevant to the SMEs. Therefore when the SMEs will want to reuse them, the
components will already be there. The OPEN-SME project collectively provides two processes
and three tools, namely:

1. The Reuse-Oriented Domain Engineering (RODE) process.

2. The Application Engineering process.

3. The OCEAN tool. OCEAN is a tool for searching OSS code search engines. Essentially a
meta-search engine.

4. The COPE tool. COPE is a tool for extracting, testing, documenting and packaging
software components originating from OSS projects.

5. The COMPARE tool. COMPARE is a repository for storing the extracted component
packages and delivering them to SMEs.

The Open-Source Search Engine (OCEAN) is a meta-search engine that provides unified access
to existing Open Source Software (OSS) search engines. This allows the reuse-engineer to find
open source software assets (i.e projects, packages, files etc.) satisfying certain criteria, such as
software that is written in a specific programming language, containing certain keywords, having
a specific license etc. Moreover, it allows the re-user to detect a software asset that is of some
value and place an order to adapt that specific asset to the reuse-engineer. OCEAN is a web portal
(http://ocean.gnomon.com.gr/web/guest/home , root/test) that allows mainly locating and
browsing open-source files and projects that are available on popular open-source search engines.
The Component Adaptation Environment (COPE) is a tool-chain that provides an environment
for the enactment of the domain engineering process of OPEN-SME, thus allowing the reuse-
engineer produce reusable components for the domain(s) of interest
(http://opensme.eu/deliverables/86-deliverable-d32b , trialsuser/opensmeuser). COPE is a
desktop application to perform the following tasks in order to achieve the aforementioned result:

 Identify and model primary concepts of the domain

 Analyse the different aspects

 Comprehend the project and detect candidate components

 Generate components and validate them

 Classify the produced component

 Upload the Component to COMPARE component repository and search engine.

The Component Repository and Search Engine (COMPARE) is a web portal (http://www.teletel-
projects.net/compare , demo/1234), that allows SME software re-users to search and discover
software artefacts, technical documents, test suites related to open-source software. In addition, it
allows the stakeholders of the Domain Engineering Process (reuse engineers, domain experts,
component testers and certifiers) to manage and maintain the assets stored in the repository. The
end-users can be endowed by using the advanced filtering capabilities as well as by accessing
information about the verification and certification attributes of a component. Finally, it provides
a communication mechanism between the re-users and the reuse-engineers

Final Report Page 7 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

1.2 Summary description of project context and objectives

1.2.1 Overview

Open Source Software (OSS) reuse has the potential to improve software quality, shorten time-to-
market and bring competitive advantages to Software Development SMEs. However, currently
OSS reuse is restricted to:

 Whole OSS projects (e.g. Apache web server, MySQL Database)

 Opportunistic reuse of isolated classes (i.e. copy-paste-adapt reuse).

 Well-known selected infrastructure components (e.g. Apache Commons)

The OPEN-SME proposal is to extend the landscape of OSS reuse to domain-specific
components extracted by arbitrary OSS projects. Achieving this goal however involves a number
of challenges:

 Valuable OSS components exist in every OSS project. However it is difficult to recognize
them, extract them, test them, document them etc.

 During software development, usually there is no time for the aforementioned activities.
Developers often prefer to develop new code from scratch although this code has been
written before many times by many others.

 Even when developers recognize the opportunity to reuse OSS code there are several
uncertainties related to the provided functionality and quality.

 What the component does exactly?

 How well it does it?

The OPEN-SME main idea is to introduce a reuse service that will be operated by SME
Association Groups (AGs) on behalf of their SME software development members. This service
will be operated by software experts of the SME AGs who will produce components from OSS
projects, test them, generate documentation, resolve licensing etc. asynchronously to application
development by SMEs and independently from the SMEs. The components will be related to
domains that are relevant to the SMEs. Therefore when the SMEs will want to reuse them, the
components will already be there. The OPEN-SME project collectively provides two processes
and three tools, namely:

1. The Reuse-Oriented Domain Engineering (RODE) process.

2. The Application Engineering process.

3. The OCEAN tool. OCEAN is a tool for searching OSS code search engines. Essentially a
meta-search engine.

4. The COPE tool. COPE is a tool for extracting, testing, documenting and packaging
software components originating from OSS projects.

5. The COMPARE tool. COMPARE is a repository for storing the extracted component
packages and delivering them to SMEs.

1.2.2 OCEAN
The Open-Source Search Engine (OCEAN) is a meta-search engine that provides unified access
to existing Open Source Software (OSS) search engines. This allows the reuse-engineer to find
open source software assets (i.e projects, packages, files etc.) satisfying certain criteria, such as

Final Report Page 8 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

software that is written in a specific programming language, containing certain keywords, having
a specific license etc. Moreover, it allows the re-user to detect a software asset that is of some
value and place an order to adapt that specific asset to the reuse-engineer. OCEAN is a web portal
(http://ocean.gnomon.com.gr/web/guest/home , root/test) that allows mainly locating and
browsing open-source files and projects that are available on popular open-source search engines.
OCEAN is extensible to incorporate any open-source search engine available regardless of the
integration strategy. What this means is that the integration of an arbitrary search engine can be
performed in any way possible (i.e. use of provided api, web-scrapping, etc).

1.2.3 COPE

The Component Adaptation Environment (COPE) is a tool-chain that provides an environment
for the enactment of the domain engineering process of OPEN-SME, thus allowing the reuse-
engineer produce reusable components for the domain(s) of interest
(http://opensme.eu/deliverables/86-deliverable-d32b , trialsuser/opensmeuser). COPE is a
desktop application to perform the following tasks in order to achieve the aforementioned result:

 Identify and model primary concepts of the domain (using: Knowledge Manager)

 Analyse the different aspects (using: Static Analysis, Design-pattern Analysis, etc.) of an
Open-Source project

 Comprehend the project (using: the outcome of the Analysis, Documentation Generation,
in-project Search)

 Detect candidate components (using: the outcomes of the project Analysis (ii) and project
Comprehension (iii))

 Generate components (using: the various Component Makers)

 Validate them (using: Dynamic Analysis)

 Classify the produced component (using: Knowledge Manager)

 Upload the Component to COMPARE component repository and search engine.

As far the physical architecture is concerned, only a couple of the aforementioned tasks initiate an
interaction with one of the OPEN-SME servers. In the following subsection we describe each
scenario of use and the associated servers as they are instantiated for the OPEN-SME trials.

1.2.4 COMPARE
The Component Repository and Search Engine (COMPARE) is a web portal (http://www.teletel-
projects.net/compare , demo/1234), that allows SME software re-users to search and discover
software artefacts, technical documents, test suites related to open-source software. In addition, it
allows the stakeholders of the Domain Engineering Process (reuse engineers, domain experts,
component testers and certifiers) to manage and maintain the assets stored in the repository. The
end-users can be endowed by using the advanced filtering capabilities as well as by accessing
information about the verification and certification attributes of a component. Finally, it provides
a communication mechanism between the re-users and the reuse-engineers

1.2.5 System Architecture as a whole
In Figure 1, a consolidated view of the system architecture is provided, depicting all the
OPESME servers and the roles for both the SME-AGs and the SMEs.

Final Report Page 9 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

Figure 1: An overview of the whole physical architecture*.

The reason this decentralized topology was selected is that the end-users perceive it as a robust,
fault-tolerant system. So, if one of the servers malfunctions, the rest of the functionalities
provided by the system do not cease to exist, but on the contrary the associated users can still
perform their tasks without being affected by a malfunction that is irrelevant with what they have
to perform. Moreover, this architecture makes the evolution of the services independent from
each other which is both desirable and necessary. It is desirable, not only for purposes of
robustness and fault-tolerance but also for tracking and maintaining reasons. It is also necessary
because at any moment during the trials the end-users may require additions or enhancements in
order to successfully use the services, so the services should be easily maintainable thus
independent from each other. Nevertheless these services can be hosted on a single physical
server and thus do not impose additional costs to the SME-AGs.

*Some return messages are omitted.

Final Report Page 10 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

1.3 Description of the main S&T results/foregrounds

The OPEN-SME main idea is to introduce a reuse service that will be operated by SME
Association Groups (AGs) (e.g. Greek Association of Computer Engineers, Vasteras Science
Park etc.) on behalf of their SME software development members. This service will be operated
by software experts of the SME AGs who will produce components from OSS projects, test them,
generate documentation, resolve licensing etc. asynchronously to application development by
SMEs and independently from the SMEs. The components will be related to domains that are
relevant to the SMEs. Therefore when the SMEs will want to reuse them, the components will
already be there. In Figure 2 we can see an overview of the OPEN-SME project which
collectively provides two processes and three tools that we will describe in some detail in the
following sections:

 Section 1.3.1 will provide a description of the Reuse-Oriented Domain Engineering
(RODE) process that was developed in the context of the OPEN-SME project. This
process can also be accessed online in http://opensme.eu/rode/. The online process
description contains all the knowledge that is necessary to enable an SME AG to apply
the process.

 Section 1.3.2 will provide a description of the Application Engineering process that was
developed in the context of the OPEN-SME project. This process is used by the SMEs to
develop their software projects and contains specific activities cantered on the reuse of the
software components extracted by the RODE process. This process can also be accessed
online in http://opensme.eu/aep/ which contains all the knowledge necessary to the SMEs
for applying the process.

 Section 1.3.3 will provide a description of the OCEAN tools that was developed in the
context of the OPEN-SME project. OCEAN is a tool for searching OSS code search
engines. Essentially a meta-search engine.

 Section 1.3.4 will provide a description of the COPE tool that was developed in the
context of the OPEN-SME project. COPE is a tool for extracting, testing, documenting
and packaging software components originating from OSS projects.

 Section 1.3.5 will provide a description of the COMPARE tool that was developed in the
context of the OPEN-SME project. COMPARE is a repository for storing the extracted
component packages and delivering them to SMEs.

Final Report Page 11 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

Figure 2: OPEN-SME project overview

1.3.1 Domain Engineering Process (RODE)
In this section we will discuss a domain engineering process for the creation of domain models
based on existing OSS projects. We believe OSS projects provide not only a quality alternative to
commercial software but also a knowledge resource that we can exploit in developing the
necessary domain knowledge for the domain engineering. Domain engineering methods
invariably propose the use of so-called exemplar projects that are existing projects used during
domain analysis and design. We propose a domain engineering process that uses OSS projects as
exemplars during all phases of domain engineering, including the domain implementation phase
in which existing OSS components are reused for the partial implementation of the domain
artifacts. The process is suitable for Small and Medium Enterprises (SMEs) that experience
limitation of resources and characterized by a limited portfolio of owned projects having
difficulties in applying systematic reuse methods based on domain engineering approaches.

1.3.1.1 Introduction

Systematic software reuse is divided into a) activities and/or processes related to building
reusable assets, referred as domain engineering processes or methodologies, and b) activities
and/or processes related to reusing these assets in the context of a software application

Final Report Page 12 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

development, referred as application engineering processes. The authors in [1] define domain
engineering as “the set of activities involved in developing reusable assets across an entire
application domain, or family of applications”. In domain engineering a number of applications,
belonging to a specific domain, are identified and their similarities and variabilities are analysed
in order to produce a domain model. Thereafter the model is designed, implemented, and
concrete artefacts of the implemented model are produced to be reused in a number of
applications.
The domain engineering process is used to create a specific reusable software platform in which
future applications will be based upon. It encompasses phases for requirements analysis, design,
implementation and testing of this platform. After this reusable platform has been implemented
applications can be developed more efficiently with the reuse of the platform.
Domain engineering is a necessary step towards the establishment of systematic reuse within a
software development organization. However there have been known limitations such as the
difficulties in analysing a domain thoroughly [2] and therefore tactical reuse should be allowed to
prove its value before the domain analysis is completed, to extend a domain model beyond its
initial scope [3] and in developing reusable modules, gaps among analysis, design and
implementation in reuse processes and achieving development with reuse in conjunction with
development for reuse [4]. Domain engineering therefore constitutes an active research area
independently or, more recently, in conjunction with product line approaches to reuse [5].
In our research work in the context of the OPEN-SME EU1 funded project, we look at methods
and tools for enabling Small and Medium Enterprises (SMEs) to effectively reuse Open Source
Software (OSS) components in their software development processes. In order to establish a
systematic link between OSS available components and their domains so that their reuse is more
efficient we formulated a domain engineering process for SME Association Groups (SME-AGs)
that uses open source software projects as exemplar applications used for domain analysis, as
well as a source of reusable components during domain “implementation”.

1.3.1.2 RODE: A domain engineering process based on OSS projects

Figure 3 depicts the RODE process comprising of distinct phases which will be analyzed in
detail. Each one of the phases, is performed only once with the exception of the Evolution Phase.
In the RODE process, we try to build all the necessary tools, reusable assets, artefacts,
documents, models, etc. until they reach a certain level of maturity thus allowing SME-AGs to
provide the services of OPEN-SME, and perform a continuous, on-going, evolution of the assets.
The stakeholders of the Domain Engineering Process are:
 Reuser: Software re-user (in particular SMEs) is the key beneficiary role since they apply

their application engineering process using reusable assets produced by RODE process.
 Reuse Engineer: Reuse engineers are professionals (hired by SME-AGs) who are responsible

for discovering and adapting software components in order to produce reusable assets that
will be stored in the Reuse Repository.

 Domain Expert: Domain Experts are professionals that specialize in a specific domain and are
engaged in assisting the reuse engineer by providing their knowledge on the domain.

 Tester: Testers are responsible for the core activities of the test effort. Their main
responsibility is to test software components.

 Certifier: Certifiers are software engineers with experience in Software Verification and
responsible for certifying software components.

1 http://opensme.eu/

Final Report Page 13 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

Figure 3: RODE Process overview

The tools that are provided by the Open-SME in order to fulfil its goals are:
 OCEAN: The Open Source Search Engine (OCEAN) is meta-search engine that allows the

initial discovery of OSS projects and/or components by providing unified access to existing
open source software search engines and forges.

 COPE: The Component Adaptation Environment (COPE) is a tool-chain that assists the reuse
engineer to the enactment of the domain engineering process. It also allows the Tester and
Certifier to test, verify and certify software components by providing testing and model
checking tools.

 COMPARE: The Component Repository and Search Engine (COMPARE) will serve as the
Reuse Repository that will allow reusers to search and discover reusable assets produced by
the Domain Engineering Process and the COPE tool-chain.

In the website2 of the process we provide further information regarding the roles, methods and
tools included in the RODE process and generally more detailed information about the process
itself.

1.3.1.2.1 Process Definition Phase
This phase aims at organizing the usage of resources and the way the process as a whole will be
carried out. In this phase the reuse Engineer should create, document and execute a domain
engineering plan including standards, methods, activities, assignments, and responsibilities for
performing domain engineering including the candidate stakeholders. S/he will also select any
additional representation forms to be used for the domain models.

1.3.1.2.2 Process Configuration Phase
The purpose of this phase is to configure (if necessary) the process itself to address the
specificities of the domain of interest by performing the following activities (as shown in Figure
4):

Figure 4: Overview of the Process Configuration phase.

1. OSS Search Engine selection: Refers to the selection of the most suitable Open Source

Software Search Engines for the domain of interest. Selected engines will be the only ones
used in order to discover OSS Projects.

2. OSS Search Engine Integration plan: In this (optional) activity the reuse engineer decides
whether any OSS search engine, identified in the “OSS Search Engines selection” activity,
should be integrated into OCEAN tool or used “as-is”. The reuse engineer should design the
integration of the OSS search engine into OCEAN, or design how the results of the OSS Search
Engines can be exploited by COPE, respectively.

3. OSS Search Engine Integration: In this (optional) activity the reuse engineer implements either
the integration of the selected OSS search engines into OCEAN or the process and tool, if
required, to exploit the search engine externally.

2 http://opensme.eu/rode

Final Report Page 14 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

4. Tool selection: The reuse engineer selects any additional tools that might be necessary for the
implementation of the Domain Engineering Process and/or for instantiation of COPE. For the
selection of the most appropriate tools, the reuse engineer can use a decision analysis method.

5. Tool Integration plan: In this (optional) activity the reuse engineer decides whether any
additional tools should be used independently or integrated into COPE. The reuse engineer
should design how the results of the additional tools can be exploited by COPE or design the
integration of the additional tools into COPE, respectively.

6. Tool Integration: In this (optional) activity the reuse engineer implements the integration of
any additional tools with COPE (resulting in a new instance of COPE) or the process and tool,
if required, to exploit the assets produced by the specific tool externally.

1.3.1.2.3 Domain Analysis Phase

In this phase the reuse Engineer has to analyze the domain(s) of interest by performing the
following activities (as shown in Figure 5):
1. Domain Boundary Definition: The reuse engineer, assisted by the domain expert, should define

the boundaries of the domain.
2. Primary Concept Identification and Modelling: In this iterative activity, the reuse engineer

while analyzing the domain of interest identifies primary concepts of the domain and models
them in the Ontology provided by the Knowledge Manager of COPE.

Figure 5: Overview of the Domain Analysis phase.

3. Exemplar Selection Plan: In this activity the reuse Engineer should create and document in
which way the exemplars will be selected. S/he should identify and document the criteria, as
well as their relative importance by which an exemplar is more suitable to be selected for reuse.
These should include functional, technical, business criteria. Finally, s/he should estimate the
number of exemplars required to cover the primary concepts.

1.3.1.2.4 Domain Design Phase

In this phase the reuse Engineer selects exemplar projects for the domain of interest and validates
whether they are within the domain scope by performing the following activities (as shown in
Figure 6):

Figure 6: Overview of the Domain Design phase.

Final Report Page 15 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

1. Exemplar Selection: In this activity the reuse engineer executes the Exemplar Selection Plan
and discovers, selects and retrieves the most representative OSS projects to be used as
exemplars. Based on the criteria defined in the exemplar execution plan s/he evaluates them
using a decision analysis method and selects the most appropriate.

2. Domain Validation: While the reuse engineer searches exemplars, the domain expert should
validate whether the exemplars are out of the domain boundaries or the domain boundaries are
too strict. In that case, the reuse engineer can either exclude the exemplar or modify the
domain boundaries at his/hers discretion.

1.3.1.2.5 Domain Implementation Phase

In this phase the reuse Engineer has to implement all the assets assimilating the exemplars
integration and incorporate the selected exemplars. This phase is broken down to the following
activities (as shown in Figure 6Figure 7:

Figure 7: Overview of the Domain Implementation phase.

1. Exemplar Assimilation: This iteration, performed mainly by the reuse engineer, aims at the
assimilation of each exemplar by following the activities 2 - 7.

2. Component identification: Using reverse engineering tools, static and dynamic analysis tools
provided by the instantiation of COPE, the reuse engineer identifies reusable components
within the project.

3. Component Analysis & Evaluation: Afterwards, the reuse engineer analyzes each component,
identifies concepts of the components related to the domain of interest, and evaluates its
suitability using decision analysis methods.

4. Component Adaptation: Using model driven development tools and the adaptation pattern
library of COPE, the reuse engineer adapts the component and documents the resulting asset.

5. Component Validation: In this task, the tester validates the component making use of the
validation tools provided by COPE.

6. Component Certification: In this (optional) task the Certifier using advanced certification
techniques, such as model-checking, certifies that a specific component has a set of desired
properties.

7. Asset Storage: Upon successful completion of the previous activities, the reuse engineer
models into the Ontology the concepts that are related to the component and gathers all the
produced artifacts. S/he then stores the component into COMPARE along with its metadata or
other assets (Metrics, Use cases, UML Diagrams, Test Cases, etc.)

8. Redefine Domain Boundaries: While the reuse engineer executes the “Exemplar Assimilation”
s/he may have to redefine the domain boundaries.

1.3.1.2.6 Evolution Phase
In this perpetual and iterative phase the reuse engineer assimilates new projects into the Reuse
Repository while maintaining the already embodied assets and thus evolves the domain
engineering process as a whole. This is performed by following the activities described below (as
shown in Figure 8).

Final Report Page 16 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

1. New OSS Search Engine Discovery and Integration: In this (optional) activity the reuse
engineer performs the corresponding activities described in the “Domain Configuration” phase.

2. New Tool Discovery and Integration: In this (optional) activity the reuse engineer performs the
corresponding activities described in the “Domain Configuration” phase.

3. Exemplar Selection: The reuse engineer performs corresponding activities described in the
“Domain Design” phase.

4. Project Assimilation: In this iteration, performs the corresponding activities described in the
“Domain Implementation” phase.

5. Component Certification: In this task the Certifier using advanced certification techniques,
such as model-checking, certifies that a specific component has a set of desired properties.

Figure 8: Overview of the Evolution phase.

1.3.1.2.7 Related Work In Domain Engineering Processes

In this section we will review some of the more established approaches to domain engineering as
well as some more recent proposals. Feature Oriented Reuse Method (FORM) [6], an extension
of Feature Oriented Domain Analysis (FODA) [7], is a method for both domain engineering and
application engineering using the reusable assets which are the outcomes of the domain
engineering process. It creates a domain dictionary which includes capabilities, operating
environments, domain technologies and implementation techniques along with composition rules
and techniques for application development. The FORM domain engineering approach comprises
three phases: (a) Context analysis: Scoping and intended use of the domain applications as well
as identification of external conditions and interactions with the external world. (b) Domain (or
feature) modeling: Identification of domain features and their interactions, creation of the feature
model, and (c) Architecture (and component) modeling: Construction of the reusable components
and their configurations and hierarchical decompositions. According to the authors of [6] good
sources of features according to their type include (a) user manuals for capabilities, (b)
requirement and design documents for operating environment and domain technology features,
and (c) design documents and source code for implementation features.
In [8,9], Organization Domain Modeling (ODM) was proposed as a domain modeling approach
that addresses difficulties observed with previous domain engineering approaches including
scoping, contextualizing, separating descriptive from prescriptive modeling approaches and
formalizing models of variability. The intent behind ODM was to produce a configurable Domain
Analysis process model that could be used by different types of organizations developing systems
in diverse domains, using a variety of implementation technologies. To achieve this neutrality in
relation to organizations and implementation technologies, ODM provides a core domain
modeling lifecycle that can be integrated with a variety of supporting methods that diverse
organizations may want to use. ODM was designed to be applied to domains that are mature,

Final Report Page 17 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

relatively stable and economically viable. ODM is organized in phases which are: Domain
planning (set the objectives and scope of the domain), Domain Modeling (produces a domain
model for the domain) and Asset Base Engineering (architects and implements an asset base that
addresses the market needs).
Reuse-Driven Software Engineering Business (RSEB) [10] is a software engineering approach
based in (UML) models for developing families of applications with reuse. RSEB has several
processes which analyze existing identified applications in order to define a layered architecture
and decompose into component systems, analyze sets of requirements to produce reusable
components and constructs applications with the selection of components their customization to
the application needs. Features, as in FODA [7] or FORM [6], are not explicitly defined but
(some of them) are instead part of use case definitions. This presents some problems (absence of
technical/implementation details, difficulties in decision making regarding
design/technical/implementation issues, etc.) since use cases are user-oriented whereas features
are reuser-oriented [11]. To overcome these problems FeatuRSEB [11] uses the feature model as
a central unifying diagram for expressing commonality and variability in the domain allowing the
reuser to understand what can be combined, selected or customized and possible constraints
among features. In FeatuRSEB the inputs of the process include exemplar systems, domain
expertise, requirement documents and early domain models. The outputs are the feature model,
the use case model, the context model and the domain scope.
To overcome shortcomings when applying existing processes into an industrial environment,
Product Line Software Engineering (PuLSE) [12] was introduced. These shortcomings include:
(a) Existing domain analysis methods had a domain focus rather than a product focus which is
important for the enterprises, (b) are vague and inflexible, and (c) are overstressing the
organizational issues neglecting the technological issues. PuLSE has four deployment phases
which are: (a) Initialization: During the initialization the product line is customized to the specific
organizational context. (b) Infrastructure Construction: The infrastructure construction is
responsible for scoping, modeling and architecting the product line infrastructure. Specifically the
scoping of the infrastructure takes under consideration the specific products that exist, are in
development or anticipated for the particular organization. (c) Usage: Usage of the product line
involves the instantiation and validation of one member of the product line. During usage of this
member change requests may arise. These are not handled in the usage phase of the process but
rather are passed as change requests in the evolution and management phase. (d) Evolution and
Management: This phase handles change requests by consolidating, evaluating and determining
their possible ramifications for the product line.
The KobrA approach to product line engineering [13, 14] attempts to integrate the component-
based approach for software development (reuse in-the-small) with the product line approach
(reuse in-the-large). KobrA can be viewed as a customization of the PuLSE method suitable also
for immature organizations. PuLSE may be proved problematic for this particular setting, since it
assumes that the activities of PuLSE will be customized for the existing software development
methodology. On the other hand KobrA aims at being concrete and prescriptive. The
infrastructure construction phase of PuLSE corresponds to KobrA framework engineering, the
usage phase of PuLSE corresponds to KobrA application engineering and the evolution and
management phase of PuLSE corresponds to KobrA maintenance of the framework and the
applications. The use of UML in KobrA, makes it suitable for the majority of software engineers
as well as neutral to programming languages and component technologies.
Since RODE process is focused on SMEs and SME-AGs, it differentiates from a “typical”
domain engineering process for a couple of reasons. In RODE, we diverge from creating
reference architecture as this would undermine the competitiveness between SMEs that share the
same domains as well as it would be impossible to create such an architecture that would
incorporate all the different technologies already adopted or implemented by the SMEs. Also, to

Final Report Page 18 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

identify concepts in domain analysis and design we use exemplar open source projects, thus
providing real-life examples as well as short-term exploitable results. Finally, in the domain
implementation phase we tend to create all sorts of reusable assets from existing resources found
in the OSS rather than building them from scratch.

1.3.2 Application Engineering Process
Component based software engineering had received significant focus from the research
community during the last decade and several interesting models have been proposed. At the
same time, Open source software development also had become popular, thanks to the dedicated
efforts of the developer community. Both communities have a lot to learn from each other and a
proper blending of their processes and methods could provide the software developers with
greater opportunities and well as cost efficiency.
In this Section, we present the specification of an application engineering process envisaged for
the reuse-oriented software development approach that can be beneficial for small and medium
enterprises (SMEs). This application engineering process is described through various phases and
activities included therein. This process is to help the SME engineers to have a clear picture and
comprehension of the issues involved. We also present a set of requirements and challenges
identified for the realization of such a process.

1.3.2.1 Introduction

In spite of the large research efforts on the component based software engineering (CBSE) as
well as the growing development efforts of the open source software community, we are yet to
see any strong efforts in bringing a synergy between these two communities. We believe that
understanding the models and processes proposed by CBSE and blending them carefully to their
processes and models could provide the open-source community with much greater re-use
capability and hence cost-efficiency.
One of the high level objectives of OPEN-SME is to define and systematically document the
OPEN-SME generic and customisable Application Engineering Process. In the context of the
OPEN-SME business cases, 'Application Engineering Activities' are typically performed by the
Software Development SMEs. These activities need to be organised in the context of a
component-based and reuse-oriented Software Development Methodology that is capable of
exploiting the outcomes of the Domain Engineering Process (Section 1.3.1). OPEN-SME will
also develop the OPEN-SME Component Repository and Search Engine (COMPARE, Section
1.3.5) having the following main features:

 Allow software resuers to effectively search, browse, and retrieve the assets produced by
the Domain Engineering Process. These assets include software artefacts, technical
documents, test suites, metamodels, etc.

 Provide to resuers a clear view of the software component attributes relating to software
qualification and certification.

 Provide a communication channel supporting the effective exchange and processing of
structured information flows between the software reuse stakeholders (placement of
orders for software components, bug reports, event notifications, etc.)

There exist many models for software development processes and lifecycles. Most of them are
specified considering some specific, often non-technical goals, such as quality, predictability,
dependability, or flexibility, and are often independent of technology. Examples of such models
are different sequential models such as Waterfall or V model, or iterative models such as spiral
model, or different agile methods, or de-facto standards such as ISO 9000, or CMMI.
Component-based software engineering (CBSE), as a young discipline is still focused on

Final Report Page 19 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

technology issues: modelling, system specifications and design, and implementation. There is no
established component-based development process. Yet many principles of component-based
development (CBD) have significant influence on the development and maintenance process and
require considerable modifications of standard development processes.
The main idea of the component-based approach is building systems from already existing
components. This assumption has several consequences for the system lifecycle [15]:

 Separation of development processes. The development processes of component-based
applications are separated from development processes of the components. Majority of the
components should already have been developed and possibly have been used in other
products when the application engineering process starts.

 A new process: A new, possibly separate process dedicated to finding and evaluating the
components appears. Discovery and evaluation can be a part of the main process, but
many advantages are gained if the process is performed separately. The result of the
process is a repository of components that includes components’ specifications,
descriptions, documented tests, and the executable components themselves.

 Changes in the activities in the application engineering/development processes. The
activities in the component-based development processes are different from the activities
in non-component-based approach. For the application engineering process, the emphasis
will be on finding the proper components and verifying them. For the component-level
process, design for reuse will be the main concern.

Current technology limitations being addressed by the OPEN-SME project are:

1. Absence of component-based Application Engineering Process specifications that
consider a cross- organisation software reuse environment: In the context of the
OPENSME use cases, a component- based application engineering process should be
cantered on the exploitation of the outcomes (use case models, feature models, software
artefacts, architecture metamodels, etc) of an external domain engineering process. Indeed
stateof-the-art approaches take into account activities such as component searching,
discovery, and assessment as activities to be exercised in parallel to software product
development processes. However, the market presently lacks a concrete Application
Engineering Process specification that is dedicated to component-based software
development (i.e. with clear partition and defined interfaces with the domain engineering
activities) and considers the exploitation by reuse of external domain-specific
components.

2. Limitations of existing software reuse repository solutions: The Reuse repositories are an
essential factor for the success of any component-based and reuse-oriented application
engineering effort, since they allow searching and retrieval of reusable software artefacts.
The number of reuse specific tools is limited. More specifically, software dealing with
component asset management is difficult to find, quite expensive and allows the sharing
of only intra-company rather than inter-company components.

OPEN-SME use cases consider a cross-organisation environment that requires the effective
exchange of information flows between the software reuse stakeholders (reuse engineers and
resuers). Such communications may relate to the placement of software component orders, the
provision of reuse feedback (e.g. bug reports), notifications on the publishing of new
components, etc. In the context of large communities (as the ones considered by OPEN-SME) the
exchanged information flows should be systematically structured towards facilitating and partly
automating their organisation and processing by the software providers. Existing reuse repository
systems do not tackle the requirement described above. As a result such cross-organisational

Final Report Page 20 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

communications presently take place in an informal manner (typically using e-mails or forums),
which significantly impacts the efficiency of the software reuse processes.

1.3.2.2 Overview

This includes description of domain engineering as well from the point of view of the application
engineering process. The OPEN-SME Application Engineering Process will form a generic
software development and lifecycle methodology that will be component-based, reuse-oriented
and applicable (customizable) across different Application Domains. The purpose of this
specification will be as follows:

 It will define in detail and in a concrete manner a set of software-lifecycle activities and
associated work products

 It will be used as a functional and technical specification of the OPEN-SME Component
Reuse Repository and Search Engine (COMPARE).

 It will provide guidelines on the use of the OPEN-SME Component Reuse Repository and
Search Engine (COMPARE).

 It will also constitute one of the main topics of the project training activities and
furthermore it will form a key project result to be disseminated to third parties.

The Application Engineering Process will comprise two streams of activities that will be
exercised in parallel and in close synergy with each other as shown in Figure 9:

Figure 9: Overview of the reuse-oriented OPEN-SME Application Engineering Process

1. Application Development: This will comprise of the pertinent lifecycle phases during the
application development. Starting with the simplest waterfall model as a base for this
process, which can be extended to more iterative development processes (e.g. agile
development processes).

2. Component Reuse: It will define a set of processes that concern the exploitation of the
resources (software artefacts, software metadata, test suites, technical documentation) that
the re-users will be able to access at the Reuse Repository.

The component re-use activities are typically done either at the Domain Engineering or as part of
the Application Engineering, based on several factors such as business considerations, timing
aspects, domains specific issues etc. As depicted in Figure 9, the component reuse activities make

Final Report Page 21 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

use of the Component repository through the COMPARE tool as well as interact with the Domain
Engineering.
Such a generic application engineering process however needs to be further detailed in to
multiple phases, with clear distinctions between the phases in order to provide appropriate
guidelines and tools to the SME developer for assisting them in achieving their goals of cost-
efficient development of high quality software systems. However please note that there are
considerable links between system development and component development phases. Also based
on the domain of the application being developed (for example, enterprise or embedded), an
activity at the lower level could be more appropriate to be included either as part of the Domain
Engineering phases or as part of the Application Engineering phases. Further, a generic
application process needs to be adapted based on the prevalent life cycle model (such as
traditional V model, Agile, RUP etc.) being followed in a given SME organization.

1.3.2.3 PROPOSED APPLICATION ENGINEERING PROCESS

In the following subsections we define the OPEN-SME Application Engineering process in
detail. Based on the type of application domain under consideration (whether embedded system
or Enterprise application), the process will include a specific set of phases and activities from
those described.

1.3.2.3.1 Inputs to the application engineering process
On a higher level, the inputs to the application engineering Process are a) the application
requirements and b) available components produced by the domain engineering and stored in the
reuse repositories. The application requirements either come as a specification in an order for
product development or could evolve through discussions with domain experts and the system
developer. Since components are the major inputs to the applications engineering process (as the
assets stored in COMPARE), we provide more details on what a component contains and try to
exemplify. Specifically, for each component, COMPARE will contain:

1. Classification of the components in relation to the domain concepts (see Section 6 “A
Domain Ontology for Domain Representation” of D2.2).

2. Component Information:

a. The source code of the component.

b. Definition of one or more provided interfaces, which list the services the
component type provides and definition of zero or more required interfaces, which
list the functional services the component requires in order to operate correctly.
An interface is a set of one or more operations, with a defined operation signature
determined by an operation name and an ordered set of parameters, each one with
a direction chosen between in, in out, out and a parameter type chosen between the
defined types (Figure 10).

Figure 10: Example definition of data types and interfaces to be referenced in component

implementations.

Final Report Page 22 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

c. Definition of component attributes. Each attribute is typed with an already defined
data type and has a set of modifiers defined at type level (read-only, read-write).
An example is given in Figure 11. From the list of attributes and their modifiers
we can automatically generate a set of operations (possibly in a dedicated provided
interface) which operate as getter and setters for the attribute. In particular: (i) for
read-write attributes we generate a getter and a setter operation; (ii) for read-only
attributes we generate a getter operation.

Figure 11: Example definition of a component's provided interfaces, required interfaces and

attributes

3. Definition of platform constraints (like assumption on the processing unit or execution
platform)

4. Packaging information (name of source code files, information on the generated object
files, etc.)

5. Definition of non-functional constraints (some implementations may place some
constraints on the correctness of their behaviour. For example a control law in an
embedded system may work correctly only if executed within an interval of frequency,
say 5Hz to 10Hz).

6. Additional information for operations (e.g. “threadsafe” or not, i.e. there is a need or no
need to protect interfaces with mutual exclusion at instantiation level).

Figure 12: Example definition of a component implementation

1.3.2.3.2 Application engineering phases
The main phases of the Application Engineering/Development in comparison with “classical”
software development and lifecycle phases, and in relation to the outcomes of the domain
engineering activities (as described in Section B) are as follows:

P1. Application requirements phase
P2. Physical architecture definition phase

Final Report Page 23 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

P3. Application Design Phase
P4. Implementation- Component Realization
P5. System integration phase
P6. System testing phase
P7. Release Phase
P8. Maintenance Phase

The above phases are described in detail in the following subsections along with the main
activities, inputs, roles and outputs in each one of them.

Phase#1: Application Requirements

In a non-component-based approach the requirements specification is the main input for
development of the system. In a component-based approach the requirements specification will
also consider the availability of existing components. Within OPEN-SME, the requirements
should correlate to the assortment of the components, i.e. the requirements specification will not
only be input to further development, but also a result of the activities that took place during both
the Domain Analysis and Domain Implementation phases. For example, certain requirements are
not essential for a project and/or can be slightly modified in order to reuse as-is an existing
component that is too difficult or too expensive to implement from scratch. However this search
is more focused on internal component repository as well as the goal is to identify a set of
candidate (potential) components by looking at the compatibility in a macro level.

Requirement
Collection

Requirement
Analysis

[Remaining requirements]

[No more requirements]

[Component found]

[Component
not found]

Modify
Requirement

[Requirement
could be changed]

Mark requirement as
"non-reusable"

Requirement
cannot be changed

 Requirements Reuse Analysis and Adaptation

Identification of
Candidate Components

Figure 13: Overview of the Application Requirements phase

In this phase the reuser performs the following activities, depicted in Figure 13 (with some
possible support from domain experts):

1. Requirements Collection: In this activity, the reuser collects and specifies the requirements
for the application to be developed.

2. Requirements Reuse Analysis and Adaptation: This constitutes of the following sub
activities:

2.1. Requirements Reuse Analysis: In this activity, the reuser looks for potential candidates
of components satisfying the requirement.

2.2. Requirements Modification: If for a given requirement, no reusable components could
be found, then the reuser together with the optional support of the domain experts decides

Final Report Page 24 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

whether the requirement could be modified.

2.3. Mark Requirement as 'non-reusable': If for a given requirement, no reusable
components could be found as well as it could not be modified then the requirement is
marked as 'non reusable'. This could ultimately result in a request to either domain
engineering or to in-house development.

2.4. Identification of candidate components (Iteration 1): In this phase the first iteration of
the component candidates will be done. Later (in the design and implementation phase)
the same activity will be repeated with slightly different goals. In this phase the goal is to
find the candidates that might meet the component requirements found in the
requirements analysis. The concrete support of this activity will be as follows. The
Domain Feature Models given by the Domain Engineering Process will provide the first
hints on what functionality is supported by the existing components. The Search Engine
of the COMPARE tool will then be used for searching components on the basis of a
multitude of criteria ranging from desired features (functionality) to programming
languages, execution frameworks (e.g. J2EE, .NET), etc. In the first iteration, the
specification of the components do not need to be on a detailed level; for example the
interface functionality (i.e. operations) can be specified, but not necessary all parameters
of the operations, (i.e. the operation arguments). The result of this activity will be a set of
components that might meet the requirements. In the case that a set of component that
fully matches the requirement of the reuser cannot be found, then the resuer will be able
to place a relevant order on the Reuse Repository. If no component was found, the
information will be forwarded to the Domain Engineering process with a possible order
for such components. This can prove particularly effective for the cases whereby the
desired features are supported by some existing components, however the desired
execution framework or programming language is not supported and therefore some type
of component packaging or further adaptation is required.

Inputs:

High level description of the requirements of the application to be
developed
Or this gets evolved during this phase inconsultation with Domain
experts.

Iterative: Yes
Roles: Reuser, Domain Expert (optional)
Tools: COMPARE
Assistive Tools: Requirements Engineering tools

Product Outcomes:

1. List of requirements (original & re-defined)

2. A set of candidate components satisfying them

3. List of requirements that do not have any reusable components

Table 1: Summary of the Application Requirements Phase

Phase #2 –Physical architecture definition

The role of the Physical Architecture is to provide a model-level description of the relevant
hardware of the system. A physical architecture specification can assist in decision making during
component search and selection. Also this can later on get refined based on the software reference
architecture. In the physical architecture the following elements are described:

Final Report Page 25 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

1. Processing units are units that have a general-purpose processing capability.

2. Equipments / Instruments / Remote terminals

3. The interconnection between the elements above, in terms of buses or point-to-point links,
etc.

All the elements above should be decorated with a set of attributes that are relevant for analysis
or code generation purpose. In the case of buses, point-to-point links and equipment, the elements
should be decorated also with attributes to be able to drive an automatic generation of
communication code.

Overall System
Architecture

Detailed System
Architecture

Figure 14: Overview of the Physical Architecture Definition phase

In this phase the reuser performs the following activities (with some support from domain
experts):

1. Overall system architecture: This is based on the requirements on CPUs/nodes, memory,
busses,

2. Detailed system architecture: This evolves through refinement of the overall design by
including details, dependencies, constraints on the types of devices, platform, etc. This comes
from the requirements and also based on the information from Domain Engineers/Domain
Experts. The set of candidate components found during the requirement analysis phase has a
valuable role to play during detailed system architecture modelling. The domain engineer can
provide identification of the potential target platforms. For instance, if majority of the
candidate components run on a specific platform, then this could as well be a deciding factor
from a business perspective.

Inputs:
High level description of the requirements of the application to be
developed

Iterative: No
Roles: Reuser, Domain Expert (optional)
Tools: COMPARE
Assistive Tools: -

Product Outcomes:

1. Platform definition

2. System architecture specification

3. System model decorated with attributes for analysis

Table 2: Summary of the Physical Architecture Definition Phase

Phase#3: Application Design

Final Report Page 26 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

The OPEN-SME application design phase will follow the same pattern as a design phase of
software in general; it will start with a system analysis and a conceptual design providing the
system overall architecture and continue with the detailed design. However, a major deviation
from traditional approaches will be taken as the system architecture will need to adhere to the
Domain Software Architecture and incorporate assemblies of the existing components stored in
the Reuse Repository. As in the requirements process, a trade-off between desired design and a
possible design using the existing components must be analysed. In addition to this, there will be
many assumptions that must be taken into consideration: For example, it must be decided which
component model(s) will be used, which will have impact on the system architecture as well as
on certain system quality properties.

Conceptual
Design

Detailed
Design

[No]

[OK]

[Component found]

[Component
not found]

[Not OK]

Deatiled
Analysis

Identification
of Candidate
Components

Architectural
Deployment

Architecure
level Analysis

[OK]

[Yes]

Create New
Component

[Feasible Design]

[Not Feasible]

[No]

Figure 15: Overview of the Application Design phase

In this phase the reuse Engineer performs the application design and analysis through the
following activities:

1. Conceptual Design: In this activity the reuser identifies the overall software architecture.
Identification of the subsystems or subsystems built from architectural components will be
the focus in this activity. By architectural components we refer to the units of some main
service of the application.

2. Architectural Deployment: This activity will decide on a high level which component will
run on which nodes/platform etc. Here the main considerations are specific requirements and
constraints arising from the candidate components and the platform architecture definitions.

3. Architectural level Analysis: Aspects, which have wider system level implications, are
addressed and analysed in this activity. For instance the fault tolerance requirements (dual vs
multiple redundancies), separation of concerns, physical isolation requirements etc., are
typically analysed during architectural level analysis. The results from the architectural
analysis are used in detailed design activity.

4. Detailed Design: This activity will include design of subsystems, breakdown to architectural
components, identification of components etc. This will also include specification of
behaviours, sequence diagrams and state diagrams. Specification of components includes
specification of interfaces. This will be an iterative activity. Either selecting the existing
interfaces of components, or the specifications of component to be developed will be used in
the detailed design.

5. Detailed Analysis: Based on the system requirements most of the model level analysis with

Final Report Page 27 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

respect to extra functional properties will be performed at this stage to analyse the design
soundness. Resource analysis, timing analysis, reliability modelling etc., are some of the
typical analysis needed and there exists a large set of tools and techniques for performing
these analyses. The exact choice of the tool for a specific type of analysis is not the focus of
the OPENSME project. The results of the detailed analysis will be checked against the
specifications. If they are not satisfactory, the possibility of generation of new components
will be explored with the support of the domain engineer or as in-house development. If the
resulting detailed design turns out to be an infeasible one, the one has to re-start from the
conceptual design activity.

Inputs: Application requirements (from phase 1)
Iterative: Yes
Roles: Reuser
Tools: COMPARE
Assistive Tools: Design and modelling and analysis tools

Product Outcomes:

1. System design (architecture)

2. Architectural components

3. Refined set of candidate/implementable components

4. Analysis results

Table 3: Summary of the Application Design Phase

Phase#4: Implementation- Component Realization

The component realization activities will only partially consist of coding – actually the more pure
a component-based and reuse-oriented approach is achieved, the less coding will be needed. The
main emphasis is put on component selection and its adaptation into the system. This process can
require additional efforts. First the selection process should ensure that appropriate components
have been selected with respect to their functional and extra-functional properties. This requires
verification of the component specification, or testing of some of the component’s properties that
are important but possibly not documented in the Reuse Repository.
Provided that the system architecture adheres to the Domain Architecture the effort required for
the adaptation of components (from the resuer perspective) will be very small or ideally zero. In
any case, using the already tested and documented components from the COMPARE reuse
repository will significantly reduce the burden on the reusers.

Component
Selection [Not Found]

[Found]

Component

Repository

Search
somewhere else

[Adaptation not needed]

VerificationAdaptation

[Adaptation needed] [Found]

In-house
development

[Not Found]

Figure 16: Overview of the Component Realisation phase

Final Report Page 28 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

In this phase the resuer will perform the following activities:

1. Component Selection – the reuser selects the most appropriate components between the
component candidates from the domain component repository. The existing components that
are closest to the component specification from the design phase will be selected. Note that
this specification considers both functional and non-functional properties. Note also, that the
selection process does not only consider the component candidates, but also different
component versions and variants. The candidate components found, will be compared and
ranked. Appropriate COMPARE user interfaces will assist this procedure. A component that
is most suitable for the given requirements and constraints will be selected. The ranking of
components will be maintained throughout system development such that alternatives for a
function can quickly be found. The selection of the components may result with the following
cases for each component: a) the selected component fits well to the specification; b) the
selected component fits partially to the specification, but there are some mismatches,
functional or non-functional, - in that case an adaptation of the component is needed; c) There
is no component that matches the specification from the design phase. In that case this
components should be searched for outside the domain, or internally developed.

2. Component adaptation – When a particular component has been selected it may happen that
it does not comply with the specification (either functional or non-functional properties).
These components should be adapted to meet the specifications. A simplest form of
adaptation is to creation of adapters. Adapters are mediators between components with a goal
to make the components compatible. A typical adapter will change type of the interface but
not the interface itself. A next level of the adaptation is s.c. wrapper – a new “component”
that adjust the interface of the selected component with the component specification from the
design phase. Wrappers can be used to add or remove some parts of the interface, or to
change its behaviour, so this may require some programming efforts. Note however that in
both adapter and wrapper cases the selected component has not been changed. The most
drastic type of adaptation is the change of the component. The resuer modifies the component
for the specific needs of the application. In this case a new version of the component will be
created. In some cases the resuer can send a requirement to the Domain Engineer to perform
the adaptation, if the new adapted component version is suitable for resuablity. In some cases
the resuer will do the changes himself, but the result will be forwarded to the domain
engineering.

3. In-house development – in some cases no components for a specific service will be found in
the domain repository. In some cases the company developing the application encapsulates its
business advantage and do not want to share this knowledge with the domain or other
competitors. This implies that the application engineer (the reuser) will develop specific
components – using the application development tool. In other cases the resuer will develop
the component, but will also share it in the domain. In that case the resuer will send the
component (specification and implementation) to the domain engineer who will probably
improve the component with respect to its reusability.

4. Component verification – when a component is selected and adapted according to the
requirements from the design phase, or when developed, it must be verified. This verification
corresponds to a unit test, so it includes the verification of the functional properties. In
addition some of the non-functional properties can also be verified (for example memory size,
response time, and other component attributes). Despite the fact that components will have
been verified by the reuse engineers during the Domain Implementation Phase, it is very
probable that the reusers will also need to test components themselves towards/after
integrating them in their systems under development. The Test Suite Implementations and/or

Final Report Page 29 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

Abstract Test Suite Specifications that will be available at the Reuse Repository will be
exploited for assisting this procedure. The first level of verification will include testing
functional and certain extra-functional properties of a component in isolation (unit testing). A
second level of verification includes testing the component in combination with other
components integrated in an assembly (integration testing). The reusers will be able to
provide structured feedback (e.g. bug reports, and orders for its fixes) on the implemented
components. This type of orders and feedback is very important, since it will allow the
repository growth over time with many variants of existing components, suitable for different
environments or with slightly different functional and/or quality properties.

Inputs:
System conceptual and detailed design
Physical architecture specification
Components candidates

Iterative: Yes
Roles: Reuser, Domain Expert (optional)
Tools: COMPARE
Assistive Tools: Application development tools, test tools, error reporting system

Product Outcomes:

1. Components ready to be integrated into the system

2. Adapters and wrappers needed for the components adaptations

3. New components – candidates for the Domain Engineering

4. New component versions – candidates for the Domain
Engineering

Table 4: Summary of the Implementation-Component realization Phase.

Phase #5 – System integration

This phase includes activities that support integration of the selected, or the newly created
components into the application. In the component-based approach this phase, although consists
of many complex activities, most of them are integrated parts of many component technologies
and are done automatically or semi-automatically. Further, we refer to two types of integrations:
a) integration of a set of components into assemblies that constitute a service or a subsystem or an
architectural unit, and b) the entire system. Also the integration can be completed a) before the
deployment of the application, but also b) after the deployment of the application – when a new
component is deployed into the application during run-time (a well-known “plug-and –play”
component deployment). See Figure 17.

Final Report Page 30 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

Figure 17: Integration in different phases

The list of the integration activities is depicted in Figure 18 and detailed descriptions are as
follows:

Component Instance
definition

Allocation of
component instances

Component
deployment

Component binding

Figure 18: Overview of the Integration Phase

1. Component Instance definition – Component instances are defined from selected or new
component implementation. The component instance is the component entity that gets
concrete values of functional and non-functional properties. For example, a component can
have parameterised interface, which in the instantiation process gets some concrete values.
Similar is with some of the non-functional properties (for example static memory size).
Instantiation with variant properties is a common use in product line engineering approaches.
Figure 19 illustrates a component instantiation where the component is annotated with
concrete values of the attached attributes. Note that some of the attributes depend on the
physical platform the component will be deployed (which is specified in the phase 2 –
physical architecture).

Final Report Page 31 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

Figure 19: Declaration of component instances

2. Allocation of component instances – The allocation of the components is supposed to be
done in the design phase. Here, according to that input, the component instances are allocated
on the physical structure - by this the component instances get the concrete values of some
properties. Instances of components are allocated to processing units defined in the physical
architecture. The need for explicit allocation of component instances is necessary when two
or more processing units are defined in the physical architecture. In the vast majority of cases,
given two components allocated on distinct processing units, it is straightforward to deduce
the allocation of the bindings between them. In fact typically there is only one bus or point-
to-point link that connects the two processing unit. However, there can be the case were there
are more connections between the units.

3. Component deployment – this is the activity that integrates the component into the
application – i.e. it creates a connection to the underlying platform, middleware or component
containers. This is usually a matter of the component technology. Containers are special type
of the components/wrappers that are carriers of certain properties (for example they
implement authentication mechanisms that are activated when the components from that
container are being accessed. Containers enable connection to the middleware and indirectly
to other containers and components. The provided and required interfaces of the container
match the interfaces of the components. As carriers of certain properties the containers are
often means for management of non-functional properties (aka extra-functional properties –
EFP). This management is related to runtime EFPs and realised in combination of
components and underlying component execution platform that can often be integrated as a
part of a middleware. We distinguish four types of support (see Figure 20): (i) Exogenous
Management. The EFP management is provided outside the components, (ii) Endogenous
Management. The EFP management is implemented in the components, i.e. the component
developers are responsible to implement it; (iii) Management per Collaboration. The EFP
management is realized in direct interactions between components; (iv) System-wide
Management. The EFP management is provided by the component framework, or underlying
middleware. By a combination of these types we get four possible types of the EFP support:

Final Report Page 32 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

Figure 20: Support for Management of extra functional properties

 Approach A (endogenous per collaboration). A component model does not provide any
support for EFP management, but it is expected that a component developer implements
it. This approach makes it possible to include EFP management policies that are
optimized towards a specific system, and also can cater for adopting multiple policies in
one system. This heterogeneity may be particularly useful when COTS components need
to be integrated. On the other hand, the fact that such policies are not standardized may be
a source of architectural mismatch between components. A risk of using this approach is
heterogeneity of policies for handling a single EFP in a system. As a result, managing and
predicting emerging properties at the system level can be very difficult.

 Approach B (endogenous system-wide). In this approach, there is a mechanism in the
component execution platform that contains policies for managing EFPs for individual
components as well as for EFPs involving multiple components. The ability to negotiate
the manner in which EFPs are handled requires that the components themselves have
some knowledge about how the EFPs affect their functioning. This is a form of reflection
applied to EFP management.

 Approach C (exogenous per collaboration). In this approach, components are designed
such that they address only functional aspects and are oblivious to EFP. Consequently, in
the execution environment, these components are surrounded by a container. This
container contains the knowledge on how to manage EFPs. In this approach, containers
are connected to other containers. Connected containers can manage the EFPs for the
components that they encapsulate. The container approach is a way of realizing the
separation of concerns in which components concentrate on functional aspects and
containers concentrate on extra-functional aspects. In this way, components become more
generic because no modification is required to integrate them into systems that may
employ different policies for EFPs. Because these components do not address EFPs, they
are simpler to implement. A disadvantage of the container approaches might be a
degradation of the system performance.

 Approach D (exogenous system-wide). This approach is similar to approach C, except that
the system can coordinate the management of an EFP from a global system-wide
perspective (e.g. global load balancing). Consequently, a more complex support need to

Final Report Page 33 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

be built into the component execution platform.

4. Component binding – this is the activity in which a component implements connections to
other components (components binding). Component bindings are established between
component instances. The binding is established between the required interface of a
component instance and the provided interface of another component instance. The binding is
subject to a static check to ensure that the candidate provided interfaces fulfils the functional
needs of the client required interface. This can be done by asserting the compatibility of the
two interfaces (as shown in Figure 21). An alternative approach instead does not rely on the
signature of operations (name of operation, ordering, type and direction of parameters), but
the compatibility of two interfaces is checked ignoring the names of interfaces (and
operations therein) and just asserting the compatibility of the types and the direction of the
parameters of the operations. If the binding is considered legal according to this binding
approach, a later step requires that when the required interface is called, the call is dispatch to
the correct operation in the bound provided interface. The signature of the calling operation
(in the RI) and the called operation (in the PI) in fact are different. Arguably, the connector is
in charge of performing this step and a tool support should help the configuration of the
connector to perform this kind of binding. When bindings have been established, it is possible
to complete the description of the instances with synchronization properties, queuing
properties (like queuing protocols and queue sizes), non-functional properties (like Minimum
Inter Arrival Time) and end-to-end timing properties.

Figure 21: Definition of component bindings

In distributed applications, and in the applications with dynamic binding (plug-and-play) special
types of connectors can be created – proxies that play a role of components and transparency in
the application development. The proxies, as well as some adapters and containers can be
automatically created by the tools, but also saved in the Domain engineering repositories if they
are typical domain-specific solutions.
Table 5 shows input/output and the tools used in this phase:

Inputs:

1. Components ready to be integrated into the system

2. Adapters and wrappers needed for the components adaptations

3. Physical platform detailed specification

Iterative: Yes
Roles: Reuser, Domain Expert (optional)
Tools: COMPARE
Assistive Tools: Application development/integration tools

Final Report Page 34 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

Product Outcomes:
1. Component assemblies ready for the verification

2. The application

Table 5: Summary of the Application Integration Phase

Phase #6 – System testing

Due to the fact that the tests that will have been performed in isolated components are usually not
enough, since their behaviour can be different in the assemblies and in other environments,
thorough system and subsystem tests will need to be performed. In case of embedded systems,
multiple levels of verification and validation often need to be performed using simulations,
hardware-in-loop, etc., before the system can be deployed in actual operational environments. In
the waterfall model the test is performed after the system integrations, whereas in CBD Tests are
present in all phases. Tests are performed on isolated components (unit testing), component
assemblies and finally on the system
In this phase the developed system is verified against the system specification. This is also known
as testing in the large and proves the systems readiness for deployment. Any system failure or
abnormal behaviour will lead to debugging and bug fixing activities. The structuring of the
system test suite and logging of test results should be performed in such manner to facilitate the
reverse traceability of a failure to a fault (bug) in a specific component. Once a bug has been
associated with a specific component, then bug fixing can be attempted either in-house or with
the help of the domain engineer. In any case the rectified component is stored back in the
repository as well regressing testing is performed on the modified system.

Test case
Execution

Test result
Analysis

[More tests
remaining]

[No more test cases]

[No bugs found]

[Bugs
found]

Fixing the
Component

Regression
Testing

Debug and Identify
faulty component

Test case
Generation

Figure 22: Overview of the System Testing phase

The major activities performed during the System Testing phase are as follows:

1. Test case Generation: – As a starting activity reuser is generating a set of test cases or test
suite from the system requirements specification.

2. Test case Execution: – In this activity reuser is executing a predefined set of test cases or test
suites on a complete system in a setting that is as close as possible to the real environment.

3. Test results Analysis: – Upon executing test cases, reuser has to perform analysis of test
results to compare if the results are as expected by the system requirements. This activity will
define if some specific behaviour of components should be considered as a fault of the system
or not.

4. Debug and identification of faulty component: – For each fault in the system identified

Final Report Page 35 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

during test results analysis, reuser has to perform debugging activity in order to locate the
faulty component.

5. Fixing the faulty component: – Once the faulty component is identified reuser can modify
the component in-house or collaborate with domain engineering in obtaining a new version of
component.

6. Regression testing: – When a new component is obtained reuser has to perform regression
testing in order to validate that the bug previously identified is addressed but also to ensure
that new bugs are not introduced in the system with a new version of component.

Inputs:
Application requirements
Integrated application

Iterative: Yes
Roles: Reuser, Tester
Tools: COMPARE
Assistive Tools: Testing tools, Test Management Systems

Product Outcomes:

1. Modified components – candidates for the Domain Engineering

2. Test Suites

3. Verified and deployable release of the application

Table 6: Summary of the System Testing Phase

Phase#7 - Release Phase

The release phase includes packaging of the software in forms suitable for delivery and
installation. The component-based development release phase will not be significantly different
from that of a “classical” software development process. The major activities performed during
the Release phase are as follows:

1. Deployment: –The release is deployed on the specified target platform.

2. Release Certification: – In this activity reuser will execute a predefined set of test cases or
test suites on the deployed release of the system. Once the verification activities (mainly
functional ones) are completed, the application is certified for release.

Inputs:
Application Release
Target Platform
Release Test suites

Iterative: No
Roles: Reuser, Tester
Tools: -
Assistive Tools: Testing tools, Test Management Systems
Product Outcomes: Certified and deployed release of the application

Table 7: Summary of the Release Phase

Final Report Page 36 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

Phase#8- Maintenance Phase

The maintenance of a software system is a necessity mainly due to the changes of the
environment that the software operates in. Even if a system functions properly, as time goes by, it
has to be maintained. The approach of a component-based development process is to provide
maintenance by replacing old components by new components or by adding new components
into the systems. The paradigm of the maintenance process is similar to this for the development:
Find a proper component, test it, adopt it if necessary, and integrate it into the system. These
activities are essentially those discussed earlier as part of component realization and hence are not
repeated here.

Select replacement
Component

New Components

Integration

Adaptation

Figure 23: Overview of the Maintenance phase

The major activities performed during the maintenance phase (Figure 23) are as follows:
1. Selection of Component to replace: –The decision for replacement of a component could be

based on several factors. Limitations in performance of the current system, dependencies to
other modifications or updates in the target platform or middleware, or even the release of a
new upgraded version of a component could trigger this activity.

2. Component Adaptation: This will be same as in previous cases.

3. New Component development: Same as in previous phases. This can be either ordered from
the domain engineering or developed in house.

4. Component integration: Same as in System Integration phase

Iterative: No
Roles: Reuser
Tools: COMPARE
Assistive Tools: --

Product Outcomes:
1. New version of the system
2. New/Updated components stored in COMPARE

Table 8: Summary of the Maintenance Phase

1.3.3 OCEAN
Source code search engines assist the software development process by providing a way of
searching for free source code in code repositories. Although their use is rather straightforward,
there exist a few of them and the differences in the way they index and provide access to their
assets require considerable time and effort from the programmer to use them. This Section
describes OCEAN, a federated open source code search engine, that simultaneously asks, in real
time, existing open source code search engine sites and detail the way we overcome the

Final Report Page 37 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

integration obstacles, by combining provided APIs, browser automation and web content
extraction techniques.

1.3.3.1 Introduction

The concepts of Software Reuse [16] and Rapid Development have been adopted by large software
development companies, small and medium enterprises (SMEs), research institutes and freelancers.
According to a survey conducted in [17], software reuse in general and Free/Libre Open Source Software
(F/LOSS) reuse in particular are important for the software development SMEs for a series of reasons:

 Reuse has a positive effect on lowering the development costs (91%), shortening the development
and testing time (83%), increasing the quality of the final product (76%) and shortening time to
market (72%).

 In relation to the different artifacts that can be reused, source code is the most important (87%),
followed by design (80%) and documentation (75%).

 Almost half of the organizations (51%) have an in-house reuse repository whereas 39% have some
formal process for reusing components they develop.

 The vast majority of the respondents (80%) said that their organization supports OSS reuse.

Meanwhile, millions of lines of reusable code have become available in the different source code forges
and, in many cases, lots of alternatives exists for specific functionality [18]. This availability (and
"redundancy") uncovered the need for effective ways of discovering reusable source code.

Source code forges (SourceForge, Git, Bitbucket, etc.) provide ways for internal navigation and search
(such as categories, tags and internal search engines). For the reuse engineer however, who’s primary goal
is to find the component that best fits the needs of the functionality he wants to implement, searching to
each source code forge separately, creates a significant overhead. This is also captured in [17], where the
most important factors preventing OSS reuse were the lack of documentation (80%), the uncertainty on
the quality of OSS components (76%), and the difficulty in searching and retrieving OSS components
(66%).

Web-based source code search engines follow the architecture of classic, web search engines. Despite the
differentiation of the nature of their data (that is, source code files), they provide crawling, indexing,
reporting and ranking mechanisms identical to those of a typical web search engine. This is probably the
reason why only 12% of the responders in [17] said that they have used a specialized OSS code search
engine. They seem to prefer general purpose web search engines instead (e.g. Google). In fact, general
purpose web search engines contribute more reusable components than specialized code search engines
(65% vs. 31%). More significant is the fact that this 31% comes from the aforementioned 12% [17]. It
seems like there is quality in the specialized OSS code search engines. The above observations suggest
that the current status of specialized OSS search engines leave much to be desired for the developers [19],
since although they can be potentially an important source of reusable components, the developers do not
view them as important enough to use them. Finally, one cannot overlook the diversity of important
sources of reusable components: in-house and public code repositories, specialized (code) and classical
search engines. This, together with the difficulty reported earlier in searching and retrieving OSS
components asks for a search mechanism able to provide results collectively, from different free/open
source code sources.

Focusing on website-based code search tools, Krugle [20] and Koders [21] are among the most popular.
They host source code on which they provide search services and also index other forges like Sourceforge.
Merobase [22] can be mostly described as a code meta-search engine since it does not own a code
repository but rather indexes and collects metadata from other sources on which it provides search
services. Moreover it defines itself as component oriented search engine, meaning that, it can return sets of
source code classes that implement a specific functionality. These specialized code search engines are
valuable but each one poses specific requirements to the user, like searching using a diversity of search
forms with different criteria in each or interpreting differently presented results. This definitely creates
cognitive overhead to the end user. Even availability is sometimes questionable and thus a source of

Final Report Page 38 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

frustration. Finally, dealing with more than one search points is more time consuming. Eventually, the
"Google solution" becomes more attractive and the findings in [17] get justified!

Software reuse in general and OSS reuse in particular is important for the software development SMEs.
To alleviate the problems mentioned and make the use of web-based code search engines more attractive,
we propose a federated code search engine that provides the user with a single point to define his criteria-
based search query, propagates the question to other code search engines in real time and finally presents
the aggregated results to the user ([29, 30]). The proposed architecture can cooperate with individual code
search engines either through an API or by using browser automation and web content extraction
techniques.

1.3.3.2 OCEAN High Level Design

The federated code search engine we propose should be flexible enough to incorporate individual existing
or future code search engines. Typically, one can retrieve data from another web source either through an
API or via web content extraction. Having an API is preferred because it is faster and more reliable.
Merobase belongs to this case. However, in cases like Koders and Krugle, which give their answers as http
pages only, web extraction is the single option. Web content extraction is the non-trivial process of
collecting unstructured web data and storing them in a database or an XML file [31]. This is usually
accomplished by pattern matching an html pattern (extraction rule or wrapper) with a target web page.
Upon a successful match, a data record becomes available as data from the web page is unified with
variables in the extraction rule. Tricky cases like record-data scattered on different html sub-trees, pages
with more than one data records, data records distributed in many web pages as a result of some
pagination procedure, incomplete data records that break the html pattern used, etc., make the extraction
task non-trivial. Flexibility in extraction rule management by means of visual/GUI tools, deployment and
orchestration (use many extraction rules in a cooperative fashion) are all required features from a web
extraction solution that we want to last long. The deployment diagram of the proposed system is depicted
in Figure 24. Queries submitted via the single search form provided, are forwarded as http calls to one or
more query services (this is a user preference) utilized by the query engine. Each of these services
forwards the query to its own code search engine, collects the results in XML format and sends them back
to the main system where they are collated and presented in HTML to the user. The system aims at
reducing the time and effort required by a user to search all the individual search engines, offering a
transparent search solution. It does not perform any actual asset indexing or search by itself. A prototype,
namely OCEAN [25], of the federated code search engine described in Figure 24 has been implemented,
in the context of the OPEN-SME project.

Figure 24: Deployment diagram of the federated code search engine.

1.3.3.3 Implementation Details

In this section, we give implementation details of the Query Engine subsystem (Figure 24), which actually
implements the federation. It supports two types of foreign search engine integration: API-based and

Final Report Page 39 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

Extraction-based.

1.3.3.3.1 API‐based Integration
Merobase

Merobase [22] integration belongs to this case and was implemented by means of a JAR search client
provided by the Merobase creators. A Perl web service was written utilizing this API and returning the
results for a user-specified query in a suitable XML format. The Merobase API supports 2 parameters: s
for the search keyword and n for the number of results requested. An upper limit of 30 results per query
has been set by Merobase developers. An example http call the OCEAN sends to call this service is:

http://<system>/cgi-bin/merobase.pl?s=java&n=25

It is clear that, adding another API based search engine into the OCEAN's federation, is just a matter of
pipelining its API with OCEAN's search form by means of a Perl script (as merobase.pl does in the
example above).

Google Code Search

Google Code Search was integrated through its API. It turned out though that soon after the integration
Google announced that the service will be no longer available. This is a nice example of the value of a
federated search that continues to serve its users even though some sources are not available. Given the
situation described, we do not give further details on this case.

1.3.3.3.2 Extraction‐based Integration

When APIs are not available, web extraction does the integration. This requires the availability of an easy
to use, robust and flexible web content extraction framework. DEiXTo was the tool of choice. It is briefly
described right after.

DEiXTo – A web content extraction framework

DEiXTo [27] is a powerful web data extraction tool that is based on the W3C Document Object Model
(DOM). It provides the user with an arsenal of features aiming at the construction of well-engineered
extraction rules that describe what pieces of data to scrape from a website. DEiXTo consists of three
separate components: a) GUI DEiXTo, implementing a friendly graphical user interface that is used to
manage extraction rules. b) The Command Line Executor (CLE for short) massively applies wrapper
project files built with GUI DEiXTo, on the desired web pages. CLE is actually a specialized instance of
DEiXToBot. c) DEiXToBot is a Perl module aiming at tailor-made scraping and browser automation
solutions. It facilitates the combination of multiple extraction rules as well as the post-processing of their
results through custom code. Therefore, it can deal with complex cases and cover more advanced web
scraping needs at the cost of the programming skills it requires.

Since there was no API access available for Koders [21] and Krugle [20], DEiXTo-based wrappers were
successfully deployed in order to enable the extraction of the N first results returned from these search
engines.

Koders

Koders [21] integration was smooth, in the sense that the html result pages were fully accessible by
DEiXTo. The service supports 4 URL parameters: s for the search keyword, li for license type, la for
language and n for the number of results requested.

Krugle

Krugle [20] integration on the other hand raised some difficulties mostly due to the heavy use of AJAX
calls in its search results pages. Currently, DEiXTo does not support JavaScript automation. As a result we
used Selenium [28] which actually automates a Firefox instance and were able to get Krugle's HTML

Final Report Page 40 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

results properly, and then forwarded them to DEiXTo for the actual extraction. Again, OCEAN sees
Krugle as a web service supporting 4 URL parameters: s for the search keyword, pro for the aiming
project, lic for the desired code license and n for the number of results desired.

1.3.3.4 The System in Use

The main screen of the search facility of OCEAN consists of the form depicted in Figure 25. In the
textbox entitled "Search" the user can specify the keyword(s) of his search, separated by spaces. The
search space can then be narrowed down by using the three combo boxes labelled language, license and
type, respectively. Language refers to the programming language of the source code the user wishes to
retrieve (e.g. Java, Perl, PHP, etc.). License refers to the type of the license under which the source code
retrieved has been initially published. Finally, type refers to the type of the file the user is looking for. This
type can be class, interface or enum (enumeration type). If any criteria do not apply to some search
engine, they are simply omitted.

Figure 25: OCEAN’s Search form in action

OCEAN provides a set of preferences allowing the user to customize the service to her own needs. In
preferences (Figure 26), the user can review his account details (if he is a subscribed user) and manage his
account credentials and saved queries. He can also set the number of results per search engine OCEAN is
going to return as well as the individual search engines he would like to include in his query.

Figure 26: OCEAN’s Preferences Screen

In the query of Figure 25, the system returned six results, three of which were retrieved by Merobase and
three other from Koders. For this specific query, Krugle did not return any results although it was
engaged. The aforementioned summary of results is reported at the bottom of Figure 25. The detailed
results (Figure 27) include the following information: the source search engine (Search Entry), the title of
the source file returned and the URL of the repository to which it is hosted (Result Entry), lines of code
(loc) for the source code file (Metrics), any possible metadata (Metadata) and finally the type of license
under which the source code file was originally published. For search engines providing more detail,
OCEAN can also provide more detail since we do extract all the data available. Currently, OCEAN does
not perform any global ranking on the results. They are displayed in the order returned by their search
engines.

Final Report Page 41 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

Figure 27: Detailed search results

Table 9 presents some performance results of a few, informal, comparative runs. The aim was to get an
idea of the overhead introduced by the Query Engine of OCEAN. For the rest of the system, the overall
performance depends on the performance of the slowest code search engine used (they used in parallel).
OCEAN's performance in terms of speed and response time is quite satisfactory, at least to a large extent.
The slowest search service is the one that queries Krugle. This is due to the fact that Selenium automates a
Firefox instance and in its current implementation needs to get launched each time a query is posed to
OCEAN. This introduces significant delay.

As far as Merobase and Koders are concerned, the required time for a search to complete is relatively low.
Especially for Merobase, because of the API-based integration, the time needed was a bit smaller than the
time the native Merobase web interface requires.

keyword: calendar pref/nces: "all languages" "all licenses"
KODERS: 3.9 OCEAN w/ KODERS (10results): 9.6

OCEAN w/ KODERS (25 results): 10.0
KRUGLE: 7.0 OCEAN w/ KRUGLE (10 results): 32.6

MEROBASE: 7.8 OCEAN w/ MEROBASE (10 results): 5.7
OCEAN w/ KRUGLE+KODERS+MEROBASE (10 results): 36.6

Table 9: Delays for Answer Recorded in Various
Query Scenarios (All Times are in Seconds)

Finally, it should be noted that the Query Engine was run separately from the rest of the OCEAN. It was
accessed through a large and constantly busy academic network that definitely contributes slightly in the
delays recorded.

1.3.4 COPE
The Component Adaptation Environment (COPE) tool is used by reuse engineers of SME AGs to
recognize, extract, test, document etc. components from OSS projects. The extracted components
are then placed in the Component Repository and Search Engine (COMPARE) tool that is used
by SMEs to discover the extracted components in the context of the application engineering
process.
SME AGs experts, who are the operators of COPE, are called reuse engineers. After they have
identified a potentially interesting OSS project for the application domain of their software
development SMEs they create a reuse project for this OSS project using COPE. A “Reuse
Project” combines the source code related information (of the original OSS project) with
information resulted from the analysis process carried out by the reuse engineer. A Reuse
Project’s lifecycle consists of four phases. First there is an Analysis phase in which the source
code of the target OSS project is being analysed and the results of this analysis are being stored in
the reuse project database. Then in the Component Recommendation phase the COPE tool
automatically suggests class clusters that could serve as reusable components. The suggestions

Final Report Page 42 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

can be based on different criteria. Following in the Component Making phase a set of
functionalities allows the user to extract components from the reuse project by either using class
clusters recommended in the Cluster Recommendation phase or by selecting a single class that
along with its dependencies will form a reusable component. Finally in the Knowledge
Management phase the user provides information for the generated components. Using the
“Semantic Application” feature, the user can describe the functionality of each component.
Moreover the reuse engineer can classify the resulting component to a specific domain and
concept and finally upload the component to the COMPARE component repository.
The creation of a reuse project entails a preparatory phase in which the reuse engineer collects
some project artefacts that are required by the COPE analysers and recommenders. These
artefacts include: (a) The binary file of the compiled program which in the case of Java is a Java
Archive (JAR file), (b) The libraries used by the project which are a collection of external JAR
files that the project reuses, (c) The Version Control System URL of the project if available, and
(d) The source code directory of the project which contains the source files. COPE reuses itself a
number of Open Source components to perform its analysis. Some of these components require
the binary JAR file.
After a reuse project has been created the first step is to perform static analysis. Static analysis is
used to collect dependencies and metrics from the source code. COPE stores these facts in a
relational database that relates information extracted by different types of analysis and related
tools.

Figure 28: COPE Database Entity Relationship Diagram

Figure 28, depicts a part of the COPE database schema. Information originating from different
source code analyzers is unified so that it is possible to recommend clusters of classes for
componentization with algorithms that make use of the combined information. In Figure 28 we
can see that there are projects which have a number of classes. Classes have dependencies with
other classes and packages. Packages contain a number of classes. The dependencies are
collected from the Classycle tool [32]. However for each class we also collect the Chidamber and
Kemerer (CK) metrics [33] for Object-Oriented design complexity. The information for the CK

Final Report Page 43 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

metrics is collected with the usage of the CKJM tool [34]. In COPE’s DB schema this
information is inserted as fields in the class table (e.g. WMC, DIT, NOC etc.).
The general approach for COPE component extraction is depicted in Figure 29. In Figure 29, we
can see the different layers of COPE. At the first layer a number of analysers, analyse the OSS
artifacts and insert the information in the database of OSS facts. At the second layer a number of
recommenders access these facts and based on the facts recommend clusters of classes for
component extraction. At the third layer these recommendations are used to create components
from the selected recommendation. Although the process is tool-assisted it is not automatic. The
reuse engineer decides which recommendation to accept and which component to extract.
Furthermore after the component extraction has been performed the reuse engineer uses COPE to
perform the testing and validation of the component and to create the test documentation for the
testing and validation process. He or she also classifies the component under a domain and
category and uploads it to the component repository where it becomes available to the reusers.

Figure 29: COPE Layers

1.3.4.1.1 Component Recommenders

Using the Cluster Recommendation options, the reuse engineer can easily come up with some
recommendations of class clusters that could form possible components. For the time being COPE
provides the following methods for recommending such class clusters:

 Dependencies Recommender: uses a genetic algorithm in order to form class clusters using the
source code of the Reuse Project.

 Pattern Recommender: forms clusters based on design patterns detected in the source code of
the Reuse Project. Patterns are detected using the approach and the tool described in [35].
Currently Adapter and Proxy design pattern instances are used as indications for
recommendation of clusters. These two patterns were selected as more relevant for the purpose of

Final Report Page 44 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

component identification. Other design patterns (e.g. Façade) may also be appropriate. The
effectiveness of the different design patterns for component extraction is currently an active
research area in our team.

 Reusability Recommender: Another very useful approach is to select a class and extract a
component based on this class. The resulting component will have the interface of the public
methods of the class and will include all the required classes for the reuse of this class. The
reuse engineer can select this class based on the metrics that are presented in the main window,
and especially the Cluster Size (i.e. the number of recursive dependencies of the class), the
class Layer (i.e. how high or low is the class in the digraph of the project) and R (our
own reusability index based on the Chidamber and Kemerer metrics suite for OO design
complexity) metrics. Classes which are lower in the layered digraph of the project (have small
layer value), have few dependencies (have small Cluster Size) and have larger R value (are more
reusable) are good candidates for reusable components. The reuse engineer can extract components
by right-clicking any class from the main window that seems promising based on the
aforementioned metrics and extract a component for this class

All recommenders present a similar dialog to the reuse engineer who can examine the recommendations.
In Figure 30 we can see this dialog.

Figure 30: Cluster recommenders’ dialog

The reuse engineer can select a class cluster (i.e. the recommendation) and examine the classes
that are contained in it. In addition a class diagram is generated for visualization of the cluster.
The reuse engineer can also examine information for the selected cluster and class including a tag
cloud with terms encountered often for each class and cluster and a Latent Semantic Analysis
(LSA) based index of the terms which are encountered in both cluster and class levels.
The visualization and the information are intended to provide the reuse engineer with a quick
view of the cluster that is recommended and the high-level function of this cluster in a system.

1.3.4.1.2 Component Makers

Based on the analysis and recommendations carried out earlier the Reuse Engineer can now
produce independent software components and then place these components in the repository
using the ‘Knowledge Manager’ feature of COPE. Four different kinds of component makers are
currently provided. The Interface Maker uses as input the clusters produced by the ‘Dependencies
Recommender’. The Dependency Maker presents all the classes of the project along with their
reusability assessment and the reuse engineer can select a class and extract a component
providing the functionality of the selected class. The Adapter Pattern Maker presents the clusters
produced by the ‘Pattern Recommender’ and displays clusters involved in Adapter pattern
instances. The Proxy Pattern Maker presents again the clusters produced by the ‘Pattern
Recommender’ but this time it displays only clusters involved in Proxy pattern instances.

Final Report Page 45 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

The user interface is again similar for the provided component makers as depicted in Figure 31.

Figure 31: Dependency Maker Dialog

The reuse engineer can select a component as well as an interface generation policy (e.g.
generation of an interface for the selected class, or generation of an interface for each externally
referenced class) and provide a name for the component. The generated component contains all
the required classes which are extracted from the project along with one or more generated
interfaces for the component. Besides the original source code files and the generated interface or
interfaces, the project libraries are also copied and an Ant build script is generated for the
compilation of the component in an Integrated Development Environment (IDE).
Extracted components will be opened for further processing using an IDE (e.g. Eclipse or
NetBeans). The reuse engineer will use the IDE to comprehend the component, create test cases
for it or execution scenarios and discover further dependencies that are required which are not
recoverable through static analysis alone (e.g. data dependencies). The component can then be
tested dynamically using the test cases or execution scenarios that were developed by the reuse
engineer as we explain in the following Subsection.

1.3.4.1.3 Component Testing & Validation

After the component source files have been extracted the reuse engineer will process the
component further in an IDE. This is an essential program comprehension step in which unit tests
or execution scenarios examining a specific functionality are created. Also it is important to
resolve additional dependencies, such as data dependencies, that are required for the component
to work.
After the reuse engineer has created some test cases for the component using the IDE and has
resolved any additional dependencies which are necessary for the component to work
independently, returning to COPE the feature of Dynamic Analysis will enable the reuse engineer
to do the following:

1. Compute different types of test coverage based on the tests that were created. The types of
coverage include Statement Coverage of the Component, Statement Coverage per Method
of the Component, Linear Code Sequence and Jump (LCSAJ) coverage of the
Component, and LCSAJ Coverage per Method of the Component.

2. Produce a Control Flow Graph per method of the Component which depicts the paths
followed during the method execution of the test cases. CFGs are generated statically
parsing the source code of the component. Aspect-Oriented instrumentation is then used
to instrument the byte code and generate the trace of the execution. The instrumentation is
necessary for tracing the execution path through the CFG and for calculating the LCSAJ
and Statement coverage.

Final Report Page 46 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

3. Perform validation which is a Model-Based Testing (MBT) [36] approach in which a
large number of unit tests are generated automatically, utilizing method invariants
provided by the Daikon invariant detector [37] and the component is then tested against
the generated tests.

4. Produce the test HTML report which is a number of HTML pages, similar to JavaDoc,
that package all the aforementioned information to an easily accessible format. The test
HTML report will be included in the component package when it is uploaded in the
component repository

1.3.4.1.4 Component Packaging & Classification

The component package that is generated from the usage of COPE is depicted in Figure 32. It
includes the following: (a) A top directory with the component name, (b) A readme.txt file which
contains information such as: A short description of the component, the originating OSS Project,
license or licenses, the programming language and technology, other components it uses if any,
and the domain and main concept of the domain the component provides, (c) Component source
files, (d) Required Libraries, (e) Component Documentation generated by UML commercial or
open source tools, and (f) The test HTML report which includes separate subdirectories for each
test case along with the test results (coverage etc.).

Figure 32: Component Package Directory Structure

Final Report Page 47 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

The component package is then compressed to a file that is then classified using the Knowledge
Manager feature of COPE and is uploaded in the Component Repository.
The Knowledge Manager (Figure 33) allows the reuse engineer to provide metadata for the
component.

Figure 33: Knowledge Manager UI

The metadata for the component includes the following:

 The tier of the component. This is a characterization of the component’s intended layer in
the system. The component can be an Enterprise level component which encapsulates
domain-specific functionality, a Resource level component which provides a generic
service (e.g. database storage), a Workspace component which can, for example,
coordinate different Enterprise level components in a workflow, or a User Interface
component.

 The URL of the component package from which the reusers can download the
component.

 The version of the component

 The programming language (e.g. Java) of the component and the technology (e.g. Java
Enterprise Edition)

 The other components that the component uses, and

 The Domain metamodel under which the component was classified and the domain and
concept that the component implements from this metamodel.

In addition the reuse engineer can use an ‘Open Component Classification Console’ to define
domain metamodels for domains and concepts of these domains that are used when providing the
aforementioned component metadata. Finally the reuse engineer can upload the component after
this classification to the component repository (COMPARE) which makes it available to the
reusers.

Final Report Page 48 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

1.3.5 COMPARE

1.3.5.1 Introduction

COMPARE (Component Repository and Search Engine) is a tool that allows SME software re-
users to search and discover the assets (software artefacts, technical documents, test suites,
metamodels) produced by the Domain Engineering Process. COMPARE features an advanced
search engine that can be used for searching among the components, according to specific needs
and selection criteria ranging from desired features (functionality) to programming languages,
execution frameworks, etc. Also, COMPARE supports the effective communication of structured
information flows between the software re-users (asset consumers) and the reuse engineers (asset
producers). These information flows allow re-users to place orders/requests and provide their
feedback (e.g. bug reports) to the re-use engineers.

1.3.5.2 Technology platform

The COMPARE application is developed using the open source Apache-MySQL-PHP software
stack. Also, COMPARE reuses extensively existing open source frameworks and web
applications that provide various types of functionality. These tools are depicted in Table 10.

Tool Functionality URL License
Joomla
Framework

Software development
framework for the
development of web
applications.

http://www.joomla.org/ GNU GPLv2

MediaWiki Open source wiki package
written in PHP, originally
for use on Wikipedia.

http://www.mediawiki.org GNU GPLv2

Apache
Subversion

Software versioning and
revision control system.

http://subversion.apache.org/ Apache License

WebSVN Online subversion
repository browser

http://www.websvn.info/ GNU GPLv2

Table 10: Tools comprising the COMPARE platform

1.3.5.3 Architecture Overview

The key objective of the application described in this document is to allow users to search and
discover Software Components, allow users to upload new Software Components and provide
community features regarding them. From the users point of view the application is a series of
dynamic web pages, accessible through a web browser. On the backend, the application searches
and retrieves data from a database and from other external sources through its external interfaces.

Final Report Page 49 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

Figure 34: COMPARE network architecture

COMPARE is built on top of the Joomla framework and its architecture is heavily based on it.
The Joomla architecture is decomposed in three tiers. The framework tier which includes the
framework and the core plugins, the application tier which provides factory classes for
application specific objects along with supporting APIs, and the extension tier which extends the
functionality of the framework. Each Joomla extension that was created follows the MVC pattern
depicted in Figure 35.

Figure 35: The Model View Controller pattern

In the MVC pattern, the model manages the behavior and data of the application domain,
responds to requests for information about its state (usually from the view), and responds to
instructions to change state. The view renders the model into a web page with which the user can
interact with and the controller receives user input and initiates a response by making calls on the
model. Finally, the controller accepts input from the user and instructs the model and view to
perform actions based on that input.

Final Report Page 50 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

Figure 36: COMPARE Architecture

1.3.5.4 The Infrastructure Module

The Infrastructure Module provides a set of infrastructure services which are utilised by all other
components of the COMPARE system. Specifically, it comprises the Asset Metadata Repository,
the Asset Manager and the Notifier. Also, the Infrastructure Module provides access to statistical
information about the platform and provides the template user interface on top of which the user
interfaces of all the other components are rendered. Finally, the Infrastructure Module controls
user access and permissions to the platform through the use of the User module Module.

1.3.5.5 Asset Metadata Repository

The Asset Metadata Repository is a relational database which COMPARE uses to store
information about components. It is a MySQL database using the InnoDB engine and contains
the tables of the Joomla framework, the tables of the third party integrated applications and the
tables of the COMPARE extensions

Final Report Page 51 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

1.3.5.6 Asset Manager

The Asset Manager provides access to the assets of each component. It is composed by the
Component Page, the SVN access component and the social modules (Forum and Wiki
components).

1.3.5.7 Notifier module

The Notifier Module is used to receive and update the recent activity of the hosted components.
Also, this module generates an “activity index” based on the number of updates that were made
in the last month.
A component update is considered to be made in the following actions:

 A change is made to a property of the component

 A new file is uploaded in the component’s repository

 A change is made in the component’s wiki page

 A new thread is started in the forum

1.3.5.8 User Module

The User Module handles all the functionality regarding the users of the platform. It is composed
by the User Extension Module which is an extension to the User Component of the Joomla
framework and the Component Rating Module which holds the rating information that the users
apply to each component.

1.3.5.9 Consumption Module

The aim of the Consumption Module is to allow the software re-user to search, provide feedback
and retrieve the software components that are hosted by the platform. The Consumption Module
provides its features through a set of web pages which can be accessed via the World Wide Web
(WWW). The Consumption Module comprises the Asset Searching Module, the Asset Retrieval
Module and the Interest Management Module.

1.3.5.10 The Asset Searching Module

The Asset Searching Module provides methods for a software re-user to search and filter the
software components hosted by the COMPARE. This module is accessible to the re-user via a
web page, where the user submits his search terms, and the module uses them to search the Asset
Metadata Repository and present the results. Also, the Asset Searching Module provides filtering
mechanisms to filter the search results based on various criteria. The Asset Searching Module
receives the search terms from the re-user and analyses them. Then, it composes search queries
which are submitted to the Asset Metadata Repository. Afterwards, the Asset Searching Module
receives the search results from the Asset Metadata Repository and applies a numerical weighting
on each of them based on factors such as search term relevance and position. Finally, the Asset
Searching Module communicates with the Feedback Management Module to receive information
about the usage of each software component by the re-users. The Asset Searching Module is
composed by the Search Module and the Search Page components which are described in the
following sections.

1.3.5.11 Component Search Module

The Component Search Module is used to search for software components, from the Search page,
asynchronously with the use of AJAX. Also, while the Search page is generating, it will use the
model of this module.

Final Report Page 52 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

1.3.5.11.1 Search page

The search page presents a search field which the user can use to search for CHSCs. Keywords
entered in the search field will first be used to search a component that contains them in its name,
then in its description and finally in its platform. For example, the keywords “COMPARE tool”
will produce a search for a component which contains “COMPARE” and “tool” and then
“COMPARE” or “tool” for the name, description and platform fields.

Figure 37: Search page

1.3.6 References

1. Hafedh Mili, Ali Mili, Sherif Yacoub and Edward Addy: “Reuse-Based Software Engineering: Techniques, Organization and

Controls”, Wiley, 2002

2. J. Long, “Software Reuse Antipatterns,” SIGSOFT Softw. Eng. Notes, vol. 26, no. 4, pp. 68-76, July 2001

Final Report Page 53 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

3. Bosch, J.: “The challenges of broadening the scope of software product families”, Commun. ACM vol. 49, no. 12, pp. 41-44,
December 2006

4. E. Almeida et. al.: “Component Reuse in Software Engineering”, RISE, 2007 (available on-line
http://cruise.cesar.org.br/index.html)

5. P. Clements and L. Northrop: “Software Product Lines: Practices and Patterns”, Addison-Wesley, 2002

6. K.C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh, “FORM: A feature-oriented reuse method with domain-specific
reference architectures”, Annals of Software Engineering, vol. 5, no. 1, pp. 143-168, Springer, 1998

7. K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, “Feature-Oriented Domain Analysis (FODA) Feasibility Study”,
Technical Report, CMU/SEI-90-TR-21, November 1990

8. M.A. Simos, “Organization domain modelling (ODM): formalizing the core domain modelling life cycle,” SIGSOFT Softw.
Eng. Notes, vol. 20, pp. 196-205, August 1995

9. M. Simos, D. Creps, C. Klinger, L. Levine, and D. Allemang: “Organization Domain Modeling (ODM) Guidebook, Version
2.0”, Informal Technical Report for STARS, STARS-VC-A025/001/00, 14 June 1996

10. I. Jacobson, M. Griss and P. Johnsson: “Software Reuse: Architecture, Process and Organization for Business Success”,
ACM Press, 1997

11. M. Griss, J. Favaro, and M. d'Alessandro, “Integrating feature modelling with the RSEB”, Proceedings of the Fifth
International Conference on Software Reuse, pp. 76-85, IEEE, 1998

12. J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schmid, T. Widen, and J. DeBaud, “PuLSE: a methodology to
develop software product lines”, Proceedings of the 1999 symposium on Software reusability, Los Angeles, California,
United States: ACM, 1999, pp. 122-131.

13. C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O. Laitenberger, R. Laqua, D. Muthig, B. Paech, J. Wust, and J. Zettel,
Component-Based Product Line Engineering with UML, Addison-Wesley Professional, 2001.

14. C. Atkinson, J. Bayer, and D. Muthig, “Component-Based Product Line Development: The KobrA Approach”, 1st
SOFTWARE PRODUCT LINE CONFERENCE, pp. 289-309, 2000

15. Ivica Crnkovic, M. Chaudron, and S. Larsson, “Component-Based Development Process and Component Lifecycle”,
International Conference on Software Engineering Advances (ICSEA'06), p. 44, IEEE, 2006

16. T. R. Madanmohan and Rahul De’, "Open source reuse in commercial firms", IEEE Software, vol. 21, 2004, pp. 62-69.

17. G. Kakarontzas, P. Katsaros, I. Stamelos, "Component certification as a prerequisite for widespread OSS reuse", vol. 33,
Electronic Communications of the EASST, 2010

18. J. M. Gonzalez-Barahona, A. Martínez, A. Polo, J. J. Hierro, M. Reyes, J. Soriano, and R. Fernández, "The Networked
Forge: New Environments for Libre Software Development", in "Open Source Development, Communities and Quality", B.
Russo, E. Damiani, S. Hissam, B. Lundell, and G. Succi (eds.), IFIP Advances in Information and Communication
Technology, vol. 275, Boston Springer, 2008, pp. 299–306.

19. J. Howison and K. Crowston, "The perils and pitfalls of mining SourceForge", Proc. of the International Workshop on
Mining Software Repositories (MSR 2004), 2004, pp. 7-11.

20. Krugle official website: http://www.krugle.com/

21. Koders official website: http://www.koders.com/

22. Merobase official website: http://www.merobase.com/

23. Free Softwarer Foundation official website: http://fsf.org/

24. Open Source Initiative official website: http://opensource.org/

25. OCEAN official website (beta): http://ocean.gnomon.com.gr/

26. OPEN-SME project official website: http://opensme.eu/

27. DEiXTo official website: http://deixto.com/

28. Selenium official website: http://seleniumhq.org/

29. Scherlen, (Balance Point column editor) J. Boyd, P. Pugh, M. Hampton, P. Morrison and F. Cervone, "The One-Box
Challenge: Providing a Federated Search that Benefits the Research Process" Serials Review. 32 (4), 2006, pp. 247-254.

30. Xiaotian Chen, "Metalib, WebFeat, and Google: The strengths and weaknesses of federated search engines compared with
Google", Online Information Review, 30 (4), 2006, pp.413–427.

31. Laender, B. Ribeiro-Neto, A.S. da Silva, and J. Teixeira, "A Brief Survey of Web Data Extraction Tools", ACM SIGMOD
Record, 31 (2), 2002, pp. 84-93.

32. Franz-Josef Elmer: “Classycle: Analysing Tools for Java Class and Package Dependencies”, http://classycle.sourceforge.net,
[Online; accessed 6-March-2012]

33. Shyam R. Chidamber and Chris F. Kemerer: “A Metrics Suite for Object Oriented Design”, IEEE Transactions on Software
Engineering, vol. 20, no. 6, pp. 476–493, June 1994

34. Diomidis Spinellis: “Tool writing: A forgotten art?”, IEEE Software, vol. 22, no. 24, pp. 9–11, July/August 2005

Final Report Page 54 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

35. Nikos Tsantalis et al.: “Design Pattern Detection Using Similarity Scoring”, IEEE Transactions on Software Engineering,
vol. 32, no. 11, pp. 896–909, November, 2006

36. M. Utting and B. Legeard, “Practical Model-Based Testing: A Tools Approach”, Morgan Kaufmann, 2006
37. Michael D. Ernst et al.: “The Daikon system for dynamic detection of likely invariants”, Science of Computer Programming,

vol. 69, no. 1–3, pp. 35-45, Dec. 2007
38. Hironori Washizaki and Yoshiaki Fukazawa: “A technique for automatic component extraction from object-oriented

programs by refactoring”, Science of Computer Programming, vol. 56, no. 1–2, pp. 99-116, April 2005
39. Tom Mens and Tom Tourw´e: “A survey of software refactoring”, IEEE Transactions on Software Engineering, vol. 30, no.

2, pp. 126–139, February 2004
40. Simon Allier et al.: “Identifying components in object-oriented programs using dynamic analysis and clustering”, in proc. of

the 2009 Conference of the Center for Advanced Studies on Collaborative Research (CASCON ’09), pp. 136-148,
ACM,2009

41. Maurice M. Carey, Gerald C. Gannod: “Recovering Concepts from Source Code with Automated Concept Identification”,
15th IEEE International Conference on Program Comprehension (ICPC ’07), pp.27–36, 2007

42. Bas Cornelissen et al.: “A Systematic Survey of Program Comprehension through Dynamic Analysis”, IEEE Transactions in
Software Engineering, vol. 35, no. 5, pp. 684–702, September 2009

43. P. Dugerdil and J. Repond, “Automatic generation of abstract views for legacy software comprehension”, in proc. of the 3rd
India software engineering conference (ISEC ’10), p. 23, ACM, 2010

Final Report Page 55 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

1.4 Potential impact, dissemination and exploitation of results

1.4.1 Potential Impact

Based on the capacities of the OPEN-SME repository and tools, a number of (bundles of)
products and services can be offered to each customer segment (see Figure 38).

Newness

Performance

Customization

“Getting the
job done”

Design

Brand /
StatusPrice

Cost
reduction

Risk
reduction

Accessibility

Convenience
/ usability

Figure 38: Elements contributing to value (Osterwalder & Pigneur)

The OPEN-SME tools & repository allow analysis services and quality assurance. If services that
are exclusively based on the tools are considered, OPEN-SME can offer help to solve legacy
issues. The repository only allows offering components. Finally, the tools themselves can
potentially be sold.

Next to the direct outcomes of the OPEN-SME project a number of services can be offered to the
target groups, such as training and knowledge (initially by AUTH), support and consultancy
(also initially by AUTH), domain engineering services, and brokerage.

A third group of offerings relates to building up a stack of expertise, as OPEN-SME allows
generating experts in OSS reuse and reusable OSS components, in OSS (components)
integration, expert users, and domain engineering experts. Though there are a number of OSS
reuse tools available, the unique selling point of the OPEN-SME approach is the combination of
highly integrated reuse analysis tools on the one hand and the provision of a repository that
allows direct access to reusable components with a so far unknown level of granularity. In this
sense, newness and highly improved functionality are two core value propositions of OPEN-
SME.

Another value proposition is performance, as the RODE process that is implied in the OPEN-
SME approach towards OSS reusability allows improved process performance (systematic and
efficient identification and testing of OSS code for reusability that goes far beyond what is
possible today). Another feature resulting in improved performance is ease of identification of
reusable software and its classification (categories). In addition, the metrics applied or generated
in the OPEN-SME approach will improve the identification and selection of best practices.
Finally, the establishing of a code-reuse-oriented community will allow to externalize a number
of tasks from companies / the OPEN-SME partners to other members of the community, which

Final Report Page 56 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

could particularly accelerate the growth of the number of components in the OPEN-SME
repository. As a result, customized products (components, test results) will be available earlier
than this is possible today, and components can be used systematically in OSS development,
which is expected to significantly reduce the development time of new OSS products and
services. The latter point leads to a third value that can be offered to clients, which is
customization. This is achieved through tailoring the RODE process to domain-specific and
company-specific needs, which may include the modification of tools.

A fourth value to be offered through the OPEN-SME business model is the capacity to help
companies that so far are not able to perform effective code reuse analyses to get this job done.
Overall, the partners intend to establish the OPEN-SME repository and tools as a brand. Given
their newness and uniqueness, their qualification for a branding strategy is unquestionable.
However, a comprehensive branding strategy depends on all partners’ needs and capacities and
has to be clarified and developed in a mid-term perspective (1-1.5 years). Challenges that have to
be mastered in this regard are the name, which should reflect the core functionalities of the
OPEN-SME repository and tools, a slogan, and a logo. “OPEN-SME” might not be appropriate,
in this regard. However, other relevant cornerstones of a branding strategy have been identified:
application fields / markets and the unique selling points are clarifies, as laid out above. The
branding strategy might benefit from applying Kano`s model of customer satisfaction (see D26b)
distinguishing ‘attractive quality’ from ‘one-dimensional quality’, ‘must-be quality’, ‘indifferent
quality’ and ‘reverse quality’.

The sixth value provided by OPEN-SME is design, as the implied focus on components eases and
improves good software design. Seventh, price is an important value to be offered by OPEN-
SME, since tools and repository are OSS, which implies that the costs related to these elements
are comparably low. However, it should be noted that the efficient usage of the repository and the
tools requires high level expertise, which might result in relatively high prices for OPEN-SME
services.

The latter point is however countered by the eights value OPEN-SME can offer, which is cost
reduction. The outcomes of the OPEN-SME code reuse analyses are a broad set of well analysed
software and software components that are unlikely to produce in-house by most of the potential
customers. This effect should outweigh expenses for high level expertise and overall result in
lower production cost through

 larger supply with reusable code

 shorter development time

 ease of legacy management (for applications)

 less coding effort

However, these cost reductions might not be perceived by customers (due to unawareness of
costs aligned with no or bad code reuse). In addition, cost reduction might be countered by high
learning costs and possibly high transaction costs (when introducing the RODE process in
business processes). The ninth value provided by OPEN-SME is risk reduction, as IPR issues
become more transparent, extensive testing reduces the number of bugs in OS software and
components, and the OSS reuse community and social network provides potentially a 24/7
service infrastructure. Especially SMEs will benefit from the latter. The tenth value provided by
OPEN-SME is accessibility. OPEN-SME will ease the access to reusable software, components
and test results through the Internet.

Finally, the eleventh value that will be offered with the OPEN-SME business model is
convenience / usability, as the OPEN-SME tools and repository make it easier for firms and
individuals to identify reusable code and components. Though the learning curve for handling the
repository and tools effectively, it must be considered that so far OSS reusability analyses are

Final Report Page 57 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

performed by a rather eclectic trial and error approach that very likely overlooks many reusable
components and does not provide comprehensive insights in the reusability features of the code
under scrutiny. In this sense, the highly integrated tools and the OPEN-SME repository will turn
out relevant information on reusable code in a faster and more comprehensive way in shorter time
than the code analysis practices especially SMEs are used to so far.

These offerings help to solve a number of typical problems potential customers have when OSS
code reuse is considered. In the first place, the OPEN-SME approach helps to structure the
process of code reuse. In addition, OPEN-SME provides additional documentation of code that is
not available otherwise. Furthermore, OPEN-SME provides customers with knowledge of
software architecture that is lacking at the customer’s side. The OPEN-SME tools and repository
also help to increase scalability and to enter new markets. Another problem that can be solved by
OPEN-SME is ease of training new employees and of knowledge transfer. Overall, OPEN-SME
helps companies to focus on their core tasks while OSS code reusability analysis can be
effectively outsourced. SMEs benefit from OPEN-SME in particular through help in solving
problems related to

 using and maintaining OSS efficiently

 time to market

 accessibility to code, high quality software, information about reusability of code

 tools

 skills

 knowledge

Individual developers will benefit through improvements of their

 status

 knowledge

 reputation

Against this background, following customer needs have been identified that can be satisfied by
the OPEN-SME business model:

 Improvements of existing products

 Ease generation of new products

 Quality improvements

 Process optimization

 Decrease time to market

 Accelerated response to customer needs / requests

 Ease of support and maintenance

1.4.2 Exploitation plans

1.4.2.1 Overview

As laid out in Deliverable D2.6a, the various actors in the OSS value network play different roles.
In our case, there are two key actors in the value network of the OPEN-SME toolset: the technical
academic partners of the OPEN-SME project provide the developers of a toolset for OSS reuse
and reuse services, and the OPEN-SME-AGs in the consortium provide the distributors of the
toolset and these services. The technical/academic partners, primarily AUTH and TELETEL,
compile and analyse a set of existing tools for the identification and evaluation of reusable OSS
code and OSS components. These existing tools are transferred into a suite that allows fast and

Final Report Page 58 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

comprehensive reusability checks of OSS code and components, which is not offered by any
single tool underlying the suite. This act provides the key value creation process within the
OPEN-SME project. However, in a second step the suite has been adapted to the capacities and
needs of the SME-AGs within the OPEN-SME consortium, which play the role of the key
distributors of the OPEN-SME suite, as the RTD partners within the consortium do not dispose of
the required distribution channels and distribution expertise. The end users – primarily the target
groups of the OPEN-SME-AGs, usually other SMEs and start-ups – either receive the results of
an OSS reusability analysis carried out with the OPEN-SME suite by another actor (an SME-AG,
a technical academic partner like AUTH, another company) based on requirements specified by
the end user, use the OPEN-SME suite themselves in order to evaluate OSS code or components
they want to reuse, or offer reusability services based on the OPEN-SME suite provided to them
by an SME-AG.

Given the diversity of the OPEN-SME-AGs in the OPEN-SME project consortium, they dispose
of very different capacities to distribute the toolset / services and they pursue diverse strategies
with this toolset. For instance, while VSP has a number of OSS-related start-ups in its portfolio
and OSS plays a significant role in the Swedish / Scandinavian economy, other partners, like
ETEK or the Serbian SME-AG ISS first have to raise awareness of OSS among their members as
well as in their members’ domestic and regional key markets (see D26a for details).

Further advancements and differentiation of the OPEN-SME value network is currently subject to
ongoing discussions. In principle it is possible and preferable to establish additional distribution
channels for the OPEN-SME toolset in order to accelerate and broaden the market diffusion. One
possible way, in this regard, is to establish, for instance, AUTH, TELETEL, GNOMON or
BITGEAR – as core developers of the toolset – as a vendor of OSS reuse services, which may
require alternative distribution channels outside the OPEN-SME consortium. Additional
distribution channels could, for instance, be provided by academic institutes in the field of
computer sciences, by one or more OSS communities, by other SME-AGs, and by companies.

The composition of a value network around the OPEN-SME suite and the roles the various actors
in such a network play are thus depending on the capacities, objectives and strategies of the
SME-AGs. If a technical partner like AUTH, TELETEL, GNOMON or BITGEAR decides to
operate the OPEN-SME suite in alternative value networks outside the OPEN-SME consortium
in order to push the diffusion of the suite and to enhance the efficiency of OSS development in
the European software industry, it is possible that a number of new value networks will be
created, which again will differ by the requirements and capacities of the key distributor and the
need of the end users served by the distributor. This also involves IPR and license issues (see
next section for a discussion of these points).

Depending on the composition and objectives of the value networks that are formed around the
OPEN-SME suite, business models must be created that meet the requirements of these value
networks. For instance, depending on the capacities and context constraints of the SME-AGs in
the OPEN-SME consortium, it must be decided whether the SME-AG sells the right to use the
suite or sells services based on the OPEN-SME suite, or distributes the suite for free. Actors
within the OPEN-SME value networks, especially the SME-AGs as key distributors of the
OPEN-SME suite, can choose from various Open Source Strategies in order to deal with the
underlying community. A detailed overview of these strategies is provided in D2.6, here we
would like to limit the discussion to the fact that SME-AGs will find ways to collaborate with the
underlying community or to circumvent constraints set by the community by either follow a road
that is independent of the community (e.g. by forking a community) or that makes the community

Final Report Page 59 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

dependent on one or more of the other actors of the value network (e.g. by taking over the
community).

1.4.2.2 Proposed SME‐AGs Business Strategy

Based on the analysis of the position and role of three SME-AGs that belong to the OPEN-SME
project consortium in business ecosystems and OSS value networks, first recommendations of
suitable OSS reuse business models for these (and similar) SME-AGs can be given. Overall, VSP
shows a very commercial orientation and must be considered as integral and important part of the
business ecosystem in Västerås, in which OSS development and reuse are widespread.
Conclusively, VSP plans to take over an active and commercial role in the distribution and
implementation of the OSS reuse tools and services based on these tools by advancing itself
into a software vendor for the OPEN-SME tools / suite. Business models developed for this
sort of SME-AG should put the SME-AG in the centre of the model and strive to generate
sustainable revenues directly for the SME-AG.

In contrast to VSP, EMYPEE, ETEK and ISS are not part of their members’ value
network. However, their position in the business ecosystem of its members qualifies those
organizations as distributors of the OPEN-SME suite. Further activities that imply playing a
commercial role seem primarily to be limited by the governance structures and traditional tasks of
the organizations and by the underdeveloped market for OSS in the two regions. Under such
conditions, a suitable business model for a SME-AG should try to focus on commercial members
of the SME-AG that are capable to play a leading role in the distribution, application and
advancement of the OPEN-SME suite, while the SME-AG itself should rather serve as a non-
commercial distribution and information platform. The latter may imply to advance the service
offerings of the organization in the direction of training courses and networking activities. These
activities could be organized in collaboration with member organizations. In fact, such activities
take already place, but they are organized informally by the members. In the case of the OPEN-
SME suite, institutionalized information events and training courses appear a more effective
means to achieve an effective distribution and implementation of OSS reuse tools and services in
the Greek and Cypriot economy (EMYPEE/ETEK case).

In the case of ISS the relative small size of the organization’s portfolio creates a natural limit to
the distribution and exploitation of the OPEN-SME suite. Therefore, the business model should
focus on a commercial partner that is capable to utilize ISS’ huge network of business contacts in
order to create a broader use base and thus ground for sustainable revenues from OSS reuse tools
and services.

1.4.2.3 OPEN‐SME Business Model and Exploitation Strategy

Being aware of the fact that the market introduction of a complex product like the OPEN-SME
repository and tool needs time and a strategy, the partners have agreed to start the “OPEN-SME
business” at a rather small scope, with VSP as key player for familiarizing, testing and
implementing the OPEN-SME repository and tools in the robotics domain of the Science Park. In
this initial phase, training and consultancy shall be provided by AUTH. The roll-out, which
provides the second phase, is intended to happen in different directions. The first one is
collaboration with the SMEs and SME associations in the OPEN-SME consortium. To this end,
VSP and the other OPEN-SME partners involved in the OPEN-SME business model will survey
their members in order to find out to which degree and in which way OSS is used within their
portfolios. Based on the survey results, good starting points for the roll-out of the OPEN-SME
repository and tools can be identified. The second direction for the roll-out is provided by other
Science Parks, as they have been identified as powerful multipliers with a perfectly matching

Final Report Page 60 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

portfolio of companies and domains in which the OPEN-SME repository and tools can be
applied.

1.4.2.4 Customer Segments

A number of relevant customers have been identified. In the initial phase, the most important
customers will be the VSP members, specifically those ones in the field of robotics. This
approach has been chosen in order to familiarize with the OPEN-SME repository and tools in a
controllable area. The robotics domain of VSP is particularly useful for the introduction and
testing of the OPEN-SME tools and repository because these members of VSP have a lot of
knowledge of OSS, so that the learning curve is assumed to be less steep than in other domains.
In the second phase, when VSP has accumulated enough knowledge about the OPEN-SME tools
and repositories, other Science Parks and Incubators will be approached. The International
Association of Science Parks (IASP) has currently 388 members with overall 128,000 member
companies,3 thus providing a perfect platform for disseminating and applying the outcomes of
OPEN-SME. In a mid-term perspective SMEs (outside Science Parks) with a lack of reuse
engineers (and maybe domain experts, too) shall find a possibility to directly receive OSS reuse
services from the SME partners or other Science parks. Finally, in the long run, large companies
shall find opportunities to receive large scale support (training, reuse service) for OSS reuse
analyses.

The precondition for successful offerings to SMEs and large companies is an effective and well-
maintained website and a self-sustained OSS reuse community, with expertise in a broad range of
domains. The value that can be created within the OPEN-SME business model serves, in the
initial phase, three clusters within the VSP portfolio: robotics, smart grid, OSS. After the initial
phase, following other actors will benefit from the value created by OPEN-SME

 wider VSP network

 other Science Parks

 OPEN-SME consortium

 Public sector

 SME clusters

 Software producing companies (not only software houses)

 Consulting companies

 Platform providers

 Quality assurance service providers (OSS & proprietary software)

 Individual developers / “geeks”

 OSS projects

 Academia (universities, students)

Besides robotics, other relevant domains for the OPEN-SME repository and tools are CRM, e-
commerce, and banking, i.e. the OPEN-SME stakeholders will have to establish contact points to
these domains and market the OPEN-SME outcomes in these areas. For the geographical
dimension of the roll-out strategy, the partners have decided to start on local scope, then develop
markets on national and international scope. Multipliers, in this regard, are national contact points
of the OPEN-SME partners and the International Association of Science Parks.

3 http://www.iasp.ws/web/guest/facts-and-figures

Final Report Page 61 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

1.4.2.5 Channels

There are three types of channels – distribution, communication and sales – that serve different
purposes and play a role at different points in time. Figure 39 illustrates this for the OPEN-SME
business model.

Raise awareness

Help customer
evaluate value
propositions

Allow customers
purchase
products /
services

Deliver a value
proposition to
the customers

Provide post-
purchase
customer
support

VSP, other science
parks, academia

Domain engineers,
OPEN-SME partners

VSP, OPEN-SME
partners, 3rd parties

VSP, OPEN-SME
partners, 3rd parties

VSP, OPEN-SME
partners, 3rd parties

T
im

e

Communication,
Distribution

Communication,
Distribution

Distribution,
Sales

Sales

Communication,
Distr., Sales

Figure 39: Purposes, phases and types of channels in the OPEN-SME business model

The OPEN-SME partners identified the following channels through which potential customers
(target groups) presumably want to be reached.

 Internet (webpage, email)

o Software communities

o SME clusters / groups

o Thematic forums

 Social media (Facebook, LinkedIn, Twitter etc.)

o Registered “followers” from industry, academia and software communities

 Phone

o Companies

o Science Parks

o EU networks

o Industry Associations

 Face-to-face

o VSP

 Teaching / courses

o Academia

o Industry associations / chambers of commerce

 Academia and industry collaboration

o Master theses

o Internships

 Events

o Industry events

o Software community events, e.g. FOSSDEM (fossdem.org)

o Domain-specific events (e.g. conferences in the robotics area)

Final Report Page 62 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

Since there is no similar service established within the partners of the SME consortium, it has to
be evaluated which channels will be most effective. To this end, a number of measures have been
discussed. During the test and pilots phase, events shall be broadcasted on the Internet.
Challenges and opportunities shall be identified through benchmarking the success of different
launches. Science Parks and SME clusters shall be attracted through direct contacts in existing
networks. Showcases shall be created (prototypes, customer testimonials), and a download
repository will be provided. Measures that shall be taken particularly in the pre-market phase are
presentations at GeekMeets and evaluation of feedback received from there, conferences in
relevant industry domains, and a “Beta-version workshop” with early adopter champions from
various companies (through Science Parks and SME clusters, partners’ networks).

In addition, EU networks and national and international events of / with other science parks and
incubators shall be tapped. Finally, the partners decided to involve themselves in OSS
associations and related events and in industry events, e.g. in the field of embedded systems (e.g.
through ARTEMIS4). These channels are not considered as means that work only in one way.
Overall, the partners are interested in feedback on which components are used, characteristics of
components’ life-cycle, members’ roles and flexibility, and how to establish continuous contact
to users / customers / developers through active involvement.

Regarding the integration of existing channels, the focus of the discussion was laid on the
infrastructures at VSP, as these are most decisive for the start of the business model and for the
later roll-out. There is an established and well-tested communication strategy for VSP members
that can be reused and integrated in a wider OSS reuse communication strategy. This includes the
usage of VSP’s CRM system, though this requires categorization of member types.

Based on VSP’s infrastructure and the capacities of the OPEN-SME partners, following channels
have to be integrated (integration is led by VSP):

 Established personal relations to key companies

 Personal contact points for distributing OPEN-SME outcomes

 Email, mobile apps, webpage

The integration of the OPEN-SME channels with customer routines shall be achieved through the
creation of the “big picture” of OSS reuse. Invitations to cooperate in order to create this big
picture shall be distributed to the target groups. Furthermore, a SME component pool shall be
generated. The latter requires as a precondition the establishment of a critical mass of SMEs
involved / interested in OSS reuse

1.4.2.6 Customer Relationships

Figure 40 shows the different types of customer relationships that can be distinguished.

4 http://www.artemis.eu/

Final Report Page 63 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

Personal
assistance

Dedicated
personal
assistance

Self-service

Automated
service

Communities

Co-creation

Figure 40: Types of customer relationships

The establishment of a self-sustained OSS reuse community is considered to be the key for all
customer relations in the OPEN-SME business model. Regarding the types of relationships, the
partners agreed that fully and semi-automated relationships should be avoided, as the complexity
of the tasks probably does not allow for the level of standardization that would be necessary for
these types of relationships. Within the community itself, self-service relationships may be an
option, as the level of expertise within the community should be high enough. However, the
default setting for customer relationships should be personal relationships, maybe with dedicated
personal assistance as a special case in domains or for large companies or SME clusters. There
are already a number of relationships established that can be used for the OPEN-SME business
model: These relationships exist between

 VSP members

 other OPEN-SME SME AGs and their members

 OPEN-SME partners

 VSP members and OSS communities

 VSP and other Science Parks

 VSP / VSP members and industry associations

 VSP and government institutions

 VSP and academia

 OPEN-SME SME-AGs and industry associations

 OPEN-SME SME-AGs and government institutions

 OPEN-SME SME-AGs and academia

1.4.2.7 Key Activities

Key activities that must be performed in order to run the OPEN-SME business model
successfully are twofold, on the one hand they have to help preparing the market for the OPEN-
SME tools and repository and the services based thereof, on the other hand they have to secure
and advance the value propositions offered to the target groups. One key activity that is
important in the initial phase is a survey / overview of OSS activities within the portfolio of the
SME-AGs and SMEs of the OPEN-SME consortium. This survey would provide an initial
overview of the markets for the OPEN-SME tools, repository and services and contact points for
entering these markets. Other activities related to market preparation are community building, the

Final Report Page 64 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

provision of experts and expertise, problem solving capacities (directly or through portfolio
members), sharing of investment costs, organizing events and training (initially by VSP, either in
Västerås or in Stockholm), and the dissemination to other Science Parks and SME clusters,
industry associations and the like. To the same end, key partners have to identify contact points in
relevant domains, provide software components, testing, promotion (including academic and
commercial publications, such as journal articles and whitepapers), and distribution. Activities
related to securing and advancing the value propositions are updates of existing software,
software extensions, integration of additional functionalities in existing software, and certification
services for special high quality software and components.

1.4.2.8 Key Partnerships

There are different types of key partnerships that serve different purposes, as illustrated in Figure
41 .

Strategic alliances
between non-
competitors

Strategic alliances
between

competitors
(coopetition)

Joint ventures to
develop new
businesses

Buyer-supplier
relationships to
assure reliable

supplies

Optimization
and economies

of scale

Reduction of
risk and

uncertainty

Acquisition of
particular

resources and
activities

Types

Purposes

Figure 41: Types and purposes of key partnerships

The key partners in the OPEN-SME business model are, in the initial phase, the partners of the
OPEN-SME consortium and the VSP member companies (especially in the field of robotics).
These partnerships can at current be considered as informal (as not based on a contract) strategic
alliances between non-competitors. At a later stage, when a critical level of OSS reuse expertise
has been built up at VSP and OPEN-SME consortium partners, additional contact points in
relevant domains (which have to be identified by the partners), in particular other Science Parks
have to be integrated in the business model as key partners. In this case, other forms of
partnerships may be chosen, and the relationships might get formal (i.e. based on contracts).

A special key partner is academia, as academia does not strive for commercial revenues but plays
a vital role with regard to quality assurance, branding, publications and promotion of OPEN-
SME. The key suppliers of the business model are, in the initial phase, the AUTH-team
(reusability analysis, training), later the key suppliers will be part of a self-sustained community
of SMEs, freelancers and volunteers, related to VSP members and other Science Parks, OPEN-
SME partners and academia. The key resources to be required from partners are

 Software components

 Trust building / branding capacities and efforts

 Manpower / expertise

 Networks / contact points

1.4.2.9 Key Resources

There are a number of key resources required by the OPEN-SME value propositions. In the first
place, there is an essential need for domain experts, first in the field of robotics, later in other

Final Report Page 65 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

domains, too. In addition, hardware is needed for server and storage capacity. Cloud computing
was considered to be an inexpensive and efficient and flexible option, in this regard. Other key
resources are assistance in building the OSS reuse the community / network and clarifying IPR
conditions (rights to OPEN-SME repository and tools).

In the introductory phase there is an “enabler” needed, i.e. initially one person in charge for
introducing the OPEN-SME tools and repository at VSP. This person has most likely to be
provided by AUTH. Finally, a clearly defined timeframe and network, in which the OPEN-SME
tools and repository will be applied in the initial phase and later roll-out, is required. Key
resources required by the customer relationships are

 Clarification of target groups

 Identification of domains

 Businesses and contact points

 Network

 Branding (through existing distribution channels)

 Grassrooting / community building (as part of marketing)

 Regularly updated webpage with relevant information

 Timely information with regard to components etc.

Key resources required by the distribution channels are

 Survey of VSP companies

 Marketing capacities

 Mapping of target markets

 Branding experts

 Networks

 Identification of relevant events (industry events, academic events, policy events etc.)

 Contacting and coordination with other Science Parks, surveying their OSS capacities and
needs

 Strategy: what to do in which order

 Financial resources

 Early adopter champions

With regard to the market introduction of the OPEN-SME repository and tools, for which the
identification and approach of early adopters is extremely important, Mohan [41] warns that a
blog post or a launch at a startup event or a press article will not suffice to succeed. He suggests
“a disciplined 3-step approach”:

 Profiling and Identification (persona creation)

o For B2B, 4 important characteristics to profiled and identify early adopters:

 Location

 Title of buyer (for the OPEN-SME business model, decision-makers for
software development and software purchases are probably most relevant,
but the survey should validate this)

 Industry/domain (the survey has to identify the OSS-reuse-intensive
domains)

 Size of company (according to Mohan, mid-sized companies and a few

Final Report Page 66 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

large companies tend adopt new innovations faster compared to smaller
companies)

o For B2C , additional characteristics to consider are, inter alia, age, location,
gender, monthly income among others.

 Interaction and Introduction - make an initial connect with early adopters through (one of)
following three mechanisms:

o “Engagement online: Following them and posting thoughtful (real human)
comments (not spam or robot messages) on twitter or their blog.

o Events: Instead of presenting at a booth when your startup is not ready, demo your
mock-up or early version to them at events (as an attendee) to get feedback.

o Introductions from other early adopters. Early adopters know each other well and
tend to be connected to each other well. They are usually open to sharing new,
innovative ideas with other early adopters.”

 Nurturing and Engagement – get feedback from early adopters and offer them to influence
the product direction with the goal to categorize early adopters into 3 types and focus on
making your champions successful with your product :

o “Champions: They like your product, think it solves a problem and are willing to
provide feedback on what they would like, to make it better. Your goal should be
to make these users the most happy with your service, be very responsive and
introduce features they desire quickly. You can find them by looking at the # of
times they return to use your service after the launch day.

o Bandwagoners: They typically join since some other early adopter has joined who
mentioned the product. They will come if the product is free, test it for an initial
period, then will usually never show up until it is “more mainstream” or “many
bugs have been worked out”.

o Naysayers: They have something negative to say about every new product, so
while its best to ignore them, be thoughtful and respond to their feedback, but
don’t focus on them a lot. They will highlight many features that you currently
don’t have or plan to have. They are most likely to compare it to other solutions
and in a negative light.”

1.4.2.10 Revenue Streams

Revenue streams can be generated in various ways, as illustrated in Figure 42.

Asset sale
(tools & repository)

Usage fee
(tools & repository)

Subscription fees
(tools & repos. &

services)

Lending /
renting / leasing

(manpower)

Licensing
(tools & repository)

Service Fees
(reuse analysis,

training, brokerage)

Advertising
(3rd party payments)

Donations
Community /
Foundation

Figure 42: Ways to generate revenues

Given the interview results it is obvious that customers are not easily willing to pay for OSS
reuse analysis and services. However, the workshops have identified a number of values that
appear attractive enough to be paid for by the target groups. The first value in this regard is
certification, as this service provides a sort of guarantee that the software or component does

Final Report Page 67 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

what it is supposed to do. The idea of the OPEN-SME partners is to provide a medium-level
certification that can be issued based on extensive testing but without going through the time
consuming procedure of strictly formal certification, like by ISO standards. Another value that
target groups are expected to pay for is tested components. Here, customers have to pay for the
tests, not the components, as these are OSS.

Thirdly, extra documentation seems to be a value companies and freelancers would probably be
more likely to pay for. Premium models with extra information, exceeding the information
generally provided to everyone, could also provide a value customers are willing to pay for.

Other such values are:

 Security

 Established and trusted brand

 Test and quality assurance

 Basis for demand of services: reference implementations and reputation

 Tools (if partners decide to sell tools)

 In SME clusters: additional service that can be provided to members’ customers

Regarding what services and products potential customers (here: VSP members) are currently
paying, it turned out that this applies to hiring of internal programmers, consultancy (to a limited
amount), commodity software, and available components (very rarely). As a general rule, if a
product or service does not serve the core business the willingness to pay is rather low. However,
when problems arise or cost savings become evident the willingness to pay increases. Regarding
preferences of types of payment there was a strong agreement that one time payments have to be
the default, as subscriptions and licenses are usually rejected by the potential customers.

1.4.3 Dissemination

1.4.3.1 Project Web Site

The OPEN-SME consortium established a website, (http://opensme.eu) for the support of the
dissemination activities. This site provides public access to general information on the project
(objectives, partners, scope, etc.), and to its public deliverables and presentations. Also the site
accommodates restricted sections accessible only by the consortium members. The project web
site is updated with information and content on a regular basis (Figure 43).

Final Report Page 68 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

Figure 43 OPEN-SME project web site – Welcome page

The project website also includes the online training material prepared for the OPEN-SME
processes (Figure 44, Figure 45).

Figure 44: The RODE training page

Final Report Page 69 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

Figure 45: The AEP training page

To increase the visibility of our results and attract researchers and software engineering
practitioners around the world, we initiated a Special Interest Group (SIG) mailing list. Those
interested in OPEN-SME findings wishing to explore the deliverables in the respected category
on the site, are automatically subscribed to the Open-SME SIG list. Currently there are 247
members subscribed.

Figure 46 OPEN_SME Special Interest Group Subscription page

Final Report Page 70 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

Figure 47 OPEN_SME Events Page

Figure 48 Final Workshop Page

1.4.3.2 Dissemination Events

During the project a large number of dissemination activities took place from the majority of the
partners. Furthermore, all the kinds of dissemination activities have been covered by the partners.

 A member of the OPEN-SME team participated in the DSM-TP 2010 summer school. The
main concept of the DSM-TP summer school was Domain Specific Model (DSM) and
Domain Specific Languages (DSL) which are an important aspect of the OPEN-SME

Final Report Page 71 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

project regarding the role of the re-use Engineer. Details on the topics of the school can be
found at the DSM-TP 2010 summer school webpage: (http://ctp.di.fct.unl.pt/DSM-TP/).

 A member of the OPEN-SME team participated in the ADAPT 2010 summer school.
The central theme of the ADAPT summer school was software adaptation, which is an
important aspect of the OPEN-SME project. Details on the topics of the school can be
found at the ADAPT 2010 summer school webpage (http://userpages.uni-
koblenz.de/~adapt/summerschool2010/)

The ADAPT 2010 Participants

 Members of the consortium attended conferences and workshops of high importance in
respect to OPEN-SME project:

1. QUATIC 2010 (7th International Conference on the Quality of Information and

Communications Technology), Oporto, Portugal, 29 September to 2 October 2010.
2. ENASE 2010 (5th International Conference on Evaluation of Novel Approaches in

Software Engineering), Athens, Greece, 24-25 July 2010.
3. Presentation entitled "Software Recycling", by Prof. I Stamelos, at the University of

Groningen, NL on July 2nd. 2012.
4. Presentation entitled “OPEN-SME Project”, by Prof. M. Ivkovic at International

Conference ICIST 2012, ISBN 978-86-85525-10-0, Pages 46-58, 29/2-3/3/2012.
Kapaonik.

 Open Source Software Components Reuse Workshop Kopaonik, Serbia, March 8, 2011

The Open Source Software Components Reuse Workshop took place at Kopaonik, Serbia,
on March 8, 2011. The participants of the workshop included members of the OPEN-SME
consortium and members of the public sector and privately funded IT companies
interested in the goals of the OPEN-SME project. The topics discussed during the
workshop included an overview of the OPEN-SME project and its goals, primarily
centered on Open Source Software components reuse from SMEs and the related business
advantages. There were also presentations on the technical aspects of the OPEN-SME
project and more specifically the software comprehension tools and approaches and the
domain engineering process.

Final Report Page 72 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

 VSP Workshop

The workshop took place at VSP, Vasteras, Sweden on 25 and 26 January, 2012, with the
participation of AUTH. MDU and UM-MERIT, which delivered a whole day seminar regarding
the OPEN-SME business models. The agenda of the workshop also included a presentation of the
OPEN-SME OSS Reuse Platform and Repository, VSP's plans to make use of OPEN-SME,
usage preconditions (skills and capacities) and roles / collaboration

The event in Vasteras Science Park (VSP) in which AUTH, VSP, UM-MERIT, MDU members
participated highlighted the need for the robotics domain which resulted in component extraction
from the ROSJava project.

 Second OPEN-SME workshop

The Greek Association of Computer Engineers (EMYPEE) has successfully organized the Athens
OPEN-SME Workshop on Friday 17/2/12, which has been held in the premises of Technical
Chamber of Greece (TEE). The Workshop has attracted the interest of more than 40 participants
that originated from SMEs, academia and public organizations in Greece. A welcome speech has
been given by Mr. Spyridon Zanias (member of the TEE management board). The Workshop
program contained 10 presentations and a round table discussion. The presentations contained
results and ongoing developments of the OPEN-SME project, guest speeches and the results of
the “Open Source” Working Group (WG) that is introduced and tasked by EMYPEE aiming to
analyze the opportunities for the Greek IT engineers with respect to usage of open source
solutions, and to provide suggestions and best practices for exploiting open source projects in the
SMEs, public organizations and educational institutes. The round table discussion was
particularly live and attracted the interest of the participants.

Final Report Page 73 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

Figure 49 Athens Workshop Photo

 Third OPEN-SME workshop

The 3rd OPEN-SME workshop took place on the 30th of May in Nicosia, organized by ETEK.
The workshop was attended by 30 members of the IT Community of Cyprus and was addressed
by the General Cashier of ETEK, Mr. Antonis Valanides. There was considerable interest from
the participants in both the OPEN-SME toolset and the VSP business practices.

Figure 50 Nicosia Workshop Photo

 Final OPEN-SME workshop

The final workshop was sponsored by ACM and organised as part of the ACM SigSoft
COmpARch 2012 conference (http://opensme.eu/ross), bringing researchers and industrial
experts to present and discuss the issues related to reuse of open-source components from
technical, process, organizational, legal, and business point of view. The focus was on the
potential benefits for Small and Medium Enterprises (SMEs). The workshop was organized as a
combination of submitted papers presentations and open discussions in Bertinoro, Italy on 26
June 2012. In the event we had the participation of large companies such as Siemens, ABB and
Ericsson as well as the participation of important academic institutions (e.g. the developers of the
Merobase search engine from the University of Mennheim).

Final Report Page 74 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

Figure 51 Photos from ROSS Workshop (COPE Presentation and Panel)

 Preparation of 1st and 2nd OPEN-SME newsletter.

 OPEN-SME poster and presentation at the EMYPEE annual conference in the University of
Patras, Greece on 18/12/2011

 Preparation of SIG questionnaire

o Questionnaire providing an overview of the project, identifying the main research areas,
and requesting contact details and feedback on the interest in specific areas. The OPEN-
SME partners distributed the SIG questionnaire to selected business and research partners.

 Formulation of OPEN-SME SIG (more than 70 questionnaires were returned).

 Creation of OPEN-SME SIG mailing list and communication of information on the project
results. More than 247 members

 Organisation of first EMYPEE SIG meeting in Athens on 11/3/2011

o 26 EMYPEE SIG members participated and were presented the rationale, the expected
results and current progress of OPEN-SME

1.4.3.3 Publications

The consortium achieved the following publications:

Journals:

1. Apostolos Ampatzoglou, Apostolos Kritikos, George Kakarontzas, Ioannis Stamelos: “An
empirical investigation on the reusability of design patterns and software packages”,
Journal of Systems and Software, Volume 84, Issue 12, December 2011, Pages 2265-
2283, http://dx.doi.org/10.1016/j.jss.2011.06.047

2. George Kakarontzas, Eleni Constantinou, Apostolos Ampatzoglou and Ioannis Stamelos:
“Layer Assessment of Object-Oriented Software: A Metric Facilitating White-Box
Reuse”, accepted for publication in the Journal of Systems and Software, Elsevier, 2012

Final Report Page 75 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

3. George Kakarontzas, Panagiotis Katsaros and Ioannis Stamelos: "Component
Certification as a Prerequisite for Widespread OSS Reuse", Electronic Communications
of the EASST, Volume 33: Foundations and Techniques for Open Source Software
Certification 2010, http://journal.ub.tu-berlin.de/eceasst/article/view/449/433/

Conferences:

1. George Kakarontzas, Vassilis C. Gerogiannis, Ioannis Stamelos, and Panagiotis Katsaros:
“Elastic Component Characterization with Respect to Quality Properties: An Intuitionistic
Fuzzy-Based Approach”, In Proceedings of the 15th Panhellenic Conference on
Informatics (PCI '11), pp. 270-274, IEEE, 2011 http://dx.doi.org/10.1109/PCI.2011.27,
AWARD: BEST PAPER AWARD FOR PCI 2011

2. Apostolos Kritikos and Fragkiskos Chatziasimidis: “SFparser: A Tool for Selectively
Parsing SourceForge”, In Proceedings of the 15th Panhellenic Conference on Informatics
(PCI '11), pp. 161-165, IEEE, 2011 http://dx.doi.org/10.1109/PCI.2011.42

3. Eleni Constantinou, George Kakarontzas, and Ioannis Stamelos: “Towards Open Source
Software System Architecture Recovery Using Design Metrics”, In Proceedings of the
15th Panhellenic Conference on Informatics (PCI '11), pp. 166-170, IEEE, 2011,
http://dx.doi.org/10.1109/PCI.2011.36

4. Eleni Constantinou, George Kakarontzas, Ioannis Stamelos: “Open Source Software:
How Can Design Metrics Facilitate Architecture Recovery?”, 4th Workshop on Intelligent
Techniques in Software Engineering, 5 September 2011 at the European Conference on
Machine Learning and Principles and Practices of Knowledge Discovery in Databases
(ECML-PKDD), http://arxiv.org/abs/1110.1992v1

5. Skalistis Stefanos, Stamelos Ioannis, Kakarontzas George: “R.O.D.E. Process: A
Configurable Reuse-Oriented Domain Engineering Process”, International Conference
ICIST 2012, ISBN 978-86-85525-10-0, Pages 46-58, 29/2-3/3/2012. Kapaonik,
http://www.e-drustvo.org/icist/2012/html/pdf/585.pdf

6. George Kakarontzas, Ioannis Stamelos, Stefanos Skalistis and Athanasios
Naskos,'Extracting Components from Open Source: The Component Adaptation
Environment (COPE) Approach', In 38th Euromicro Conference on Software Engineering
and Advanced Applications, September 5-8, 2012, Cesme, Izmir, Turkey

7. Fotios Kokkoras, Konstantinos Ntonas, Apostolos Kritikos, George Kakarontzas, Ioannis
Stamelos, "Federated Search for Open Source Software Reuse". In 38th Euromicro
Conference on Software Engineering and Advanced Applications, September 5-8, 2012,
Cesme, Izmir, Turkey

8. Adnan Causevic, Daniel Sundmark, Sasikumar Punnekkat, “Impact of Test Design
Technique Knowledge on Test Driven Development: A Controlled Experiment”,
International Conference on Agile Software Development, XP2012, p 138-152, Springer,
Malmö, Sweden, Editor(s):C. Wohlin, http://dx.doi.org/10.1007/978-3-642-30350-0_10

9. Adnan Causevic, Sasikumar Punnekkat and Ivica Crnkovic: “An Application Engineering
Process Enabling Open-Source Reuse”, presented in the Reusing Open-Source Software
Components – (ROSS) Workshop @ ACM SigSoft CompArch 2012, June 25, 2012,
Bertinoro, Italy.

10. Apostolos Kritikos, George Kakarontzas, Ioannis Stamelos. "A semi-automated process
for open source code reuse". In 5th International Conference on Evaluation of Novel
Approaches in Software Engineering (ENASE '10), 24-25 July 2010, Athens, Greece,
http://users.teilar.gr/~gkakaron/AkritikoEtAl-SemiAutomatedProcessForOSSReuse.pdf

Final Report Page 76 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

1.5 OPEN-SME Public Web Site and Contact

For further details please contact:
Prof. Michalis Loupis, Greek Association of Computer Engineers
Greek Association of Computer Engineers, Karageorgi Servias 7, Athens 10563, Greece
Tel: +30-210 3325230, Fax: +30-210 7560324
E-mail: open-sme@computer-engineers.gr
Project website address: http://opensme.eu

Final Report Page 77 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

2 Use and dissemination of foreground

Final Report Page 78 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

2.1 Section A (public)

TEMPLATE A1: LIST OF SCIENTIFIC (PEER REVIEWED) PUBLICATIONS, STARTING WITH THE MOST IMPORTANT ONES

NO. Title Main author
Title of the

periodical or
the series

Number,
date or

frequency
Publisher Place of

publication
Year of

publication
Relevant

pages

Permanent
identifiers5

(if available)

Is/Will open
access6

provided to
this

publication?

1
Component Certification as a
Prerequisite for Widespread

OSS Reuse
George

Kakarontzas
Electronic

Communications
of the EASST

Vol 33 EASST 2010
http://journal.ub.tu-

berlin.de/eceasst/artic
le/view/449/433 /

yes

2
An empirical investigation on

the reusability of design
patterns and software

packages

Apostolos
Ampatzoglou

Journal of
Systems and

Software
Vol 84,

Issue 12 ELSEVIER 2011 2265-2283 http://dx.doi.org/10.10
16/j.jss.2011.06.047 no

3
Layer Assessment of Object-
Oriented Software: A Metric
Facilitating White-Box Reuse

George
Kakarontzas

Journal of
Systems and

Software
 ELSEVIER 2012 accepted no

4

'Extracting Components
from Open Source: The
Component Adaptation
Environment (COPE)

Approach'

George
Kakarontzas

38th Euromicro
Conference 2012 no

5 Elastic Component
Characterization with

George
Kakarontzas PCI2011 IEEE 2011 270-274 http://dx.doi.org/10.11

09/PCI.2011.27 no

5 A permanent identifier should be a persistent link to the published version full text if open access or abstract if article is pay per view) or to the final manuscript accepted for publication (link to
article in repository).
6 Open Access is defined as free of charge access for anyone via Internet. Please answer "yes" if the open access to the publication is already established and also if the embargo period for open
access is not yet over but you intend to establish open access afterwards.

Final Report Page 79 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

Respect to Quality
Properties: An Intuitionistic

Fuzzy-Based Approach

6
SFparser: A Tool for
Selectively Parsing

SourceForge
Apostolos
Kritikos PCI 2011 IEEE 2011 161-165 http://dx.doi.org/10.11

09/PCI.2011.42 no

7
Towards Open Source

Software System
Architecture Recovery
Using Design Metrics

Eleni
Constantinou PC1 2011 IEEE 2011 166-170 http://dx.doi.org/10.11

09/PCI.2011.36 no

8
Open Source Software:

How Can Design Metrics
Facilitate Architecture

Recovery?

Eleni
Constantinou

4th Workshop on
Intelligent

Techniques in
Software

Engineering, at
(ECML-PKDD)

 2011 http://arxiv.org/abs/11
10.1992v1 yes

9
R.O.D.E. Process: A
Configurable Reuse-

Oriented Domain
Engineering Process

Stefanos
Skalistis ICIST 2012

ISBN 978-
86-85525-

10-0
 2012 46-58

http://www.e-
drustvo.org/icist/2012/

html/pdf/585.pdf
yes

10 Federated Search for Open
Source Software Reuse Fotios Kokkoras 38th Euromicro

Conference 2012 no

11
Impact of Test Design

Technique Knowledge on
Test Driven Development: A

Controlled Experiment
Adnan Causevic XP2012 Springer 2012 138-152

http://dx.doi.org/10.10
07/978-3-642-30350-

0_10
no

12
An Application Engineering

Process Enabling Open-
Source Reuse

Adnan Causevic ROSS –
CompArch 2012 ACM 2012 no

13 A semi-automated process
for open source code reuse

Apostolos
Kritikos ENASE 2010 ENASE 2010

http://users.teilar.gr/~
gkakaron/AkritikoEtAl-
SemiAutomatedProce
ssForOSSReuse.pdf

yes

Final Report Page 80 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

TEMPLATE A2: LIST OF DISSEMINATION ACTIVITIES

NO. Type of activities7 Main leader Title Date/Period Place Type of audience8

Size of
audience

Countries
addressed

1 Conference AUTH ENASE 2010 24/07/2010 Athens Scientific community (higher
education, Research) EU

2 Web sites/Applications EMYPEE Project Web Site 30/07/2010 Athens Scientific community (higher
education, Research) 10.000.000 World

3 Conference AUTH DSM-TP 2010 Summer School 13/09/2010 Lisbon Scientific community (higher
education, Research) EU

4 Conference AUTH ADAPT 2010 Summer School 26/09/2010 Koblenz Scientific community (higher
education, Research) EU

5 Conference AUTH QUATIC 2010 29/09/2010 Oporto Scientific community (higher
education, Research) EU

6 Workshops ISS Open Source Software
Components Reuse Workshop 08/03/2011 Kapaonik Scientific community (higher

education, Research) - Industry 30 Serbia,
Greece

7 Publication EMYPEE 1st OPEN-SME Newsletter 08/03/2011 Athens
Scientific community (higher

education, Research) - Industry
- Civil society - Policy makers -

Medias
120 EU

8 Thesis MAELARDALENS
HOEGSKOLA

Software Testing in Agile
Development 02/07/2011 Malardalen Scientific community (higher

education, Research) 1000 Sweden

9 Web sites/Applications MAELARDALENS
HOEGSKOLA University Web Site 02/09/2011 Malardalen Scientific community (higher

education, Research) 1000000 Sweden

10 Workshops TEKNIKBYN OPEN-SME Workshop 26/01/2012 Vasteras Scientific community (higher 40 Sweden

7 A drop down list allows choosing the dissemination activity: publications, conferences, workshops, web, press releases, flyers, articles published in the popular press, videos, media
briefings, presentations, exhibitions, thesis, interviews, films, TV clips, posters, Other.
8 A drop down list allows choosing the type of public: Scientific Community (higher education, Research), Industry, Civil Society, Policy makers, Medias, Other ('multiple choices' is

possible).

Final Report Page 81 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

SCIENCE PARK
VASTERAS AB

education, Research) - Industry

11 Conference ISS ICIST 2012 29/02/2012 Kapaonik Scientific community (higher
education, Research) - Industry 60 EU

12 Workshops EMYPEE OPEN-SME Workshop 17/02/2012 Athens Scientific community (higher
education, Research) - Industry 40

Greece,
Cyprus,
Serbia,

Netherlands

13 Workshops ETEK OPEN-SME Workshop 30/05/2012 Nicosia Scientific community (higher
education, Research) - Industry 30

Cyprus,
Greece,
Sweden

14 Conference MAELARDALENS
HOEGSKOLA

ACM SigSoft COmpARch 2012
Conference - ROSS 25/06/2012 Bertinoro Scientific community (higher

education, Research) - Industry 30 Greece,
Sweden, Italy

15 Publication EMYPEE 2nd OPEN-SME Newsletter 30/06/2012 Athens
Scientific community (higher

education, Research) - Industry
- Civil society - Policy makers -

Medias
500 EU

16 Presentations AUTH Software Recycling 02/07/2012 Groningen Scientific community (higher
education, Research) Netherlands

Final Report Page 82 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

2.2 Section B (Public)

Part B1

TEMPLATE B1: LIST OF APPLICATIONS FOR PATENTS, TRADEMARKS, REGISTERED DESIGNS, ETC.

Type of IP
Rights9:

Confidential
Click on
YES/NO

Foreseen
embargo date
dd/mm/yyyy Application

reference(s)
(e.g. EP123456)

Subject or title of application Applicant (s) (as on the application)

NOT APPLICABLE

9 A drop down list allows choosing the type of IP rights: Patents, Trademarks, Registered designs, Utility models, Others.

Final Report Page 83 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

Part B2

Type of
Exploitable

Foreground10

Description
of exploitable foreground

Confidential
Click on
YES/NO

Foreseen
embargo

date
dd/mm/yyyy

Exploitable
product(s) or
measure(s)

Sector(s) of
application11

Timetable,
commercial
or any other

use

Patents or
other IPR

exploitation
(licences)

Owner &
Other

Beneficiary(s)
involved

Commercial
exploitation of
R&D results

The OPEN-SME generic and
customisable Domain
Engineering Process which
guides the definition,
implementation, and
maintenance of Domain
Architectures for any given
Application Domains,as well as
the identification and adaptation
of available OSS components
to these Domain Architectures.

No
Domain

Engineering
Process (Method)

Software
Development In use Patenting

examined
All SMEs/SME-

AGs

Commercial
exploitation of
R&D results

The OPEN-SME generic and
customisable Application
Engineering Process that will
guide the exploitation of the
Domain Engineering outcomes
in the framework of a
systematic, component-based,
and reuse-oriented Software
Product Development
Methodology

No
Application
Engineering

Process (Method)
Software

Development In Use Patenting
examined

All SMEs/SME-
AGs

Commercial
exploitation of
R&D results

The Open Source Search
Engine (OCEAN) that provides
unified access to existing OSS
search engines and allows the
initial retrieval of open source
software modules to be

No OCEAN Web-Site Software
Development In Use Licensing based

on GPL
All SMEs/SME-

AGs

19 A drop down list allows choosing the type of foreground: General advancement of knowledge, Commercial exploitation of R&D results, Exploitation of R&D results via standards,
exploitation of results through EU policies, exploitation of results through (social) innovation.
11 A drop down list allows choosing the type sector (NACE nomenclature) : http://ec.europa.eu/competition/mergers/cases/index/nace_all.html

Final Report Page 84 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

Type of
Exploitable

Foreground10

Description
of exploitable foreground

Confidential
Click on
YES/NO

Foreseen
embargo

date
dd/mm/yyyy

Exploitable
product(s) or
measure(s)

Sector(s) of
application11

Timetable,
commercial
or any other

use

Patents or
other IPR

exploitation
(licences)

Owner &
Other

Beneficiary(s)
involved

analysed and adapted by the
Domain Engineering Activities.
The OCEAN portal is made
publicly available (as a service)
for use by third-party
organisations.

Commercial
exploitation of
R&D results

The OPEN-SME Component
Adaptation Environment
(COPE) generic tooling
framework specification and the
different COPE instances (as
per selected Application
Domain requirements) that
support in a holistic manner the
different activities of the Domain
Engineering Process

No COPE tool Software
Development In Use Licensing based

on GPL
All SMEs/SME-
AGs

Commercial
exploitation of
R&D results

The OPEN-SME Component
Repository and Search Engine
(COMPARE) allows software
re-users to effectively search,
browse, and retrieve the assets
produced by the Domain
Engineering Process. It also
provides a communication bus
supporting the effective
exchange and processing of
structured information flows
between the software reuse
stakeholders.

No COMPARE Web
Site

Software
Development In Use Licensing based

on GPL
All SMEs/SME-
AGs

General
advancement of
knowledge

The OPEN-SME generic
Business Models and Cost
Models pertaining to the
commercialisation of the OPEN-
SME approach in real-world

No
OPEN-SME
generic Business
Models and Cost
Models

Open Source
Software In Use Available

publicly
All SMEs/SME-
AGs

Final Report Page 85 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

Type of
Exploitable

Foreground10

Description
of exploitable foreground

Confidential
Click on
YES/NO

Foreseen
embargo

date
dd/mm/yyyy

Exploitable
product(s) or
measure(s)

Sector(s) of
application11

Timetable,
commercial
or any other

use

Patents or
other IPR

exploitation
(licences)

Owner &
Other

Beneficiary(s)
involved

business cases.

Commercial
exploitation of
R&D results

The OPEN-SME generic and
customisable Domain
Engineering Process which
guides the definition,
implementation, and
maintenance of Domain
Architectures for any given
Application Domains, as well as
the identification and adaptation
of available OSS components
to these Domain Architectures.

No
Domain
Engineering
Process (Method)

Software
Development In use Patenting

examined
All SMEs/SME-
AGs

For further details on the results, please refer to section 1.3

For further details on the exploitation strategy, please refer to section 1.4

Final Report Page 86 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

2.3 Report on societal implications

Replies to the following questions will assist the Commission to obtain statistics and
indicators on societal and socio-economic issues addressed by projects. The questions are
arranged in a number of key themes. As well as producing certain statistics, the replies will
also help identify those projects that have shown a real engagement with wider societal issues,
and thereby identify interesting approaches to these issues and best practices. The replies for
individual projects will not be made public.

A General Information (completed automatically when Grant Agreement number is
entered.

Grant Agreement Number: FP7-SME-2008-2 – 243768

Title of Project: OPEN-SME

Name and Title of Coordinator: Dr. Michalis Loupis

B Ethics

1. Did your project undergo an Ethics Review (and/or Screening)?

 If Yes: have you described the progress of compliance with the relevant Ethics

Review/Screening Requirements in the frame of the periodic/final project reports?

Special Reminder: the progress of compliance with the Ethics Review/Screening Requirements should be
described in the Period/Final Project Reports under the Section 3.2.2 'Work Progress and Achievements'

0Yes XNo

2. Please indicate whether your project involved any of the following issues (tick
box) :

YES

RESEARCH ON HUMANS
 Did the project involve children?
 Did the project involve patients?
 Did the project involve persons not able to give consent?
 Did the project involve adult healthy volunteers?
 Did the project involve Human genetic material?
 Did the project involve Human biological samples?
 Did the project involve Human data collection?

RESEARCH ON HUMAN EMBRYO/FOETUS
 Did the project involve Human Embryos?
 Did the project involve Human Foetal Tissue / Cells?
 Did the project involve Human Embryonic Stem Cells (hESCs)?
 Did the project on human Embryonic Stem Cells involve cells in culture?
 Did the project on human Embryonic Stem Cells involve the derivation of cells from Embryos?

PRIVACY
 Did the project involve processing of genetic information or personal data (eg. health, sexual

lifestyle, ethnicity, political opinion, religious or philosophical conviction)?

 Did the project involve tracking the location or observation of people?
RESEARCH ON ANIMALS

 Did the project involve research on animals?
 Were those animals transgenic small laboratory animals?

Final Report Page 87 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

 Were those animals transgenic farm animals?
 Were those animals cloned farm animals?
 Were those animals non-human primates?

RESEARCH INVOLVING DEVELOPING COUNTRIES
 Did the project involve the use of local resources (genetic, animal, plant etc)?
 Was the project of benefit to local community (capacity building, access to healthcare, education

etc)?

DUAL USE
 Research having direct military use 0 Yes X No

 Research having the potential for terrorist abuse 0 Yes X No

C Workforce Statistics

3. Workforce statistics for the project: Please indicate in the table below the number of
people who worked on the project (on a headcount basis).

Type of Position Number of Women Number of Men

Scientific Coordinator 0 1

Work package leaders 1 5
Experienced researchers (i.e. PhD holders) 0 6
PhD Students 0 1
Other 0 8

4. How many additional researchers (in companies and universities) were
recruited specifically for this project?

2

Of which, indicate the number of men:

2

Final Report Page 88 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

D Gender Aspects
5. Did you carry out specific Gender Equality Actions under the project?

Yes
No

6. Which of the following actions did you carry out and how effective were they?
 Not at all

 effective
 Very

effective

 Design and implement an equal opportunity policy
 Set targets to achieve a gender balance in the workforce
 Organise conferences and workshops on gender
 Actions to improve work-life balance
 Other:

7. Was there a gender dimension associated with the research content – i.e. wherever people were
the focus of the research as, for example, consumers, users, patients or in trials, was the issue of gender
considered and addressed?

 Yes- please specify

 No

E Synergies with Science Education

8. Did your project involve working with students and/or school pupils (e.g. open days,
participation in science festivals and events, prizes/competitions or joint projects)?

 Yes- please specify

 No

9. Did the project generate any science education material (e.g. kits, websites, explanatory
booklets, DVDs)?

 Yes- please specify

 No

F Interdisciplinarity

10. Which disciplines (see list below) are involved in your project?
 Main discipline12: 2.3
 Associated discipline12: 2.2 Associated discipline12:

G Engaging with Civil society and policy makers

11a Did your project engage with societal actors beyond the research
community? (if 'No', go to Question 14)

Yes
No

11b If yes, did you engage with citizens (citizens' panels / juries) or organised civil society
(NGOs, patients' groups etc.)?

 No
 Yes- in determining what research should be performed
 Yes - in implementing the research
 Yes, in communicating /disseminating / using the results of the project

12 Insert number from list below (Frascati Manual).

On-line training material

Final Report Page 89 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

11c In doing so, did your project involve actors whose role is mainly to
organise the dialogue with citizens and organised civil society (e.g.
professional mediator; communication company, science museums)?

Yes
No

12. Did you engage with government / public bodies or policy makers (including international
organisations)

 No
 Yes- in framing the research agenda
 Yes - in implementing the research agenda

 Yes, in communicating /disseminating / using the results of the project

13a Will the project generate outputs (expertise or scientific advice) which could be used by
policy makers?

 Yes – as a primary objective (please indicate areas below- multiple answers possible)
 Yes – as a secondary objective (please indicate areas below - multiple answer possible)
 No

13b If Yes, in which fields?
Agriculture
Audiovisual and Media
Budget
Competition
Consumers
Culture
Customs
Development Economic and
Monetary Affairs
Education, Training, Youth
Employment and Social Affairs

Energy
Enlargement
Enterprise
Environment
External Relations
External Trade
Fisheries and Maritime Affairs
Food Safety
Foreign and Security Policy
Fraud
Humanitarian aid

Human rights
Information Society
Institutional affairs
Internal Market
Justice, freedom and security
Public Health
Regional Policy
Research and Innovation
Space
Taxation
Transport

Final Report Page 90 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

13c If Yes, at which level?
 Local / regional levels
 National level
 European level
 International level

H Use and dissemination

14. How many Articles were published/accepted for publication in
peer-reviewed journals?

13

To how many of these is open access13 provided? 4

 How many of these are published in open access journals? 1

 How many of these are published in open repositories? 3

To how many of these is open access not provided? 9

 Please check all applicable reasons for not providing open access:

 publisher's licensing agreement would not permit publishing in a repository
 no suitable repository available
 no suitable open access journal available
 no funds available to publish in an open access journal
 lack of time and resources
 lack of information on open access
 other14: ……………

15. How many new patent applications (‘priority filings’) have been made?
("Technologically unique": multiple applications for the same invention in different
jurisdictions should be counted as just one application of grant).

NONE

16. Indicate how many of the following Intellectual
Property Rights were applied for (give number in
each box).

Trademark

Registered design

Other

17. How many spin-off companies were created / are planned as a direct
result of the project?

NONE

Indicate the approximate number of additional jobs in these companies:

18. Please indicate whether your project has a potential impact on employment, in comparison
with the situation before your project:

 Increase in employment, or In small & medium-sized enterprises
 Safeguard employment, or In large companies
 Decrease in employment, None of the above / not relevant to the project
 Difficult to estimate / not possible to quantify

19. For your project partnership please estimate the employment effect
resulting directly from your participation in Full Time Equivalent (FTE =
one person working fulltime for a year) jobs:

Indicate figure:

2

13 Open Access is defined as free of charge access for anyone via Internet.
14 For instance: classification for security project.

Final Report Page 91 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

Difficult to estimate / not possible to quantify

I Media and Communication to the general public

20. As part of the project, were any of the beneficiaries professionals in communication or
media relations?

 Yes No

21. As part of the project, have any beneficiaries received professional media / communication
training / advice to improve communication with the general public?

 Yes No

22 Which of the following have been used to communicate information about your project to
the general public, or have resulted from your project?

 Press Release Coverage in specialist press
 Media briefing Coverage in general (non-specialist) press
 TV coverage / report Coverage in national press
 Radio coverage / report Coverage in international press
 Brochures /posters / flyers Website for the general public / internet
 DVD /Film /Multimedia Event targeting general public (festival, conference,

exhibition, science café)

23 In which languages are the information products for the general public produced?

 Language of the coordinator English
 Other language(s)

Question F-10: Classification of Scientific Disciplines according to the Frascati Manual 2002 (Proposed
Standard Practice for Surveys on Research and Experimental Development, OECD 2002):

FIELDS OF SCIENCE AND TECHNOLOGY

1. NATURAL SCIENCES
1.1 Mathematics and computer sciences [mathematics and other allied fields: computer sciences and other

allied subjects (software development only; hardware development should be classified in the
engineering fields)]

1.2 Physical sciences (astronomy and space sciences, physics and other allied subjects)
1.3 Chemical sciences (chemistry, other allied subjects)
1.4 Earth and related environmental sciences (geology, geophysics, mineralogy, physical geography and

other geosciences, meteorology and other atmospheric sciences including climatic research,
oceanography, vulcanology, palaeoecology, other allied sciences)

1.5 Biological sciences (biology, botany, bacteriology, microbiology, zoology, entomology, genetics,
biochemistry, biophysics, other allied sciences, excluding clinical and veterinary sciences)

2 ENGINEERING AND TECHNOLOGY
2.1 Civil engineering (architecture engineering, building science and engineering, construction engineering,

municipal and structural engineering and other allied subjects)
2.2 Electrical engineering, electronics [electrical engineering, electronics, communication engineering and

systems, computer engineering (hardware only) and other allied subjects]
2.3. Other engineering sciences (such as chemical, aeronautical and space, mechanical, metallurgical and

materials engineering, and their specialised subdivisions; forest products; applied sciences such as

Final Report Page 92 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

geodesy, industrial chemistry, etc.; the science and technology of food production; specialised
technologies of interdisciplinary fields, e.g. systems analysis, metallurgy, mining, textile technology
and other applied subjects)

3. MEDICAL SCIENCES
3.1 Basic medicine (anatomy, cytology, physiology, genetics, pharmacy, pharmacology, toxicology,

immunology and immunohaematology, clinical chemistry, clinical microbiology, pathology)
3.2 Clinical medicine (anaesthesiology, paediatrics, obstetrics and gynaecology, internal medicine, surgery,

dentistry, neurology, psychiatry, radiology, therapeutics, otorhinolaryngology, ophthalmology)
3.3 Health sciences (public health services, social medicine, hygiene, nursing, epidemiology)

4. AGRICULTURAL SCIENCES
4.1 Agriculture, forestry, fisheries and allied sciences (agronomy, animal husbandry, fisheries, forestry,

horticulture, other allied subjects)
4.2 Veterinary medicine

5. SOCIAL SCIENCES
5.1 Psychology
5.2 Economics
5.3 Educational sciences (education and training and other allied subjects)
5.4 Other social sciences [anthropology (social and cultural) and ethnology, demography, geography

(human, economic and social), town and country planning, management, law, linguistics, political
sciences, sociology, organisation and methods, miscellaneous social sciences and interdisciplinary ,
methodological and historical S1T activities relating to subjects in this group. Physical anthropology,
physical geography and psychophysiology should normally be classified with the natural sciences].

6. HUMANITIES
6.1 History (history, prehistory and history, together with auxiliary historical disciplines such as

archaeology, numismatics, palaeography, genealogy, etc.)
6.2 Languages and literature (ancient and modern)
6.3 Other humanities [philosophy (including the history of science and technology) arts, history of art, art

criticism, painting, sculpture, musicology, dramatic art excluding artistic "research" of any kind,
religion, theology, other fields and subjects pertaining to the humanities, methodological, historical and
other S1T activities relating to the subjects in this group]

Final Report Page 93 of 93

OPEN-SME/EMHPEE/WP1/FR © OPEN-SME Consortium – August 2012

3 Final Report on the Distribution of the European Union
Financial Contribution

This report shall be submitted to the Commission within 30 days after receipt of the final
payment of the European Union financial contribution.

