
Executive summary:

The OPEN-SME main idea is to introduce a reuse service that will be operated by SME

Association Groups (AGs) on behalf of their SME software development members. This

service will be operated by software experts of the SME AGs who will produce components

from OSS projects, test them, generate documentation, resolve licensing etc.

asynchronously to application development by SMEs and independently from the SMEs. The

components will be related to domains that are relevant to the SMEs. Therefore when the

SMEs will want to reuse them, the components will already be there.

The OPEN-SME project collectively provides two processes and three tools, namely:

1.The Reuse-Oriented Domain Engineering (RODE) process.

2.The Application Engineering process.

3.The OCEAN tool. OCEAN is a tool for searching OSS code search engines. Essentially a

meta-search engine.

4.The COPE tool. COPE is a tool for extracting, testing, documenting and packaging software

components originating from OSS projects.

5.The COMPARE tool. COMPARE is a repository for storing the extracted component

packages and delivering them to SMEs.

The Open-Source Search Engine (OCEAN) is a meta-search engine that provides unified

access to existing Open Source Software (OSS) search engines. This allows the reuse-

engineer to find open source software assets (i.e projects, packages, files etc.) satisfying

certain criteria, such as software that is written in a specific programming language,

containing certain keywords, having a specific license etc. Moreover, it allows the re-user to

detect a software asset that is of some value and place an order to adapt that specific asset

to the reuse-engineer. OCEAN is a web portal (see

http://ocean.gnomon.com.gr/web/guest/home , root/test online) that allows mainly

locating and browsing open-source files and projects that are available on popular open-

source search engines. The Component Adaptation Environment (COPE) is a tool-chain that

provides an environment for the enactment of the domain engineering process of OPEN-

SME, thus allowing the reuse-engineer produce reusable components for the domain(s) of

interest (see http://opensme.eu/deliverables/86-deliverable-d32b , trialsuser/opensmeuser

online).

COPE is a desktop application to perform the following tasks in order to achieve the

aforementioned result:

-Identify and model primary concepts of the domain

-Analyse the different aspects

-Comprehend the project and detect candidate components

-Generate components and validate them

-Classify the produced component

-Upload the Component to COMPARE component repository and search engine.

The Component Repository and Search Engine (COMPARE) is a web portal (see

http://www.teletel-projects.net/compare , demo/1234 online), that allows SME software re-

users to search and discover software artefacts, technical documents, test suites related to

open-source software. In addition, it allows the stakeholders of the Domain Engineering

Process (reuse engineers, domain experts, component testers and certifiers) to manage and

maintain the assets stored in the repository. The end-users can be endowed by using the

advanced filtering capabilities as well as by accessing information about the verification and

certification attributes of a component. Finally, it provides a communication mechanism

between the re-users and the reuse-engineers.

Project Context and Objectives:

Overview

Open Source Software (OSS) reuse has the potential to improve software quality, shorten

time-to-market and bring competitive advantages to Software Development small and

medium-sized entreprises (SME).

However, currently OSS reuse is restricted to:

-Whole OSS projects (e.g. Apache web server, MySQL Database)

-Opportunistic reuse of isolated classes (i.e. copy-paste-adapt reuse).

-Well-known selected infrastructure components (e.g. Apache Commons)

The OPEN-SME proposal is to extend the landscape of OSS reuse to domain-specific

components extracted by arbitrary OSS projects. Achieving this goal however involves a

number of challenges:

-Valuable OSS components exist in every OSS project. However it is difficult to recognize

them, extract them, test them, document them etc.

-During software development, usually there is no time for the aforementioned activities.

Developers often prefer to develop new code from scratch although this code has been

written before many times by many others.

-Even when developers recognize the opportunity to reuse OSS code there are several

uncertainties related to the provided functionality and quality.

-What the component does exactly?

-How well it does it?

The OPEN-SME main idea is to introduce a reuse service that will be operated by SME

Association Groups (AGs) on behalf of their SME software development members. This

service will be operated by software experts of the SME AGs who will produce components

from OSS projects, test them, generate documentation, resolve licensing etc.

asynchronously to application development by SMEs and independently from the SMEs. The

components will be related to domains that are relevant to the SMEs. Therefore when the

SMEs will want to reuse them, the components will already be there. The OPEN-SME project

collectively provides two processes and three tools, namely:

1.The Reuse-Oriented Domain Engineering (RODE) process.

2.The Application Engineering process.

3.The OCEAN tool. OCEAN is a tool for searching OSS code search engines. Essentially a

meta-search engine.

4.The COPE tool. COPE is a tool for extracting, testing, documenting and packaging software

components originating from OSS projects.

5.The COMPARE tool. COMPARE is a repository for storing the extracted component

packages and delivering them to SMEs.

OCEAN

The Open-Source Search Engine (OCEAN) is a meta-search engine that provides unified

access to existing Open Source Software (OSS) search engines. This allows the reuse-

engineer to find open source software assets (i.e projects, packages, files etc.) satisfying

certain criteria, such as software that is written in a specific programming language,

containing certain keywords, having a specific license etc. Moreover, it allows the re-user to

detect a software asset that is of some value and place an order to adapt that specific asset

to the reuse-engineer. OCEAN is a web portal (see

http://ocean.gnomon.com.gr/web/guest/home , root/test online) that allows mainly

locating and browsing open-source files and projects that are available on popular open-

source search engines. OCEAN is extensible to incorporate any open-source search engine

available regardless of the integration strategy. What this means is that the integration of an

arbitrary search engine can be performed in any way possible (i.e. use of provided api, web-

scrapping, etc).

COPE

The Component Adaptation Environment (COPE) is a tool-chain that provides an

environment for the enactment of the domain engineering process of OPEN-SME, thus

allowing the reuse-engineer produce reusable components for the domain(s) of interest (see

http://opensme.eu/deliverables/86-deliverable-d32b , trialsuser/opensmeuser online).

COPE is a desktop application to perform the following tasks in order to achieve the

aforementioned result:

-Identify and model primary concepts of the domain (using: Knowledge Manager)

-Analyse the different aspects (using: Static Analysis, Design-pattern Analysis, etc.) of an

Open-Source project

-Comprehend the project (using: the outcome of the Analysis, Documentation Generation,

in-project Search)

-Detect candidate components (using: the outcomes of the project Analysis (ii) and project

Comprehension (iii))

-Generate components (using: the various Component Makers)

-Validate them (using: Dynamic Analysis)

-Classify the produced component (using: Knowledge Manager)

-Upload the Component to COMPARE component repository and search engine.

As far the physical architecture is concerned, only a couple of the aforementioned tasks

initiate an interaction with one of the OPEN-SME servers. In the following subsection we

describe each scenario of use and the associated servers as they are instantiated for the

OPEN-SME trials.

COMPARE

The Component Repository and Search Engine (COMPARE) is a web portal (see

http://www.teletel-projects.net/compare , demo/1234 online), that allows SME software re-

users to search and discover software artefacts, technical documents, test suites related to

open-source software. In addition, it allows the stakeholders of the Domain Engineering

Process (reuse engineers, domain experts, component testers and certifiers) to manage and

maintain the assets stored in the repository. The end-users can be endowed by using the

advanced filtering capabilities as well as by accessing information about the verification and

certification attributes of a component. Finally, it provides a communication mechanism

between the re-users and the reuse-engineers

System Architecture as a whole

The system architecture is based on a decentralized topology. The reason being topology

that the end-users perceive this topology as a robust, fault-tolerant system. So, if one of the

servers malfunctions, the rest of the functionalities provided by the system do not cease to

exist, but on the contrary the associated users can still perform their tasks without being

affected by a malfunction that is irrelevant with what they have to perform. Moreover, this

architecture makes the evolution of the services independent from each other which is both

desirable and necessary. It is desirable, not only for purposes of robustness and fault-

tolerance but also for tracking and maintaining reasons. It is also necessary because at any

moment during the trials the end-users may require additions or enhancements in order to

successfully use the services, so the services should be easily maintainable thus independent

from each other. Nevertheless these services can be hosted on a single physical server and

thus do not impose additional costs to the SME-AGs.

Project Results:

The OPEN-SME main idea is to introduce a reuse service that will be operated by SME

Association Groups (AGs) (e.g. Greek Association of Computer Engineers, Vasteras Science

Park etc.) on behalf of their SME software development members. This service will be

operated by software experts of the SME AGs who will produce components from OSS

projects, test them, generate documentation, resolve licensing etc. asynchronously to

application development by SMEs and independently from the SMEs. The components will

be related to domains that are relevant to the SMEs. Therefore when the SMEs will want to

reuse them, the components will already be there.

The OPEN-SME project collectively provides two processes and three tools that we will

describe in some detail in the following sections:

Domain Engineering Process (RODE)

In this section we will discuss a domain engineering process for the creation of domain

models based on existing OSS projects. We believe OSS projects provide not only a quality

alternative to commercial software but also a knowledge resource that we can exploit in

developing the necessary domain knowledge for the domain engineering. Domain

engineering methods invariably propose the use of so-called exemplar projects that are

existing projects used during domain analysis and design. We propose a domain engineering

process that uses OSS projects as exemplars during all phases of domain engineering,

including the domain implementation phase in which existing OSS components are reused

for the partial implementation of the domain artifacts. The process is suitable for Small and

Medium Enterprises (SMEs) that experience limitation of resources and characterized by a

limited portfolio of owned projects having difficulties in applying systematic reuse methods

based on domain engineering approaches.

Introduction

Systematic software reuse is divided into a) activities and/or processes related to building

reusable assets, referred as domain engineering processes or methodologies, and b)

activities and/or processes related to reusing these assets in the context of a software

application development, referred as application engineering processes. The authors in [1]

define domain engineering as “the set of activities involved in developing reusable assets

across an entire application domain, or family of applications”. In domain engineering a

number of applications, belonging to a specific domain, are identified and their similarities

and variabilities are analysed in order to produce a domain model. Thereafter the model is

designed, implemented, and concrete artefacts of the implemented model are produced to

be reused in a number of applications. The domain engineering process is used to create a

specific reusable software platform in which future applications will be based upon. It

encompasses phases for requirements analysis, design, implementation and testing of this

platform. After this reusable platform has been implemented applications can be developed

more efficiently with the reuse of the platform.

Domain engineering is a necessary step towards the establishment of systematic reuse

within a software development organization. However there have been known limitations

such as the difficulties in analysing a domain thoroughly [2] and therefore tactical reuse

should be allowed to prove its value before the domain analysis is completed, to extend a

domain model beyond its initial scope [3] and in developing reusable modules, gaps among

analysis, design and implementation in reuse processes and achieving development with

reuse in conjunction with development for reuse [4]. Domain engineering therefore

constitutes an active research area independently or, more recently, in conjunction with

product line approaches to reuse [5].

In our research work in the context of the OPEN-SME EU funded project, we look at

methods and tools for enabling Small and Medium Enterprises (SMEs) to effectively reuse

Open Source Software (OSS) components in their software development processes. In order

to establish a systematic link between OSS available components and their domains so that

their reuse is more efficient we formulated a domain engineering process for SME

Association Groups (SME-AGs) that uses open source software projects as exemplar

applications used for domain analysis, as well as a source of reusable components during

domain 'implementation'.

RODE: A domain engineering process based on OSS projects

The RODE process comprises of distinct phases. Each one of the phases, is performed only

once with the exception of the Evolution Phase. In the RODE process, we try to build all the

necessary tools, reusable assets, artefacts, documents, models, etc. until they reach a

certain level of maturity thus allowing SME-AGs to provide the services of OPEN-SME, and

perform a continuous, on-going, evolution of the assets.

The stakeholders of the Domain Engineering Process are:

-Reuser: Software re-user (in particular SMEs) is the key beneficiary role since they apply

their application engineering process using reusable assets produced by RODE process.

-Reuse Engineer: Reuse engineers are professionals (hired by SME-AGs) who are responsible

for discovering and adapting software components in order to produce reusable assets that

will be stored in the Reuse Repository.

-Domain Expert: Domain Experts are professionals that specialize in a specific domain and

are engaged in assisting the reuse engineer by providing their knowledge on the domain.

-Tester: Testers are responsible for the core activities of the test effort. Their main

responsibility is to test software components.

-Certifier: Certifiers are software engineers with experience in Software Verification and

responsible for certifying software components.

The tools that are provided by the Open-SME in order to fulfil its goals are:

-OCEAN: The Open Source Search Engine (OCEAN) is meta-search engine that allows the

initial discovery of OSS projects and/or components by providing unified access to existing

open source software search engines and forges.

-COPE: The Component Adaptation Environment (COPE) is a tool-chain that assists the reuse

engineer to the enactment of the domain engineering process. It also allows the Tester and

Certifier to test, verify and certify software components by providing testing and model

checking tools.

-COMPARE: The Component Repository and Search Engine (COMPARE) will serve as the

Reuse Repository that will allow reusers to search and discover reusable assets produced by

the Domain Engineering Process and the COPE tool-chain.

In the website of the process we provide further information regarding the roles, methods

and tools included in the RODE process and generally more detailed information about the

process itself.

Process Definition Phase

This phase aims at organizing the usage of resources and the way the process as a whole will

be carried out. In this phase the reuse Engineer should create, document and execute a

domain engineering plan including standards, methods, activities, assignments, and

responsibilities for performing domain engineering including the candidate stakeholders.

S/he will also select any additional representation forms to be used for the domain models.

Process Configuration Phase

The purpose of this phase is to configure (if necessary) the process itself to address the

specificities of the domain of interest by performing the following activities:

1.OSS Search Engine selection: Refers to the selection of the most suitable Open Source

Software Search Engines for the domain of interest. Selected engines will be the only ones

used in order to discover OSS Projects.

2.OSS Search Engine Integration plan: In this (optional) activity the reuse engineer decides

whether any OSS search engine, identified in the 'OSS Search Engines selection' activity,

should be integrated into OCEAN tool or used 'as-is'. The reuse engineer should design the

integration of the OSS search engine into OCEAN, or design how the results of the OSS

Search Engines can be exploited by COPE, respectively.

3.OSS Search Engine Integration: In this (optional) activity the reuse engineer implements

either the integration of the selected OSS search engines into OCEAN or the process and

tool, if required, to exploit the search engine externally.

4.Tool selection: The reuse engineer selects any additional tools that might be necessary for

the implementation of the Domain Engineering Process and/or for instantiation of COPE. For

the selection of the most appropriate tools, the reuse engineer can use a decision analysis

method.

5.Tool Integration plan: In this (optional) activity the reuse engineer decides whether any

additional tools should be used independently or integrated into COPE. The reuse engineer

should design how the results of the additional tools can be exploited by COPE or design the

integration of the additional tools into COPE, respectively.

6.Tool Integration: In this (optional) activity the reuse engineer implements the integration

of any additional tools with COPE (resulting in a new instance of COPE) or the process and

tool, if required, to exploit the assets produced by the specific tool externally.

Domain Analysis Phase

In this phase the reuse Engineer has to analyze the domain(s) of interest by performing the

following activities:

1.Domain Boundary Definition: The reuse engineer, assisted by the domain expert, should

define the boundaries of the domain.

2.Primary Concept Identification and Modelling: In this iterative activity, the reuse engineer

while analyzing the domain of interest identifies primary concepts of the domain and models

them in the Ontology provided by the Knowledge Manager of COPE.

3.Exemplar Selection Plan: In this activity the reuse Engineer should create and document in

which way the exemplars will be selected. S/he should identify and document the criteria, as

well as their relative importance by which an exemplar is more suitable to be selected for

reuse. These should include functional, technical, business criteria. Finally, s/he should

estimate the number of exemplars required to cover the primary concepts.

Domain Design Phase

In this phase the reuse Engineer selects exemplar projects for the domain of interest and

validates whether they are within the domain scope by performing the following activities:

1.Exemplar Selection: In this activity the reuse engineer executes the Exemplar Selection

Plan and discovers, selects and retrieves the most representative OSS projects to be used as

exemplars. Based on the criteria defined in the exemplar execution plan s/he evaluates them

using a decision analysis method and selects the most appropriate.

2.Domain Validation: While the reuse engineer searches exemplars, the domain expert

should validate whether the exemplars are out of the domain boundaries or the domain

boundaries are too strict. In that case, the reuse engineer can either exclude the exemplar or

modify the domain boundaries at his/hers discretion.

Domain Implementation Phase

In this phase the reuse Engineer has to implement all the assets assimilating the exemplars

integration and incorporate the selected exemplars. This phase is broken down to the

following activities:

1.Exemplar Assimilation: This iteration, performed mainly by the reuse engineer, aims at the

assimilation of each exemplar by following the activities 2 - 7.

2.Component identification: Using reverse engineering tools, static and dynamic analysis

tools provided by the instantiation of COPE, the reuse engineer identifies reusable

components within the project.

3.Component Analysis and Evaluation: Afterwards, the reuse engineer analyzes each

component, identifies concepts of the components related to the domain of interest, and

evaluates its suitability using decision analysis methods.

4. Component Adaptation: Using model driven development tools and the adaptation

pattern library of COPE, the reuse engineer adapts the component and documents the

resulting asset.

5.Component Validation: In this task, the tester validates the component making use of the

validation tools provided by COPE.

6.Component Certification: In this (optional) task the Certifier using advanced certification

techniques, such as model-checking, certifies that a specific component has a set of desired

properties.

7.Asset Storage: Upon successful completion of the previous activities, the reuse engineer

models into the Ontology the concepts that are related to the component and gathers all

the produced artifacts. S/he then stores the component into COMPARE along with its

metadata or other assets (Metrics, Use cases, UML Diagrams, Test Cases, etc.)

8.Redefine Domain Boundaries: While the reuse engineer executes the 'Exemplar

Assimilation' s/he may have to redefine the domain boundaries.

Evolution Phase

In this perpetual and iterative phase the reuse engineer assimilates new projects into the

Reuse Repository while maintaining the already embodied assets and thus evolves the

domain engineering process as a whole. This is performed by following the activities

described below.

1.New OSS Search Engine Discovery and Integration: In this (optional) activity the reuse

engineer performs the corresponding activities described in the 'Domain Configuration'

phase.

2.New Tool Discovery and Integration: In this (optional) activity the reuse engineer performs

the corresponding activities described in the 'Domain Configuration' phase.

3.Exemplar Selection: The reuse engineer performs corresponding activities described in the

'Domain Design' phase.

4.Project Assimilation: In this iteration, performs the corresponding activities described in

the 'Domain Implementation' phase.

5.Component Certification: In this task the Certifier using advanced certification techniques,

such as model-checking, certifies that a specific component has a set of desired properties.

Application Engineering Process

Component based software engineering had received significant focus from the research

community during the last decade and several interesting models have been proposed. At

the same time, Open source software development also had become popular, thanks to the

dedicated efforts of the developer community. Both communities have a lot to learn from

each other and a proper blending of their processes and methods could provide the

software developers with greater opportunities and well as cost efficiency. In this Section,

we present the specification of an application engineering process envisaged for the reuse-

oriented software development approach that can be beneficial for small and medium

enterprises (SMEs). This application engineering process is described through various phases

and activities included therein. This process is to help the SME engineers to have a clear

picture and comprehension of the issues involved. We also present a set of requirements

and challenges identified for the realization of such a process.

Introduction

In spite of the large research efforts on the component based software engineering (CBSE)

as well as the growing development efforts of the open source software community, we are

yet to see any strong efforts in bringing a synergy between these two communities. We

believe that understanding the models and processes proposed by CBSE and blending them

carefully to their processes and models could provide the open-source community with

much greater re-use capability and hence cost-efficiency.

One of the high level objectives of OPEN-SME is to define and systematically document the

OPEN-SME generic and customisable Application Engineering Process. In the context of the

OPEN-SME business cases, 'Application Engineering Activities' are typically performed by the

Software Development SMEs. These activities need to be organised in the context of a

component-based and reuse-oriented Software Development Methodology that is capable

of exploiting the outcomes of the Domain Engineering Process.

OPEN-SME will also develop the OPEN-SME Component Repository and Search Engine

(COMPARE) having the following main features:

-Allow software resuers to effectively search, browse, and retrieve the assets produced by

the Domain Engineering Process. These assets include software artefacts, technical

documents, test suites, metamodels, etc.

-Provide to resuers a clear view of the software component attributes relating to software

qualification and certification.

-Provide a communication channel supporting the effective exchange and processing of

structured information flows between the software reuse stakeholders (placement of orders

for software components, bug reports, event notifications, etc.)

There exist many models for software development processes and lifecycles. Most of them

are specified considering some specific, often non-technical goals, such as quality,

predictability, dependability, or flexibility, and are often independent of technology.

Examples of such models are different sequential models such as Waterfall or V model, or

iterative models such as spiral model, or different agile methods, or de-facto standards such

as ISO 9000, or CMMI. Component-based software engineering (CBSE), as a young discipline

is still focused on technology issues: modelling, system specifications and design, and

implementation. There is no established component-based development process. Yet many

principles of component-based development (CBD) have significant influence on the

development and maintenance process and require considerable modifications of standard

development processes.

The main idea of the component-based approach is building systems from already existing

components. This assumption has several consequences for the system lifecycle [15]:

-Separation of development processes. The development processes of component-based

applications are separated from development processes of the components. Majority of the

components should already have been developed and possibly have been used in other

products when the application engineering process starts.

-A new process: A new, possibly separate process dedicated to finding and evaluating the

components appears. Discovery and evaluation can be a part of the main process, but many

advantages are gained if the process is performed separately. The result of the process is a

repository of components that includes components’ specifications, descriptions,

documented tests, and the executable components themselves.

-Changes in the activities in the application engineering/development processes. The

activities in the component-based development processes are different from the activities in

non-component-based approach. For the application engineering process, the emphasis will

be on finding the proper components and verifying them. For the component-level process,

design for reuse will be the main concern.

Current technology limitations being addressed by the OPEN-SME project are:

1.Absence of component-based Application Engineering Process specifications that consider

a cross- organisation software reuse environment: In the context of the OPEN-SME use

cases, a component- based application engineering process should be centered on the

exploitation of the outcomes (use case models, feature models, software artefacts,

architecture metamodels, etc) of an external domain engineering process. Indeed stateof-

the-art approaches take into account activities such as component searching, discovery, and

assessment as activities to be exercised in parallel to software product development

processes. However, the market presently lacks a concrete Application Engineering Process

specification that is dedicated to component-based software development (i.e. with clear

partition and defined interfaces with the domain engineering activities) and considers the

exploitation by reuse of external domain-specific components.

2.Limitations of existing software reuse repository solutions: The Reuse repositories are an

essential factor for the success of any component-based and reuse-oriented application

engineering effort, since they allow searching and retrieval of reusable software artefacts.

The number of reuse specific tools is limited. More specifically, software dealing with

component asset management is difficult to find, quite expensive and allows the sharing of

only intra-company rather than inter-company components.

OPEN-SME use cases consider a cross-organisation environment that requires the effective

exchange of information flows between the software reuse stakeholders (reuse engineers

and resuers). Such communications may relate to the placement of software component

orders, the provision of reuse feedback (e.g. bug reports), notifications on the publishing of

new components, etc. In the context of large communities (as the ones considered by OPEN-

SME) the exchanged information flows should be systematically structured towards

facilitating and partly automating their organisation and processing by the software

providers. Existing reuse repository systems do not tackle the requirement described above.

As a result such cross-organisational communications presently take place in an informal

manner (typically using e-mails or forums), which significantly impacts the efficiency of the

software reuse processes.

Overview

This includes description of domain engineering as well from the point of view of the

application engineering process. The OPEN-SME Application Engineering Process will form a

generic software development and lifecycle methodology that will be component-based,

reuse-oriented and applicable (customizable) across different Application Domains.

The purpose of this specification will be as follows:

-It will define in detail and in a concrete manner a set of software-lifecycle activities and

associated work products

-It will be used as a functional and technical specification of the OPEN-SME Component

Reuse Repository and Search Engine (COMPARE).

-It will provide guidelines on the use of the OPEN-SME Component Reuse Repository and

Search Engine (COMPARE).

-It will also constitute one of the main topics of the project training activities and

furthermore it will form a key project result to be disseminated to third parties.

The Application Engineering Process will comprise two streams of activities that will be

exercised in parallel and in close synergy with each other.

1.Application Development: This will comprise of the pertinent lifecycle phases during the

application development. Starting with the simplest waterfall model as a base for this

process, which can be extended to more iterative development processes (e.g. agile

development processes).

2.Component Reuse: It will define a set of processes that concern the exploitation of the

resources (software artefacts, software metadata, test suites, technical documentation) that

the re-users will be able to access at the Reuse Repository.

The component re-use activities are typically done either at the Domain Engineering or as

part of the Application Engineering, based on several factors such as business

considerations, timing aspects, domains specific issues etc. The component reuse activities

make use of the Component repository through the COMPARE tool as well as interact with

the Domain Engineering.

Such a generic application engineering process however needs to be further detailed in to

multiple phases, with clear distinctions between the phases in order to provide appropriate

guidelines and tools to the SME developer for assisting them in achieving their goals of cost-

efficient development of high quality software systems. However please note that there are

considerable links between system development and component development phases. Also

based on the domain of the application being developed (for example, enterprise or

embedded), an activity at the lower level could be more appropriate to be included either as

part of the Domain Engineering phases or as part of the Application Engineering phases.

Further, a generic application process needs to be adapted based on the prevalent life cycle

model (such as traditional V model, Agile, RUP etc.) being followed in a given SME

organization.

PROPOSED APPLICATION ENGINEERING PROCESS

In the following subsections we define the OPEN-SME Application Engineering process in

detail. Based on the type of application domain under consideration (whether embedded

system or Enterprise application), the process will include a specific set of phases and

activities from those described.

Inputs to the application engineering process

On a higher level, the inputs to the application engineering Process are a) the application

requirements and b) available components produced by the domain engineering and stored

in the reuse repositories. The application requirements either come as a specification in an

order for product development or could evolve through discussions with domain experts

and the system developer. Since components are the major inputs to the applications

engineering process (as the assets stored in COMPARE), we provide more details on what a

component contains and try to exemplify.

Specifically, for each component, COMPARE will contain:

1. Classification of the components in relation to the domain concepts (see Section 6 'A

Domain Ontology for Domain Representation' of D2.2).

2. Component Information:

a. The source code of the component.

b. Definition of one or more provided interfaces, which list the services the component type

provides and definition of zero or more required interfaces, which list the functional services

the component requires in order to operate correctly. An interface is a set of one or more

operations, with a defined operation signature determined by an operation name and an

ordered set of parameters, each one with a direction chosen between in, in out, out and a

parameter type chosen between the defined types.

c.Definition of component attributes. Each attribute is typed with an already defined data

type and has a set of modifiers defined at type level (read-only, read-write). From the list of

attributes and their modifiers we can automatically generate a set of operations (possibly in

a dedicated provided interface) which operate as getter and setters for the attribute. In

particular: (i) for read-write attributes we generate a getter and a setter operation; (ii) for

read-only attributes we generate a getter operation.

3.Definition of platform constraints (like assumption on the processing unit or execution

platform)

4.Packaging information (name of source code files, information on the generated object

files, etc.)

5.Definition of non-functional constraints (some implementations may place some

constraints on the correctness of their behaviour. For example a control law in an embedded

system may work correctly only if executed within an interval of frequency, say 5Hz to

10Hz).

6.Additional information for operations (e.g. 'threadsafe' or not, i.e. there is a need or no

need to protect interfaces with mutual exclusion at instantiation level).

Application engineering phases

The main phases of the Application Engineering/Development in comparison with “classical”

software development and lifecycle phases, and in relation to the outcomes of the domain

engineering activities (as described in Section B) are as follows:

P1. Application requirements phase

P2. Physical architecture definition phase

P3. Application Design Phase

P4. Implementation- Component Realization

P5. System integration phase

P6. System testing phase

P7. Release Phase

P8. Maintenance Phase

The above phases are described in detail in the following subsections along with the main

activities, inputs, roles and outputs in each one of them.

Phase#1: Application Requirements

In a non-component-based approach the requirements specification is the main input for

development of the system. In a component-based approach the requirements specification

will also consider the availability of existing components. Within OPEN-SME, the

requirements should correlate to the assortment of the components, i.e. the requirements

specification will not only be input to further development, but also a result of the activities

that took place during both the Domain Analysis and Domain Implementation phases. For

example, certain requirements are not essential for a project and/or can be slightly modified

in order to reuse as-is an existing component that is too difficult or too expensive to

implement from scratch. However this search is more focused on internal component

repository as well as the goal is to identify a set of candidate (potential) components by

looking at the compatibility in a macro level. In this phase the reuser performs the following

activities:

1. Requirements Collection: In this activity, the reuser collects and specifies the

requirements for the application to be developed.

2. Requirements Reuse Analysis and Adaptation: This constitutes of the following sub

activities:

2.1. Requirements Reuse Analysis: In this activity, the reuser looks for potential candidates

of components satisfying the requirement.

2.2. Requirements Modification: If for a given requirement, no reusable components could

be found, then the reuser together with the optional support of the domain experts decides

whether the requirement could be modified.

2.3. Mark Requirement as 'non-reusable': If for a given requirement, no reusable

components could be found as well as it could not be modified then the requirement is

marked as 'non reusable'. This could ultimately result in a request to either domain

engineering or to in-house development.

2.4. Identification of candidate components (Iteration 1): In this phase the first iteration of

the component candidates will be done. Later (in the design and implementation phase) the

same activity will be repeated with slightly different goals. In this phase the goal is to find

the candidates that might meet the component requirements found in the requirements

analysis. The concrete support of this activity will be as follows. The Domain Feature Models

given by the Domain Engineering Process will provide the first hints on what functionality is

supported by the existing components. The Search Engine of the COMPARE tool will then be

used for searching components on the basis of a multitude of criteria ranging from desired

features (functionality) to programming languages, execution frameworks (e.g. J2EE, .NET),

etc. In the first iteration, the specification of the components do not need to be on a

detailed level; for example the interface functionality (i.e. operations) can be specified, but

not necessary all parameters of the operations, (i.e. the operation arguments). The result of

this activity will be a set of components that might meet the requirements. In the case that a

set of component that fully matches the requirement of the reuser cannot be found, then

the resuer will be able to place a relevant order on the Reuse Repository. If no component

was found, the information will be forwarded to the Domain Engineering process with a

possible order for such components. This can prove particularly effective for the cases

whereby the desired features are supported by some existing components, however the

desired execution framework or programming language is not supported and therefore

some type of component packaging or further adaptation is required.

Phase #2 -Physical architecture definition

The role of the Physical Architecture is to provide a model-level description of the relevant

hardware of the system. A physical architecture specification can assist in decision making

during component search and selection. Also this can later on get refined based on the

software reference architecture. In the physical architecture the following elements are

described:

1.Processing units are units that have a general-purpose processing capability.

2.Equipments / Instruments / Remote terminals

3.The interconnection between the elements above, in terms of buses or point-to-point

links, etc.

All the elements above should be decorated with a set of attributes that are relevant for

analysis or code generation purpose. In the case of buses, point-to-point links and

equipment, the elements should be decorated also with attributes to be able to drive an

automatic generation of communication code.

In this phase the reuser performs the following activities (with some support from domain

experts):

1.Overall system architecture: This is based on the requirements on CPUs/nodes, memory,

busses,

2.Detailed system architecture: This evolves through refinement of the overall design by

including details, dependencies, constraints on the types of devices, platform, etc. This

comes from the requirements and also based on the information from Domain

Engineers/Domain Experts. The set of candidate components found during the requirement

analysis phase has a valuable role to play during detailed system architecture modelling. The

domain engineer can provide identification of the potential target platforms. For instance, if

majority of the candidate components run on a specific platform, then this could as well be a

deciding factor from a business perspective.

Phase#3: Application Design

The OPEN-SME application design phase will follow the same pattern as a design phase of

software in general; it will start with a system analysis and a conceptual design providing the

system overall architecture and continue with the detailed design. However, a major

deviation from traditional approaches will be taken as the system architecture will need to

adhere to the Domain Software Architecture and incorporate assemblies of the existing

components stored in the Reuse Repository. As in the requirements process, a trade-off

between desired design and a possible design using the existing components must be

analysed. In addition to this, there will be many assumptions that must be taken into

consideration: For example, it must be decided which component model(s) will be used,

which will have impact on the system architecture as well as on certain system quality

properties.

In this phase the reuse Engineer performs the application design and analysis through the

following activities:

1.Conceptual Design: In this activity the reuser identifies the overall software architecture.

Identification of the subsystems or subsystems built from architectural components will be

the focus in this activity. By architectural components we refer to the units of some main

service of the application.

2.Architectural Deployment: This activity will decide on a high level which component will

run on which nodes/platform etc. Here the main considerations are specific requirements

and constraints arising from the candidate components and the platform architecture

definitions.

3.Architectural level Analysis: Aspects, which have wider system level implications, are

addressed and analysed in this activity. For instance the fault tolerance requirements (dual

vs multiple redundancies), separation of concerns, physical isolation requirements etc., are

typically analysed during architectural level analysis. The results from the architectural

analysis are used in detailed design activity.

4.Detailed Design: This activity will include design of subsystems, breakdown to architectural

components, identification of components etc. This will also include specification of

behaviours, sequence diagrams and state diagrams. Specification of components includes

specification of interfaces. This will be an iterative activity. Either selecting the existing

interfaces of components, or the specifications of component to be developed will be used

in the detailed design.

5.Detailed Analysis: Based on the system requirements most of the model level analysis with

respect to extra functional properties will be performed at this stage to analyse the design

soundness. Resource analysis, timing analysis, reliability modelling etc., are some of the

typical analysis needed and there exists a large set of tools and techniques for performing

these analyses. The exact choice of the tool for a specific type of analysis is not the focus of

the OPENSME project. The results of the detailed analysis will be checked against the

specifications. If they are not satisfactory, the possibility of generation of new components

will be explored with the support of the domain engineer or as in-house development. If the

resulting detailed design turns out to be an infeasible one, the one has to re-start from the

conceptual design activity.

Phase#4: Implementation- Component Realization

The component realization activities will only partially consist of coding - actually the more

pure a component-based and reuse-oriented approach is achieved, the less coding will be

needed. The main emphasis is put on component selection and its adaptation into the

system. This process can require additional efforts. First the selection process should ensure

that appropriate components have been selected with respect to their functional and extra-

functional properties. This requires verification of the component specification, or testing of

some of the component's properties that are important but possibly not documented in the

Reuse Repository. Provided that the system architecture adheres to the Domain

Architecture the effort required for the adaptation of components (from the resuer

perspective) will be very small or ideally zero. In any case, using the already tested and

documented components from the COMPARE reuse repository will significantly reduce the

burden on the reusers. In this phase the resuer will perform the following activities:

1.Component Selection - the reuser selects the most appropriate components between the

component candidates from the domain component repository. The existing components

that are closest to the component specification from the design phase will be selected. Note

that this specification considers both functional and non-functional properties. Note also,

that the selection process does not only consider the component candidates, but also

different component versions and variants. The candidate components found, will be

compared and ranked. Appropriate COMPARE user interfaces will assist this procedure. A

component that is most suitable for the given requirements and constraints will be selected.

The ranking of components will be maintained throughout system development such that

alternatives for a function can quickly be found.

The selection of the components may result with the following cases for each component:

a) the selected component fits well to the specification;

b) the selected component fits partially to the specification, but there are some mismatches,

functional or non-functional, - in that case an adaptation of the component is needed;

c) There is no component that matches the specification from the design phase. In that case

this components should be searched for outside the domain, or internally developed.

2.Component adaptation - When a particular component has been selected it may happen

that it does not comply with the specification (either functional or non-functional

properties). These components should be adapted to meet the specifications. A simplest

form of adaptation is to creation of adapters. Adapters are mediators between components

with a goal to make the components compatible. A typical adapter will change type of the

interface but not the interface itself. A next level of the adaptation is s.c. wrapper - a new

'component' that adjust the interface of the selected component with the component

specification from the design phase. Wrappers can be used to add or remove some parts of

the interface, or to change its behaviour, so this may require some programming efforts.

Note however that in both adapter and wrapper cases the selected component has not been

changed. The most drastic type of adaptation is the change of the component. The resuer

modifies the component for the specific needs of the application. In this case a new version

of the component will be created. In some cases the resuer can send a requirement to the

Domain Engineer to perform the adaptation, if the new adapted component version is

suitable for resuablity. In some cases the resuer will do the changes himself, but the result

will be forwarded to the domain engineering.

3.In-house development - in some cases no components for a specific service will be found

in the domain repository. In some cases the company developing the application

encapsulates its business advantage and do not want to share this knowledge with the

domain or other competitors. This implies that the application engineer (the reuser) will

develop specific components - using the application development tool. In other cases the

resuer will develop the component, but will also share it in the domain. In that case the

resuer will send the component (specification and implementation) to the domain engineer

who will probably improve the component with respect to its reusability.

4.Component verification - when a component is selected and adapted according to the

requirements from the design phase, or when developed, it must be verified. This

verification corresponds to a unit test, so it includes the verification of the functional

properties. In addition some of the non-functional properties can also be verified (for

example memory size, response time, and other component attributes). Despite the fact

that components will have been verified by the reuse engineers during the Domain

Implementation Phase, it is very probable that the reusers will also need to test components

themselves towards/after integrating them in their systems under development. The Test

Suite Implementations and/or Abstract Test Suite Specifications that will be available at the

Reuse Repository will be exploited for assisting this procedure. The first level of verification

will include testing functional and certain extra-functional properties of a component in

isolation (unit testing). A second level of verification includes testing the component in

combination with other components integrated in an assembly (integration testing). The

reusers will be able to provide structured feedback (e.g. bug reports, and orders for its fixes)

on the implemented components. This type of orders and feedback is very important, since

it will allow the repository growth over time with many variants of existing components,

suitable for different environments or with slightly different functional and/or quality

properties.

Phase #5 - System integration

This phase includes activities that support integration of the selected, or the newly created

components into the application. In the component-based approach this phase, although

consists of many complex activities, most of them are integrated parts of many component

technologies and are done automatically or semi-automatically.

Further, we refer to two types of integrations:

a) integration of a set of components into assemblies that constitute a service or a

subsystem or an architectural unit, and

b) the entire system.

Also the integration can be completed

a) before the deployment of the application, but also

b) after the deployment of the application - when a new component is deployed into the

application during run-time (a well-known 'plug-and -play' component deployment).

The list of the integration activities is detailed as follows:

1.Component Instance definition - Component instances are defined from selected or new

component implementation. The component instance is the component entity that gets

concrete values of functional and non-functional properties. For example, a component can

have parameterised interface, which in the instantiation process gets some concrete values.

Similar is with some of the non-functional properties (for example static memory size).

Instantiation with variant properties is a common use in product line engineering

approaches.

2.Allocation of component instances - The allocation of the components is supposed to be

done in the design phase. Here, according to that input, the component instances are

allocated on the physical structure - by this the component instances get the concrete values

of some properties. Instances of components are allocated to processing units defined in the

physical architecture. The need for explicit allocation of component instances is necessary

when two or more processing units are defined in the physical architecture. In the vast

majority of cases, given two components allocated on distinct processing units, it is

straightforward to deduce the allocation of the bindings between them. In fact typically

there is only one bus or point- to-point link that connects the two processing unit. However,

there can be the case were there are more connections between the units.

3.Component deployment - this is the activity that integrates the component into the

application - i.e. it creates a connection to the underlying platform, middleware or

component containers. This is usually a matter of the component technology. Containers are

special type of the components/wrappers that are carriers of certain properties (for example

they implement authentication mechanisms that are activated when the components from

that container are being accessed. Containers enable connection to the middleware and

indirectly to other containers and components. The provided and required interfaces of the

container match the interfaces of the components. As carriers of certain properties the

containers are often means for management of non-functional properties (aka extra-

functional properties - EFP). This management is related to runtime EFPs and realised in

combination of components and underlying component execution platform that can often

be integrated as a part of a middleware.

We distinguish four types of support:

(i) Exogenous Management. The EFP management is provided outside the components,

(ii) Endogenous Management. The EFP management is implemented in the components, i.e.

the component developers are responsible to implement it;

(iii) Management per Collaboration. The EFP management is realized in direct interactions

between components;

(iv) System-wide Management.

The EFP management is provided by the component framework, or underlying middleware.

By a combination of these types we get four possible types of the EFP support:

-Approach A (endogenous per collaboration). A component model does not provide any

support for EFP management, but it is expected that a component developer implements it.

This approach makes it possible to include EFP management policies that are optimized

towards a specific system, and also can cater for adopting multiple policies in one system.

This heterogeneity may be particularly useful when COTS components need to be

integrated. On the other hand, the fact that such policies are not standardized may be a

source of architectural mismatch between components. A risk of using this approach is

heterogeneity of policies for handling a single EFP in a system. As a result, managing and

predicting emerging properties at the system level can be very difficult.

-Approach B (endogenous system-wide). In this approach, there is a mechanism in the

component execution platform that contains policies for managing EFPs for individual

components as well as for EFPs involving multiple components. The ability to negotiate the

manner in which EFPs are handled requires that the components themselves have some

knowledge about how the EFPs affect their functioning. This is a form of reflection applied to

EFP management.

-Approach C (exogenous per collaboration). In this approach, components are designed such

that they address only functional aspects and are oblivious to EFP. Consequently, in the

execution environment, these components are surrounded by a container. This container

contains the knowledge on how to manage EFPs. In this approach, containers are connected

to other containers. Connected containers can manage the EFPs for the components that

they encapsulate. The container approach is a way of realizing the separation of concerns in

which components concentrate on functional aspects and containers concentrate on extra-

functional aspects. In this way, components become more generic because no modification

is required to integrate them into systems that may employ different policies for EFPs.

Because these components do not address EFPs, they are simpler to implement. A

disadvantage of the container approaches might be a degradation of the system

performance.

-Approach D (exogenous system-wide). This approach is similar to approach C, except that

the system can coordinate the management of an EFP from a global system-wide

perspective (e.g. global load balancing). Consequently, a more complex support need to be

built into the component execution platform.

4.Component binding - this is the activity in which a component implements connections to

other components (components binding). Component bindings are established between

component instances. The binding is established between the required interface of a

component instance and the provided interface of another component instance. The binding

is subject to a static check to ensure that the candidate provided interfaces fulfils the

functional needs of the client required interface. This can be done by asserting the

compatibility of the two interfaces. An alternative approach instead does not rely on the

signature of operations (name of operation, ordering, type and direction of parameters), but

the compatibility of two interfaces is checked ignoring the names of interfaces (and

operations therein) and just asserting the compatibility of the types and the direction of the

parameters of the operations. If the binding is considered legal according to this binding

approach, a later step requires that when the required interface is called, the call is dispatch

to the correct operation in the bound provided interface.

The signature of the calling operation (in the RI) and the called operation (in the PI) in fact

are different. Arguably, the connector is in charge of performing this step and a tool support

should help the configuration of the connector to perform this kind of binding. When

bindings have been established, it is possible to complete the description of the instances

with synchronization properties, queuing properties (like queuing protocols and queue

sizes), non-functional properties (like Minimum Inter Arrival Time) and end-to-end timing

properties.

In distributed applications, and in the applications with dynamic binding (plug-and-play)

special types of connectors can be created - proxies that play a role of components and

transparency in the application development. The proxies, as well as some adapters and

containers can be automatically created by the tools, but also saved in the Domain

engineering repositories if they are typical domain-specific solutions.

Phase #6 - System testing

Due to the fact that the tests that will have been performed in isolated components are

usually not enough, since their behaviour can be different in the assemblies and in other

environments, thorough system and subsystem tests will need to be performed. In case of

embedded systems, multiple levels of verification and validation often need to be performed

using simulations, hardware-in-loop, etc., before the system can be deployed in actual

operational environments. In the waterfall model the test is performed after the system

integrations, whereas in CBD Tests are present in all phases. Tests are performed on isolated

components (unit testing), component assemblies and finally on the system. In this phase

the developed system is verified against the system specification. This is also known as

testing in the large and proves the systems readiness for deployment. Any system failure or

abnormal behaviour will lead to debugging and bug fixing activities. The structuring of the

system test suite and logging of test results should be performed in such manner to facilitate

the reverse traceability of a failure to a fault (bug) in a specific component. Once a bug has

been associated with a specific component, then bug fixing can be attempted either in-

house or with the help of the domain engineer. In any case the rectified component is stored

back in the repository as well regressing testing is performed on the modified system.

The major activities performed during the System Testing phase are as follows:

1. Test case Generation: - As a starting activity reuser is generating a set of test cases or test

suite from the system requirements specification.

2. Test case Execution: - In this activity reuser is executing a predefined set of test cases or

test suites on a complete system in a setting that is as close as possible to the real

environment.

3. Test results Analysis: - Upon executing test cases, reuser has to perform analysis of test

results to compare if the results are as expected by the system requirements. This activity

will define if some specific behaviour of components should be considered as a fault of the

system or not.

4. Debug and identification of faulty component: - For each fault in the system identified

during test results analysis, reuser has to perform debugging activity in order to locate the

faulty component.

5. Fixing the faulty component: - Once the faulty component is identified reuser can modify

the component in-house or collaborate with domain engineering in obtaining a new version

of component.

6. Regression testing: - When a new component is obtained reuser has to perform

regression testing in order to validate that the bug previously identified is addressed but also

to ensure that new bugs are not introduced in the system with a new version of component.

Phase#7 - Release Phase

The release phase includes packaging of the software in forms suitable for delivery and

installation. The component-based development release phase will not be significantly

different from that of a 'classical' software development process.

The major activities performed during the Release phase are as follows:

1.Deployment: -The release is deployed on the specified target platform.

2. Release Certification: - In this activity reuser will execute a predefined set of test cases or

test suites on the deployed release of the system. Once the verification activities (mainly

functional ones) are completed, the application is certified for release.

Phase#8- Maintenance Phase

The maintenance of a software system is a necessity mainly due to the changes of the

environment that the software operates in. Even if a system functions properly, as time goes

by, it has to be maintained. The approach of a component-based development process is to

provide maintenance by replacing old components by new components or by adding new

components into the systems. The paradigm of the maintenance process is similar to this for

the development: Find a proper component, test it, adopt it if necessary, and integrate it

into the system. These activities are essentially those discussed earlier as part of component

realization and hence are not repeated here.

The major activities performed during the maintenance phase are as follows:

1.Selection of Component to replace: -The decision for replacement of a component could

be based on several factors. Limitations in performance of the current system, dependencies

to other modifications or updates in the target platform or middleware, or even the release

of a new upgraded version of a component could trigger this activity.

2. Component Adaptation: This will be same as in previous cases.

3. New Component development: Same as in previous phases. This can be either ordered

from the domain engineering or developed in house.

4. Component integration: Same as in System Integration phase

OCEAN

Source code search engines assist the software development process by providing a way of

searching for free source code in code repositories. Although their use is rather

straightforward, there exist a few of them and the differences in the way they index and

provide access to their assets require considerable time and effort from the programmer to

use them. This Section describes OCEAN, a federated open source code search engine, that

simultaneously asks, in real time, existing open source code search engine sites and detail

the way we overcome the integration obstacles, by combining provided APIs, browser

automation and web content extraction techniques.

Introduction

The concepts of Software Reuse [16] and Rapid Development have been adopted by large

software development companies, small and medium enterprises (SMEs), research institutes

and freelancers. According to a survey conducted in [17], software reuse in general and

Free/Libre Open Source Software (F/LOSS) reuse in particular are important for the software

development SMEs for a series of reasons:

-Reuse has a positive effect on lowering the development costs (91%), shortening the

development and testing time (83%), increasing the quality of the final product (76%) and

shortening time to market (72%).

-In relation to the different artifacts that can be reused, source code is the most important

(87%), followed by design (80%) and documentation (75%).

-Almost half of the organizations (51%) have an in-house reuse repository whereas 39% have

some formal process for reusing components they develop.

-The vast majority of the respondents (80%) said that their organization supports OSS reuse.

Meanwhile, millions of lines of reusable code have become available in the different source

code forges and, in many cases, lots of alternatives exists for specific functionality [18]. This

availability (and "redundancy") uncovered the need for effective ways of discovering

reusable source code.

Source code forges (SourceForge, Git, Bitbucket, etc.) provide ways for internal navigation

and search (such as categories, tags and internal search engines). For the reuse engineer

however, who’s primary goal is to find the component that best fits the needs of the

functionality he wants to implement, searching to each source code forge separately,

creates a significant overhead. This is also captured in [17], where the most important

factors preventing OSS reuse were the lack of documentation (80%), the uncertainty on the

quality of OSS components (76%), and the difficulty in searching and retrieving OSS

components (66%).

Web-based source code search engines follow the architecture of classic, web search

engines. Despite the differentiation of the nature of their data (that is, source code files),

they provide crawling, indexing, reporting and ranking mechanisms identical to those of a

typical web search engine. This is probably the reason why only 12% of the responders in

[17] said that they have used a specialized OSS code search engine. They seem to prefer

general purpose web search engines instead (e.g. Google). In fact, general purpose web

search engines contribute more reusable components than specialized code search engines

(65% vs. 31%). More significant is the fact that this 31% comes from the aforementioned

12% [17]. It seems like there is quality in the specialized OSS code search engines. The above

observations suggest that the current status of specialized OSS search engines leave much to

be desired for the developers [19], since although they can be potentially an important

source of reusable components, the developers do not view them as important enough to

use them. Finally, one cannot overlook the diversity of important sources of reusable

components: in-house and public code repositories, specialized (code) and classical search

engines. This, together with the difficulty reported earlier in searching and retrieving OSS

components asks for a search mechanism able to provide results collectively, from different

free/open source code sources.

Focusing on website-based code search tools, Krugle [20] and Koders [21] are among the

most popular. They host source code on which they provide search services and also index

other forges like Sourceforge. Merobase [22] can be mostly described as a code meta-search

engine since it does not own a code repository but rather indexes and collects metadata

from other sources on which it provides search services. Moreover it defines itself as

component oriented search engine, meaning that, it can return sets of source code classes

that implement a specific functionality. These specialized code search engines are valuable

but each one poses specific requirements to the user, like searching using a diversity of

search forms with different criteria in each or interpreting differently presented results. This

definitely creates cognitive overhead to the end user. Even availability is sometimes

questionable and thus a source of frustration. Finally, dealing with more than one search

points is more time consuming. Eventually, the "Google solution" becomes more attractive

and the findings in [17] get justified!

Software reuse in general and OSS reuse in particular is important for the software

development SMEs. To alleviate the problems mentioned and make the use of web-based

code search engines more attractive, we propose a federated code search engine that

provides the user with a single point to define his criteria-based search query, propagates

the question to other code search engines in real time and finally presents the aggregated

results to the user ([29, 30]). The proposed architecture can cooperate with individual code

search engines either through an API or by using browser automation and web content

extraction techniques.

OCEAN High Level Design

The federated code search engine we propose should be flexible enough to incorporate

individual existing or future code search engines. Typically, one can retrieve data from

another web source either through an API or via web content extraction. Having an API is

preferred because it is faster and more reliable. Merobase belongs to this case. However, in

cases like Koders and Krugle, which give their answers as http pages only, web extraction is

the single option. Web content extraction is the non-trivial process of collecting

unstructured web data and storing them in a database or an XML file [31]. This is usually

accomplished by pattern matching an html pattern (extraction rule or wrapper) with a target

web page. Upon a successful match, a data record becomes available as data from the web

page is unified with variables in the extraction rule. Tricky cases like record-data scattered

on different html sub-trees, pages with more than one data records, data records distributed

in many web pages as a result of some pagination procedure, incomplete data records that

break the html pattern used, etc., make the extraction task non-trivial.

Flexibility in extraction rule management by means of visual/GUI tools, deployment and

orchestration (use many extraction rules in a cooperative fashion) are all required features

from a web extraction solution that we want to last long. Queries submitted via the single

search form provided, are forwarded as http calls to one or more query services (this is a

user preference) utilized by the query engine. Each of these services forwards the query to

its own code search engine, collects the results in XML format and sends them back to the

main system where they are collated and presented in HTML to the user. The system aims at

reducing the time and effort required by a user to search all the individual search engines,

offering a transparent search solution. It does not perform any actual asset indexing or

search by itself. A prototype, namely OCEAN [25], of the federated code search engine has

been implemented, in the context of the OPEN-SME project.

Implementation Details

In this section, we give implementation details of the Query Engine subsystem, which

actually implements the federation. It supports two types of foreign search engine

integration: API-based and Extraction-based.

API-based Integration

Merobase

Merobase [22] integration belongs to this case and was implemented by means of a JAR

search client provided by the Merobase creators. A Perl web service was written utilizing this

API and returning the results for a user-specified query in a suitable XML format. The

Merobase API supports 2 parameters: s for the search keyword and n for the number of

results requested. An upper limit of 30 results per query has been set by Merobase

developers. An example http call the OCEAN sends to call this service is:

http://<system>/cgi-bin/merobase.pl?s=java&n=25

It is clear that, adding another API based search engine into the OCEAN's federation, is just a

matter of pipelining its API with OCEAN's search form by means of a Perl script (as

merobase.pl does in the example above).

Google Code Search

Google Code Search was integrated through its API. It turned out though that soon after the

integration Google announced that the service will be no longer available. This is a nice

example of the value of a federated search that continues to serve its users even though

some sources are not available. Given the situation described, we do not give further details

on this case.

Extraction-based Integration

When APIs are not available, web extraction does the integration. This requires the

availability of an easy to use, robust and flexible web content extraction framework. DEi¬XTo

was the tool of choice. It is briefly described right after.

DEiXTo - A web content extraction framework

DEiXTo [27] is a powerful web data extraction tool that is based on the W3C Document

Object Model (DOM). It provides the user with an arsenal of features aiming at the

construction of well-engineered extraction rules that describe what pieces of data to scrape

from a website.

DEiXTo consists of three separate components:

a) GUI DEiXTo, implementing a friendly graphical user interface that is used to manage

extraction rules.

b) The Command Line Executor (CLE for short) massively applies wrapper project files built

with GUI DEiXTo, on the desired web pages. CLE is actually a specialized instance of

DEiXToBot.

c) DEiXToBot is a Perl module aiming at tailor-made scraping and browser automation

solutions.

It facilitates the combination of multiple extraction rules as well as the post-processing of

their results through custom code. Therefore, it can deal with complex cases and cover more

advanced web scraping needs at the cost of the programming skills it requires.

Since there was no API access available for Koders [21] and Krugle [20], DEiXTo-based

wrappers were successfully deployed in order to enable the extraction of the N first results

returned from these search engines.

Koders

Koders [21] integration was smooth, in the sense that the html result pages were fully

accessible by DEiXTo. The service supports 4 URL parameters: s for the search keyword, li for

license type, la for language and n for the number of results requested.

Krugle

Krugle [20] integration on the other hand raised some difficulties mostly due to the heavy

use of AJAX calls in its search results pages. Currently, DEiXTo does not support JavaScript

automation. As a result we used Selenium [28] which actually automates a Firefox instance

and were able to get Krugle's HTML results properly, and then forwarded them to DEiXTo for

the actual extraction. Again, OCEAN sees Krugle as a web service supporting 4 URL

parameters: s for the search keyword, pro for the aiming project, lic for the desired code

license and n for the number of results desired.

The System in Use

The main screen of the search facility of OCEAN consists of a form. In the textbox entitled

"Search" the user can specify the keyword(s) of his search, separated by spaces. The search

space can then be narrowed down by using the three combo boxes labelled language,

license and type, respectively. Language refers to the programming language of the source

code the user wishes to retrieve (e.g. Java, Perl, PHP, etc.). License refers to the type of the

license under which the source code retrieved has been initially published. Finally, type

refers to the type of the file the user is looking for. This type can be class, interface or enum

(enumeration type). If any criteria do not apply to some search engine, they are simply

omitted. OCEAN provides a set of preferences allowing the user to customize the service to

her own needs. In preferences, the user can review his account details (if he is a subscribed

user) and manage his account credentials and saved queries. He can also set the number of

results per search engine OCEAN is going to return as well as the individual search engines

he would like to include in his query.

In a given query the detailed results include the following information: the source search

engine (Search Entry), the title of the source file returned and the URL of the repository to

which it is hosted (Result Entry), lines of code (loc) for the source code file (Metrics), any

possible metadata (Metadata) and finally the type of license under which the source code

file was originally published. For search engines providing more detail, OCEAN can also

provide more detail since we do extract all the data available. Currently, OCEAN does not

perform any global ranking on the results. They are displayed in the order returned by their

search engines.

COPE

The Component Adaptation Environment (COPE) tool is used by reuse engineers of SME AGs

to recognize, extract, test, document etc. components from OSS projects. The extracted

components are then placed in the Component Repository and Search Engine (COMPARE)

tool that is used by SMEs to discover the extracted components in the context of the

application engineering process.

SME AGs experts, who are the operators of COPE, are called reuse engineers. After they

have identified a potentially interesting OSS project for the application domain of their

software development SMEs they create a reuse project for this OSS project using COPE. A

'Reuse Project' combines the source code related information (of the original OSS project)

with information resulted from the analysis process carried out by the reuse engineer. A

Reuse Project's lifecycle consists of four phases. First there is an Analysis phase in which the

source code of the target OSS project is being analysed and the results of this analysis are

being stored in the reuse project database. Then in the Component Recommendation phase

the COPE tool automatically suggests class clusters that could serve as reusable components.

The suggestions can be based on different criteria. Following in the Component Making

phase a set of functionalities allows the user to extract components from the reuse project

by either using class clusters recommended in the Cluster Recommendation phase or by

selecting a single class that along with its dependencies will form a reusable component.

Finally in the Knowledge Management phase the user provides information for the

generated components. Using the 'Semantic Application' feature, the user can describe the

functionality of each component. Moreover the reuse engineer can classify the resulting

component to a specific domain and concept and finally upload the component to the

COMPARE component repository.

The creation of a reuse project entails a preparatory phase in which the reuse engineer

collects some project artefacts that are required by the COPE analysers and recommenders.

These artefacts include:

(a) The binary file of the compiled program which in the case of Java is a Java Archive (JAR

file),

(b) The libraries used by the project which are a collection of external JAR files that the

project reuses,

(c) The Version Control System URL of the project if available, and

(d) The source code directory of the project which contains the source files.

COPE reuses itself a number of Open Source components to perform its analysis. Some of

these components require the binary JAR file.

After a reuse project has been created the first step is to perform static analysis. Static

analysis is used to collect dependencies and metrics from the source code. COPE stores

these facts in a relational database that relates information extracted by different types of

analysis and related tools. Information originating from different source code analyzers is

unified so that it is possible to recommend clusters of classes for componentization with

algorithms that make use of the combined information. There are projects which have a

number of classes. Classes have dependencies with other classes and packages. Packages

contain a number of classes. The dependencies are collected from the Classycle tool [32].

However for each class we also collect the Chidamber and Kemerer (CK) metrics [33] for

Object-Oriented design complexity. The information for the CK metrics is collected with the

usage of the CKJM tool [34]. In COPE’s DB schema this information is inserted as fields in the

class table (e.g. WMC, DIT, NOC etc.).

The general approach for COPE component extraction is layered.. At the first layer a number

of analysers, analyse the OSS artifacts and insert the information in the database of OSS

facts. At the second layer a number of recommenders access these facts and based on the

facts recommend clusters of classes for component extraction. At the third layer these

recommendations are used to create components from the selected recommendation.

Although the process is tool-assisted it is not automatic. The reuse engineer decides which

recommendation to accept and which component to extract. Furthermore after the

component extraction has been performed the reuse engineer uses COPE to perform the

testing and validation of the component and to create the test documentation for the

testing and validation process. He or she also classifies the component under a domain and

category and uploads it to the component repository where it becomes available to the

reusers.

Component Recommenders

Using the Cluster Recommendation options, the reuse engineer can easily come up with

some recommendations of class clusters that could form possible components. For the time

being COPE provides the following methods for recommending such class clusters:

-Dependencies Recommender: uses a genetic algorithm in order to form class clusters using

the source code of the Reuse Project.

-Pattern Recommender: forms clusters based on design patterns detected in the source

code of the Reuse Project. Patterns are detected using the approach and the tool described

in [35]. Currently Adapter and Proxy design pattern instances are used as indications for

recommendation of clusters. These two patterns were selected as more relevant for the

purpose of component identification. Other design patterns (e.g. Fac¸ade) may also be

appropriate. The effectiveness of the different design patterns for component extraction is

currently an active research area in our team.

-Reusability Recommender: Another very useful approach is to select a class and extract a

component based on this class. The resulting component will have the interface of the public

methods of the class and will include all the required classes for the reuse of this class. The

reuse engineer can select this class based on the metrics that are presented in the main

window, and especially the Cluster Size (i.e. the number of recursive dependencies of the

class), the class Layer (i.e. how high or low is the class in the digraph of the project) and R

(our own reusability index based on the Chidamber and Kemerer metrics suite for OO design

complexity) metrics. Classes which are lower in the layered digraph of the project (have

small layer value), have few dependencies (have small Cluster Size) and have larger R value

(are more reusable) are good candidates for reusable components. The reuse engineer can

extract components by right-clicking any class from the main window that seems promising

based on the aforementioned metrics and extract a component for this class

All recommenders present a similar dialog to the reuse engineer who can examine the

recommendations.

The reuse engineer can select a class cluster (i.e. the recommendation) and examine the

classes that are contained in it. In addition a class diagram is generated for visualization of

the cluster. The reuse engineer can also examine information for the selected cluster and

class including a tag cloud with terms encountered often for each class and cluster and a

Latent Semantic Analysis (LSA) based index of the terms which are encountered in both

cluster and class levels. The visualization and the information are intended to provide the

reuse engineer with a quick view of the cluster that is recommended and the high-level

function of this cluster in a system.

Component Makers

Based on the analysis and recommendations carried out earlier the Reuse Engineer can now

produce independent software components and then place these components in the

repository using the 'Knowledge Manager' feature of COPE. Four different kinds of

component makers are currently provided. The Interface Maker uses as input the clusters

produced by the 'Dependencies Recommender'. The Dependency Maker presents all the

classes of the project along with their reusability assessment and the reuse engineer can

select a class and extract a component providing the functionality of the selected class. The

Adapter Pattern Maker presents the clusters produced by the 'Pattern Recommender' and

displays clusters involved in Adapter pattern instances. The Proxy Pattern Maker presents

again the clusters produced by the ‘Pattern Recommender’ but this time it displays only

clusters involved in Proxy pattern instances.

The reuse engineer can select a component as well as an interface generation policy (e.g.

generation of an interface for the selected class, or generation of an interface for each

externally referenced class) and provide a name for the component. The generated

component contains all the required classes which are extracted from the project along with

one or more generated interfaces for the component. Besides the original source code files

and the generated interface or interfaces, the project libraries are also copied and an Ant

build script is generated for the compilation of the component in an Integrated

Development Environment (IDE).

Extracted components will be opened for further processing using an IDE (e.g. Eclipse or

NetBeans). The reuse engineer will use the IDE to comprehend the component, create test

cases for it or execution scenarios and discover further dependencies that are required

which are not recoverable through static analysis alone (e.g. data dependencies). The

component can then be tested dynamically using the test cases or execution scenarios that

were developed by the reuse engineer as we explain in the following Subsection.

Component Testing and Validation

After the component source files have been extracted the reuse engineer will process the

component further in an IDE. This is an essential program comprehension step in which unit

tests or execution scenarios examining a specific functionality are created. Also it is

important to resolve additional dependencies, such as data dependencies, that are required

for the component to work. After the reuse engineer has created some test cases for the

component using the IDE and has resolved any additional dependencies which are necessary

for the component to work independently, returning to COPE the feature of Dynamic

Analysis will enable the reuse engineer to do the following:

1.Compute different types of test coverage based on the tests that were created. The types

of coverage include Statement Coverage of the Component, Statement Coverage per

Method of the Component, Linear Code Sequence and Jump (LCSAJ) coverage of the

Component, and LCSAJ Coverage per Method of the Component.

2.Produce a Control Flow Graph per method of the Component which depicts the paths

followed during the method execution of the test cases. CFGs are generated statically

parsing the source code of the component. Aspect-Oriented instrumentation is then used to

instrument the byte code and generate the trace of the execution. The instrumentation is

necessary for tracing the execution path through the CFG and for calculating the LCSAJ and

Statement coverage.

3.Perform validation which is a Model-Based Testing (MBT) [36] approach in which a large

number of unit tests are generated automatically, utilizing method invariants provided by

the Daikon invariant detector [37] and the component is then tested against the generated

tests.

4.Produce the test HTML report which is a number of HTML pages, similar to JavaDoc, that

package all the aforementioned information to an easily accessible format. The test HTML

report will be included in the component package when it is uploaded in the component

repository

Component Packaging and Classification

The component package that is generated from the usage of COPE includes the following:

(a) A top directory with the component name,

(b) A readme.txt file which contains information such as: A short description of the

component, the originating OSS Project, license or licenses, the programming language and

technology, other components it uses if any, and the domain and main concept of the

domain the component provides,

(c) Component source files,

(d) Required Libraries,

(e) Component Documentation generated by UML commercial or open source tools, and

(f) The test HTML report which includes separate subdirectories for each test case along with

the test results (coverage etc.).

The component package is then compressed to a file that is then classified using the

Knowledge Manager feature of COPE and is uploaded in the Component Repository. The

Knowledge Manager allows the reuse engineer to provide metadata for the component.

The metadata for the component includes the following:

-The tier of the component. This is a characterization of the component's intended layer in

the system. The component can be an Enterprise level component which encapsulates

domain-specific functionality, a Resource level component which provides a generic service

(e.g. database storage), a Workspace component which can, for example, coordinate

different Enterprise level components in a workflow, or a User Interface component.

-The URL of the component package from which the reusers can download the component.

-The version of the component

-The programming language (e.g. Java) of the component and the technology (e.g. Java

Enterprise Edition)

-The other components that the component uses, and

-The Domain metamodel under which the component was classified and the domain and

concept that the component implements from this metamodel.

In addition the reuse engineer can use an ‘Open Component Classification Console’ to define

domain metamodels for domains and concepts of these domains that are used when

providing the aforementioned component metadata. Finally the reuse engineer can upload

the component after this classification to the component repository (COMPARE) which

makes it available to the reusers.

COMPARE

Introduction

COMPARE (Component Repository and Search Engine) is a tool that allows SME software re-

users to search and discover the assets (software artefacts, technical documents, test suites,

metamodels) produced by the Domain Engineering Process. COMPARE features an advanced

search engine that can be used for searching among the components, according to specific

needs and selection criteria ranging from desired features (functionality) to programming

languages, execution frameworks, etc. Also, COMPARE supports the effective

communication of structured information flows between the software re-users (asset

consumers) and the reuse engineers (asset producers). These information flows allow re-

users to place orders/requests and provide their feedback (e.g. bug reports) to the re-use

engineers.

Technology platform

The COMPARE application is developed using the open source Apache-MySQL-PHP software

stack. Also, COMPARE reuses extensively existing open source frameworks and web

applications that provide various types of functionality.

Architecture Overview

The key objective of the application described in this document is to allow users to search

and discover Software Components, allow users to upload new Software Components and

provide community features regarding them. From the users point of view the application is

a series of dynamic web pages, accessible through a web browser. On the backend, the

application searches and retrieves data from a database and from other external sources

through its external interfaces. COMPARE is built on top of the Joomla framework and its

architecture is heavily based on it. The Joomla architecture is decomposed in three tiers. The

framework tier which includes the framework and the core plugins, the application tier

which provides factory classes for application specific objects along with supporting APIs,

and the extension tier which extends the functionality of the framework. Each Joomla

extension that was created follows an MVC pattern.

In the MVC pattern, the model manages the behavior and data of the application domain,

responds to requests for information about its state (usually from the view), and responds to

instructions to change state. The view renders the model into a web page with which the

user can interact with and the controller receives user input and initiates a response by

making calls on the model. Finally, the controller accepts input from the user and instructs

the model and view to perform actions based on that input.

The Infrastructure Module

The Infrastructure Module provides a set of infrastructure services which are utilised by all

other components of the COMPARE system. Specifically, it comprises the Asset Metadata

Repository, the Asset Manager and the Notifier. Also, the Infrastructure Module provides

access to statistical information about the platform and provides the template user interface

on top of which the user interfaces of all the other components are rendered. Finally, the

Infrastructure Module controls user access and permissions to the platform through the use

of the User module Module.

Asset Metadata Repository

The Asset Metadata Repository is a relational database which COMPARE uses to store

information about components. It is a MySQL database using the InnoDB engine and

contains the tables of the Joomla framework, the tables of the third party integrated

applications and the tables of the COMPARE extensions

Asset Manager

The Asset Manager provides access to the assets of each component. It is composed by the

Component Page, the SVN access component and the social modules (Forum and Wiki

components).

Notifier module

The Notifier Module is used to receive and update the recent activity of the hosted

components. Also, this module generates an 'activity index' based on the number of updates

that were made in the last month. A component update is considered to be made in the

following actions:

-A change is made to a property of the component

-A new file is uploaded in the component's repository

-A change is made in the component's wiki page

-A new thread is started in the forum

User Module

The User Module handles all the functionality regarding the users of the platform. It is

composed by the User Extension Module which is an extension to the User Component of

the Joomla framework and the Component Rating Module which holds the rating

information that the users apply to each component.

Consumption Module

The aim of the Consumption Module is to allow the software re-user to search, provide

feedback and retrieve the software components that are hosted by the platform. The

Consumption Module provides its features through a set of web pages which can be

accessed via the World Wide Web (WWW). The Consumption Module comprises the Asset

Searching Module, the Asset Retrieval Module and the Interest Management Module.

The Asset Searching Module

The Asset Searching Module provides methods for a software re-user to search and filter the

software components hosted by the COMPARE. This module is accessible to the re-user via a

web page, where the user submits his search terms, and the module uses them to search the

Asset Metadata Repository and present the results. Also, the Asset Searching Module

provides filtering mechanisms to filter the search results based on various criteria. The Asset

Searching Module receives the search terms from the re-user and analyses them. Then, it

composes search queries which are submitted to the Asset Metadata Repository.

Afterwards, the Asset Searching Module receives the search results from the Asset Metadata

Repository and applies a numerical weighting on each of them based on factors such as

search term relevance and position. Finally, the Asset Searching Module communicates with

the Feedback Management Module to receive information about the usage of each software

component by the re-users. The Asset Searching Module is composed by the Search Module

and the Search Page components which are described in the following sections.

Component Search Module

The Component Search Module is used to search for software components, from the Search

page, asynchronously with the use of AJAX. Also, while the Search page is generating, it will

use the model of this module.

Search page

The search page presents a search field which the user can use to search for CHSCs.

Keywords entered in the search field will first be used to search a component that contains

them in its name, then in its description and finally in its platform. For example, the

keywords 'COMPARE tool' will produce a search for a component which contains 'COMPARE'

and 'tool' and then 'COMPARE' or 'tool' for the name, description and platform fields.

References

1.Hafedh Mili, Ali Mili, Sherif Yacoub and Edward Addy: 'Reuse-Based Software Engineering:

Techniques, Organization and Controls', Wiley, 2002

2.J. Long, 'Software Reuse Antipatterns, ' SIGSOFT Softw. Eng. Notes, vol. 26, no. 4, pp. 68-

76, July 2001

3.Bosch, J.: 'The challenges of broadening the scope of software product families', Commun.

ACM vol. 49, no. 12, pp. 41-44, December 2006

4.E. Almeida et. al.: 'Component Reuse in Software Engineering', RISE, 2007 (available on-

line http://cruise.cesar.org.br/index.html)

5.P. Clements and L. Northrop: 'Software Product Lines: Practices and Patterns', Addison-

Wesley, 2002

6.K.C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh, 'FORM: A feature-oriented reuse

method with domain-specific reference architectures', Annals of Software Engineering, vol.

5, no. 1, pp. 143-168, Springer, 1998

7.K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, 'Feature-Oriented Domain Analysis

(FODA) Feasibility Study', Technical Report, CMU/SEI-90-TR-21, November 1990

8.M.A. Simos, 'Organization domain modelling (ODM): formalizing the core domain

modelling life cycle, ' SIGSOFT Softw. Eng. Notes, vol. 20, pp. 196-205, August 1995

9.M. Simos, D. Creps, C. Klinger, L. Levine, and D. Allemang: 'Organization Domain Modeling

(ODM) Guidebook, Version 2.0', Informal Technical Report for STARS, STARS-VC-

A025/001/00, 14 June 1996

10.I. Jacobson, M. Griss and P. Johnsson: 'Software Reuse: Architecture, Process and

Organization for Business Success', ACM Press, 1997

11.M. Griss, J. Favaro, and M. d'Alessandro, 'Integrating feature modelling with the RSEB',

Proceedings of the Fifth International Conference on Software Reuse, pp. 76-85, IEEE, 1998

12.J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schmid, T. Widen, and J. DeBaud,

'PuLSE: a methodology to develop software product lines', Proceedings of the 1999

symposium on Software reusability, Los Angeles, California, United States: ACM, 1999, pp.

122-131.

13.C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O. Laitenberger, R. Laqua, D. Muthig, B.

Paech, J. Wust, and J. Zettel, Component-Based Product Line Engineering with UML,

Addison-Wesley Professional, 2001.

14.C. Atkinson, J. Bayer, and D. Muthig, 'Component-Based Product Line Development: The

KobrA Approach', 1st SOFTWARE PRODUCT LINE CONFERENCE, pp. 289-309, 2000

15.Ivica Crnkovic, M. Chaudron, and S. Larsson, 'Component-Based Development Process

and Component Lifecycle', International Conference on Software Engineering Advances

(ICSEA'06), p. 44, IEEE, 2006

16.T. R. Madanmohan and Rahul De', 'Open source reuse in commercial firms', IEEE

Software, vol. 21, 2004, pp. 62-69.

17.G. Kakarontzas, P. Katsaros, I. Stamelos, "Component certification as a prerequisite for

widespread OSS reuse", vol. 33, Electronic Communications of the EASST, 2010

18.J. M. Gonzalez-Barahona, A. Martínez, A. Polo, J. J. Hierro, M. Reyes, J. Soriano, and R.

Fernández, "The Networked Forge: New Environments for Libre Software Development", in

"Open Source Development, Communities and Quality", B. Russo, E. Damiani, S. Hissam, B.

Lundell, and G. Succi (eds.), IFIP Advances in Information and Communication Technology,

vol. 275, Boston Springer, 2008, pp. 299-306.

19.J. Howison and K. Crowston, "The perils and pitfalls of mining SourceForge", Proc. of the

International Workshop on Mining Software Repositories (MSR 2004), 2004, pp. 7-11.

20.Krugle official website: http://www.krugle.com/

21.Koders official website: http://www.koders.com/

22.Merobase official website: http://www.merobase.com/

23.Free Softwarer Foundation official website: http://fsf.org/

24.Open Source Initiative official website: http://opensource.org/

25.OCEAN official website (beta): http://ocean.gnomon.com.gr/

26.OPEN-SME project official website: http://opensme.eu/

27.DEiXTo official website: http://deixto.com/

28.Selenium official website: http://seleniumhq.org/

29.Scherlen, (Balance Point column editor) J. Boyd, P. Pugh, M. Hampton, P. Morrison and F.

Cervone, "The One-Box Challenge: Providing a Federated Search that Benefits the Research

Process" Serials Review. 32 (4), 2006, pp. 247-254.

30.Xiaotian Chen, "Metalib, WebFeat, and Google: The strengths and weaknesses of

federated search engines compared with Google", Online Information Review, 30 (4), 2006,

pp.413-427.

31.Laender, B. Ribeiro-Neto, A.S. da Silva, and J. Teixeira, "A Brief Survey of Web Data

Extraction Tools", ACM SIGMOD Record, 31 (2), 2002, pp. 84-93.

32.Franz-Josef Elmer: 'Classycle: Analysing Tools for Java Class and Package Dependencies',

http://classycle.sourceforge.net, [Online; accessed 6-March-2012]

33.Shyam R. Chidamber and Chris F. Kemerer: 'A Metrics Suite for Object Oriented Design',

IEEE Transactions on Software Engineering, vol. 20, no. 6, pp. 476-493, June 1994

34.Diomidis Spinellis: 'Tool writing: A forgotten art? ', IEEE Software, vol. 22, no. 24, pp. 9-11,

July/August 2005

35.Nikos Tsantalis et al.: 'Design Pattern Detection Using Similarity Scoring', IEEE

Transactions on Software Engineering, vol. 32, no. 11, pp. 896-909, November, 2006

36.M. Utting and B. Legeard, 'Practical Model-Based Testing: A Tools Approach', Morgan

Kaufmann, 2006

37.Michael D. Ernst et al.: 'The Daikon system for dynamic detection of likely invariants',

Science of Computer Programming, vol. 69, no. 1–3, pp. 35-45, Dec. 2007

38.Hironori Washizaki and Yoshiaki Fukazawa: 'A technique for automatic component

extraction from object-oriented programs by refactoring', Science of Computer

Programming, vol. 56, no. 1-2, pp. 99-116, April 2005

39. Tom Mens and Tom Tourw'e: 'A survey of software refactoring', IEEE Transactions on

Software Engineering, vol. 30, no. 2, pp. 126-139, February 2004

40.Simon Allier et al.: 'Identifying components in object-oriented programs using dynamic

analysis and clustering', in proc. of the 2009 Conference of the Center for Advanced Studies

on Collaborative Research (CASCON '09), pp. 136-148, ACM,2009

41.Maurice M. Carey, Gerald C. Gannod: 'Recovering Concepts from Source Code with

Automated Concept Identification', 15th IEEE International Conference on Program

Comprehension (ICPC ’07), pp.27-36, 2007

42.Bas Cornelissen et al.: 'A Systematic Survey of Program Comprehension through Dynamic

Analysis', IEEE Transactions in Software Engineering, vol. 35, no. 5, pp. 684-702, September

2009

43.P. Dugerdil and J. Repond, 'Automatic generation of abstract views for legacy software

comprehension', in proc. of the 3rd India software engineering conference (ISEC '10), p. 23,

ACM, 2010

Potential Impact:

Based on the capacities of the OPEN-SME repository and tools, a number of (bundles of)

products and services can be offered to each customer segment. The OPEN-SME tools and

repository allow analysis services and quality assurance. If services that are exclusively based

on the tools are considered, OPEN-SME can offer help to solve legacy issues. The repository

only allows offering components. Finally, the tools themselves can potentially be sold.

Next to the direct outcomes of the OPEN-SME project a number of services can be offered to

the target groups, such as training and knowledge (initially by AUTH), support and

consultancy (also initially by AUTH), domain engineering services, and brokerage.

A third group of offerings relates to building up a stack of expertise, as OPEN-SME allows

generating experts in OSS reuse and reusable OSS components, in OSS (components)

integration, expert users, and domain engineering experts. Though there are a number of

OSS reuse tools available, the unique selling point of the OPEN-SME approach is the

combination of highly integrated reuse analysis tools on the one hand and the provision of a

repository that allows direct access to reusable components with a so far unknown level of

granularity. In this sense, newness and highly improved functionality are two core value

propositions of OPEN-SME.

Another value proposition is performance, as the RODE process that is implied in the OPEN-

SME approach towards OSS reusability allows improved process performance (systematic

and efficient identification and testing of OSS code for reusability that goes far beyond what

is possible today). Another feature resulting in improved performance is ease of

identification of reusable software and its classification (categories). In addition, the metrics

applied or generated in the OPEN-SME approach will improve the identification and

selection of best practices. Finally, the establishing of a code-reuse-oriented community will

allow to externalize a number of tasks from companies / the OPEN-SME partners to other

members of the community, which could particularly accelerate the growth of the number

of components in the OPEN-SME repository. As a result, customized products (components,

test results) will be available earlier than this is possible today, and components can be used

systematically in OSS development, which is expected to significantly reduce the

development time of new OSS products and services. The latter point leads to a third value

that can be offered to clients, which is customization. This is achieved through tailoring the

RODE process to domain-specific and company-specific needs, which may include the

modification of tools.

A fourth value to be offered through the OPEN-SME business model is the capacity to help

companies that so far are not able to perform effective code reuse analyses to get this job

done. Overall, the partners intend to establish the OPEN-SME repository and tools as a

brand. Given their newness and uniqueness, their qualification for a branding strategy is

unquestionable. However, a comprehensive branding strategy depends on all partners’

needs and capacities and has to be clarified and developed in a mid-term perspective (1-1.5

years). Challenges that have to be mastered in this regard are the name, which should

reflect the core functionalities of the OPEN-SME repository and tools, a slogan, and a logo.

'OPEN-SME' might not be appropriate, in this regard. However, other relevant cornerstones

of a branding strategy have been identified: application fields / markets and the unique

selling points are clarifies, as laid out above. The branding strategy might benefit from

applying Kano's model of customer satisfaction (see D26b) distinguishing 'attractive quality'

from 'one-dimensional quality', 'must-be quality', 'indifferent quality' and 'reverse quality'.

The sixth value provided by OPEN-SME is design, as the implied focus on components eases

and improves good software design. Seventh, price is an important value to be offered by

OPEN-SME, since tools and repository are OSS, which implies that the costs related to these

elements are comparably low. However, it should be noted that the efficient usage of the

repository and the tools requires high level expertise, which might result in relatively high

prices for OPEN-SME services.

The latter point is however countered by the eights value OPEN-SME can offer, which is cost

reduction. The outcomes of the OPEN-SME code reuse analyses are a broad set of well

analysed software and software components that are unlikely to produce in-house by most

of the potential customers. This effect should outweigh expenses for high level expertise and

overall result in lower production cost through

-larger supply with reusable code

-shorter development time

-ease of legacy management (for applications)

-less coding effort

However, these cost reductions might not be perceived by customers (due to unawareness

of costs aligned with no or bad code reuse). In addition, cost reduction might be countered

by high learning costs and possibly high transaction costs (when introducing the RODE

process in business processes). The ninth value provided by OPEN-SME is risk reduction, as

IPR issues become more transparent, extensive testing reduces the number of bugs in OS

software and components, and the OSS reuse community and social network provides

potentially a 24/7 service infrastructure. Especially SMEs will benefit from the latter. The

tenth value provided by OPEN-SME is accessibility. OPEN-SME will ease the access to

reusable software, components and test results through the Internet.

Finally, the eleventh value that will be offered with the OPEN-SME business model is

convenience / usability, as the OPEN-SME tools and repository make it easier for firms and

individuals to identify reusable code and components. Though the learning curve for

handling the repository and tools effectively, it must be considered that so far OSS

reusability analyses are performed by a rather eclectic trial and error approach that very

likely overlooks many reusable components and does not provide comprehensive insights in

the reusability features of the code under scrutiny. In this sense, the highly integrated tools

and the OPEN-SME repository will turn out relevant information on reusable code in a faster

and more comprehensive way in shorter time than the code analysis practices especially

SMEs are used to so far.

These offerings help to solve a number of typical problems potential customers have when

OSS code reuse is considered. In the first place, the OPEN-SME approach helps to structure

the process of code reuse. In addition, OPEN-SME provides additional documentation of

code that is not available otherwise. Furthermore, OPEN-SME provides customers with

knowledge of software architecture that is lacking at the customer’s side. The OPEN-SME

tools and repository also help to increase scalability and to enter new markets. Another

problem that can be solved by OPEN-SME is ease of training new employees and of

knowledge transfer. Overall, OPEN-SME helps companies to focus on their core tasks while

OSS code reusability analysis can be effectively outsourced.

SMEs benefit from OPEN-SME in particular through help in solving problems related to

-using and maintaining OSS efficiently

-time to market

-accessibility to code, high quality software, information about reusability of code

-tools

-skills

-knowledge

Individual developers will benefit through improvements of their

-status

-knowledge

-reputation

Against this background, following customer needs have been identified that can be satisfied

by the OPEN-SME business model:

-Improvements of existing products

-Ease generation of new products

-Quality improvements

-Process optimization

-Decrease time to market

-Accelerated response to customer needs / requests

-Ease of support and maintenance

Exploitation plans

Overview

As laid out in Deliverable D2.6a, the various actors in the OSS value network play different

roles. In our case, there are two key actors in the value network of the OPEN-SME toolset:

the technical academic partners of the OPEN-SME project provide the developers of a

toolset for OSS reuse and reuse services, and the OPEN-SME-AGs in the consortium provide

the distributors of the toolset and these services. The technical/academic partners, primarily

AUTH and TELETEL, compile and analyse a set of existing tools for the identification and

evaluation of reusable OSS code and OSS components. These existing tools are transferred

into a suite that allows fast and comprehensive reusability checks of OSS code and

components, which is not offered by any single tool underlying the suite. This act provides

the key value creation process within the OPEN-SME project. However, in a second step the

suite has been adapted to the capacities and needs of the SME-AGs within the OPEN-SME

consortium, which play the role of the key distributors of the OPEN-SME suite, as the RTD

partners within the consortium do not dispose of the required distribution channels and

distribution expertise. The end users - primarily the target groups of the OPEN-SME-AGs,

usually other SMEs and start-ups - either receive the results of an OSS reusability analysis

carried out with the OPEN-SME suite by another actor (an SME-AG, a technical academic

partner like AUTH, another company) based on requirements specified by the end user, use

the OPEN-SME suite themselves in order to evaluate OSS code or components they want to

reuse, or offer reusability services based on the OPEN-SME suite provided to them by an

SME-AG.

Given the diversity of the OPEN-SME-AGs in the OPEN-SME project consortium, they dispose

of very different capacities to distribute the toolset / services and they pursue diverse

strategies with this toolset. For instance, while VSP has a number of OSS-related start-ups in

its portfolio and OSS plays a significant role in the Swedish / Scandinavian economy, other

partners, like ETEK or the Serbian SME-AG ISS first have to raise awareness of OSS among

their members as well as in their members’ domestic and regional key markets (see D26a for

details).

Further advancements and differentiation of the OPEN-SME value network is currently

subject to ongoing discussions. In principle it is possible and preferable to establish

additional distribution channels for the OPEN-SME toolset in order to accelerate and

broaden the market diffusion. One possible way, in this regard, is to establish, for instance,

AUTH, TELETEL, GNOMON or BITGEAR - as core developers of the toolset - as a vendor of

OSS reuse services, which may require alternative distribution channels outside the OPEN-

SME consortium. Additional distribution channels could, for instance, be provided by

academic institutes in the field of computer sciences, by one or more OSS communities, by

other SME-AGs, and by companies.

The composition of a value network around the OPEN-SME suite and the roles the various

actors in such a network play are thus depending on the capacities, objectives and strategies

of the SME-AGs. If a technical partner like AUTH, TELETEL, GNOMON or BITGEAR decides to

operate the OPEN-SME suite in alternative value networks outside the OPEN-SME

consortium in order to push the diffusion of the suite and to enhance the efficiency of OSS

development in the European software industry, it is possible that a number of new value

networks will be created, which again will differ by the requirements and capacities of the

key distributor and the need of the end users served by the distributor. This also involves IPR

and license issues (see next section for a discussion of these points).

Depending on the composition and objectives of the value networks that are formed around

the OPEN-SME suite, business models must be created that meet the requirements of these

value networks. For instance, depending on the capacities and context constraints of the

SME-AGs in the OPEN-SME consortium, it must be decided whether the SME-AG sells the

right to use the suite or sells services based on the OPEN-SME suite, or distributes the suite

for free. Actors within the OPEN-SME value networks, especially the SME-AGs as key

distributors of the OPEN-SME suite, can choose from various Open Source Strategies in

order to deal with the underlying community. A detailed overview of these strategies is

provided in D2.6, here we would like to limit the discussion to the fact that SME-AGs will find

ways to collaborate with the underlying community or to circumvent constraints set by the

community by either follow a road that is independent of the community (e.g. by forking a

community) or that makes the community dependent on one or more of the other actors of

the value network (e.g. by taking over the community).

Proposed SME-AGs Business Strategy

Based on the analysis of the position and role of three SME-AGs that belong to the OPEN-

SME project consortium in business ecosystems and OSS value networks, first

recommendations of suitable OSS reuse business models for these (and similar) SME-AGs

can be given. Overall, VSP shows a very commercial orientation and must be considered as

integral and important part of the business ecosystem in Västerås, in which OSS

development and reuse are widespread. Conclusively, VSP plans to take over an active and

commercial role in the distribution and implementation of the OSS reuse tools and services

based on these tools by advancing itself into a software vendor for the OPEN-SME tools /

suite. Business models developed for this sort of SME-AG should put the SME-AG in the

centre of the model and strive to generate sustainable revenues directly for the SME-AG.

In contrast to VSP, EMYPEE, ETEK and ISS are not part of their members’ value network.

However, their position in the business ecosystem of its members qualifies those

organizations as distributors of the OPEN-SME suite. Further activities that imply playing a

commercial role seem primarily to be limited by the governance structures and traditional

tasks of the organizations and by the underdeveloped market for OSS in the two regions.

Under such conditions, a suitable business model for a SME-AG should try to focus on

commercial members of the SME-AG that are capable to play a leading role in the

distribution, application and advancement of the OPEN-SME suite, while the SME-AG itself

should rather serve as a non-commercial distribution and information platform. The latter

may imply to advance the service offerings of the organization in the direction of training

courses and networking activities. These activities could be organized in collaboration with

member organizations. In fact, such activities take already place, but they are organized

informally by the members. In the case of the OPEN-SME suite, institutionalized information

events and training courses appear a more effective means to achieve an effective

distribution and implementation of OSS reuse tools and services in the Greek and Cypriot

economy (EMYPEE/ETEK case).

In the case of ISS the relative small size of the organization's portfolio creates a natural limit

to the distribution and exploitation of the OPEN-SME suite. Therefore, the business model

should focus on a commercial partner that is capable to utilize ISS' huge network of business

contacts in order to create a broader use base and thus ground for sustainable revenues

from OSS reuse tools and services.

OPEN-SME Business Model and Exploitation Strategy

Being aware of the fact that the market introduction of a complex product like the OPEN-

SME repository and tool needs time and a strategy, the partners have agreed to start the

“OPEN-SME business” at a rather small scope, with VSP as key player for familiarizing,

testing and implementing the OPEN-SME repository and tools in the robotics domain of the

Science Park. In this initial phase, training and consultancy shall be provided by AUTH. The

roll-out, which provides the second phase, is intended to happen in different directions. The

first one is collaboration with the SMEs and SME associations in the OPEN-SME consortium.

To this end, VSP and the other OPEN-SME partners involved in the OPEN-SME business

model will survey their members in order to find out to which degree and in which way OSS

is used within their portfolios. Based on the survey results, good starting points for the roll-

out of the OPEN-SME repository and tools can be identified. The second direction for the

roll-out is provided by other Science Parks, as they have been identified as powerful

multipliers with a perfectly matching portfolio of companies and domains in which the

OPEN-SME repository and tools can be applied.

Customer Segments

A number of relevant customers have been identified. In the initial phase, the most

important customers will be the VSP members, specifically those ones in the field of

robotics. This approach has been chosen in order to familiarize with the OPEN-SME

repository and tools in a controllable area. The robotics domain of VSP is particularly useful

for the introduction and testing of the OPEN-SME tools and repository because these

members of VSP have a lot of knowledge of OSS, so that the learning curve is assumed to be

less steep than in other domains. In the second phase, when VSP has accumulated enough

knowledge about the OPEN-SME tools and repositories, other Science Parks and Incubators

will be approached. The International Association of Science Parks (IASP) has currently 388

members with overall 128,000 member companies, thus providing a perfect platform for

disseminating and applying the outcomes of OPEN-SME. In a mid-term perspective SMEs

(outside Science Parks) with a lack of reuse engineers (and maybe domain experts, too) shall

find a possibility to directly receive OSS reuse services from the SME partners or other

Science parks. Finally, in the long run, large companies shall find opportunities to receive

large scale support (training, reuse service) for OSS reuse analyses.

The precondition for successful offerings to SMEs and large companies is an effective and

well-maintained website and a self-sustained OSS reuse community, with expertise in a

broad range of domains. The value that can be created within the OPEN-SME business

model serves, in the initial phase, three clusters within the VSP portfolio: robotics, smart

grid, OSS.

After the initial phase, following other actors will benefit from the value created by OPEN-

SME

-wider VSP network

-other Science Parks

-OPEN-SME consortium

-Public sector

-SME clusters

-Software producing companies (not only software houses)

-Consulting companies

-Platform providers

-Quality assurance service providers (OSS and proprietary software)

-Individual developers / 'geeks'

-OSS projects

-Academia (universities, students)

Besides robotics, other relevant domains for the OPEN-SME repository and tools are CRM, e-

commerce, and banking, i.e. the OPEN-SME stakeholders will have to establish contact

points to these domains and market the OPEN-SME outcomes in these areas. For the

geographical dimension of the roll-out strategy, the partners have decided to start on local

scope, then develop markets on national and international scope. Multipliers, in this regard,

are national contact points of the OPEN-SME partners and the International Association of

Science Parks.

Channels

There are three types of channels - distribution, communication and sales - that serve

different purposes and play a role at different points in time. The OPEN-SME partners

identified the following channels through which potential customers (target groups)

presumably want to be reached.

• Internet (webpage, email)

-Software communities

-SME clusters / groups

-Thematic forums

• Social media (Facebook, LinkedIn, Twitter etc.)

-Registered 'followers' from industry, academia and software communities

• Phone

-Companies

-Science Parks

-EU networks

-Industry Associations

• Face-to-face

-VSP

• Teaching / courses

-Academia

-Industry associations / chambers of commerce

•Academia and industry collaboration

-Master theses

-Internships

•Events

-Industry events

-Software community events, e.g. FOSSDEM (fossdem.org)

-Domain-specific events (e.g. conferences in the robotics area)

Since there is no similar service established within the partners of the SME consortium, it

has to be evaluated which channels will be most effective. To this end, a number of

measures have been discussed. During the test and pilots phase, events shall be broadcasted

on the Internet. Challenges and opportunities shall be identified through benchmarking the

success of different launches. Science Parks and SME clusters shall be attracted through

direct contacts in existing networks. Showcases shall be created (prototypes, customer

testimonials), and a download repository will be provided. Measures that shall be taken

particularly in the pre-market phase are presentations at GeekMeets and evaluation of

feedback received from there, conferences in relevant industry domains, and a 'Beta-version

workshop' with early adopter champions from various companies (through Science Parks

and SME clusters, partners' networks).

In addition, EU networks and national and international events of / with other science parks

and incubators shall be tapped. Finally, the partners decided to involve themselves in OSS

associations and related events and in industry events, e.g. in the field of embedded systems

(e.g. through ARTEMIS). These channels are not considered as means that work only in one

way. Overall, the partners are interested in feedback on which components are used,

characteristics of components’ life-cycle, members’ roles and flexibility, and how to establish

continuous contact to users / customers / developers through active involvement.

Regarding the integration of existing channels, the focus of the discussion was laid on the

infrastructures at VSP, as these are most decisive for the start of the business model and for

the later roll-out. There is an established and well-tested communication strategy for VSP

members that can be reused and integrated in a wider OSS reuse communication strategy.

This includes the usage of VSP's CRM system, though this requires categorization of member

types.

Based on VSP's infrastructure and the capacities of the OPEN-SME partners, following

channels have to be integrated (integration is led by VSP):

-Established personal relations to key companies

-Personal contact points for distributing OPEN-SME outcomes

-Email, mobile apps, webpage

The integration of the OPEN-SME channels with customer routines shall be achieved through

the creation of the 'big picture' of OSS reuse. Invitations to cooperate in order to create this

big picture shall be distributed to the target groups. Furthermore, a SME component pool

shall be generated. The latter requires as a precondition the establishment of a critical mass

of SMEs involved / interested in OSS reuse

Customer Relationships

The establishment of a self-sustained OSS reuse community is considered to be the key for

all customer relations in the OPEN-SME business model. Regarding the types of

relationships, the partners agreed that fully and semi-automated relationships should be

avoided, as the complexity of the tasks probably does not allow for the level of

standardization that would be necessary for these types of relationships. Within the

community itself, self-service relationships may be an option, as the level of expertise within

the community should be high enough. However, the default setting for customer

relationships should be personal relationships, maybe with dedicated personal assistance as

a special case in domains or for large companies or SME clusters.

There are already a number of relationships established that can be used for the OPEN-SME

business model: These relationships exist between

-VSP members

-other OPEN-SME SME AGs and their members

-OPEN-SME partners

-VSP members and OSS communities

-VSP and other Science Parks

-VSP / VSP members and industry associations

-VSP and government institutions

-VSP and academia

-OPEN-SME SME-AGs and industry associations

-OPEN-SME SME-AGs and government institutions

-OPEN-SME SME-AGs and academia

Key Activities

Key activities that must be performed in order to run the OPEN-SME business model

successfully are twofold, on the one hand they have to help preparing the market for the

OPEN-SME tools and repository and the services based thereof, on the other hand they have

to secure and advance the value propositions offered to the target groups. One key activity

that is important in the initial phase is a survey / overview of OSS activities within the

portfolio of the SME-AGs and SMEs of the OPEN-SME consortium. This survey would provide

an initial overview of the markets for the OPEN-SME tools, repository and services and

contact points for entering these markets. Other activities related to market preparation are

community building, the provision of experts and expertise, problem solving capacities

(directly or through portfolio members), sharing of investment costs, organizing events and

training (initially by VSP, either in Västerås or in Stockholm), and the dissemination to other

Science Parks and SME clusters, industry associations and the like. To the same end, key

partners have to identify contact points in relevant domains, provide software components,

testing, promotion (including academic and commercial publications, such as journal articles

and whitepapers), and distribution. Activities related to securing and advancing the value

propositions are updates of existing software, software extensions, integration of additional

functionalities in existing software, and certification services for special high quality software

and components.

Key Partnerships

There are different types of key partnerships that serve different purposes. The key partners

in the OPEN-SME business model are, in the initial phase, the partners of the OPEN-SME

consortium and the VSP member companies (especially in the field of robotics). These

partnerships can at current be considered as informal (as not based on a contract) strategic

alliances between non-competitors. At a later stage, when a critical level of OSS reuse

expertise has been built up at VSP and OPEN-SME consortium partners, additional contact

points in relevant domains (which have to be identified by the partners), in particular other

Science Parks have to be integrated in the business model as key partners. In this case, other

forms of partnerships may be chosen, and the relationships might get formal (i.e. based on

contracts).

A special key partner is academia, as academia does not strive for commercial revenues but

plays a vital role with regard to quality assurance, branding, publications and promotion of

OPEN-SME. The key suppliers of the business model are, in the initial phase, the AUTH-team

(reusability analysis, training), later the key suppliers will be part of a self-sustained

community of SMEs, freelancers and volunteers, related to VSP members and other Science

Parks, OPEN-SME partners and academia. The key resources to be required from partners

are

-Software components

-Trust building / branding capacities and efforts

-Manpower / expertise

-Networks / contact points

Key Resources

There are a number of key resources required by the OPEN-SME value propositions. In the

first place, there is an essential need for domain experts, first in the field of robotics, later in

other domains, too. In addition, hardware is needed for server and storage capacity. Cloud

computing was considered to be an inexpensive and efficient and flexible option, in this

regard. Other key resources are assistance in building the OSS reuse the community /

network and clarifying IPR conditions (rights to OPEN-SME repository and tools).

In the introductory phase there is an 'enabler' needed, i.e. initially one person in charge for

introducing the OPEN-SME tools and repository at VSP. This person has most likely to be

provided by AUTH. Finally, a clearly defined timeframe and network, in which the OPEN-SME

tools and repository will be applied in the initial phase and later roll-out, is required. Key

resources required by the customer relationships are

-Clarification of target groups

-Identification of domains

-Businesses and contact points

-Network

-Branding (through existing distribution channels)

-Grassrooting / community building (as part of marketing)

-Regularly updated webpage with relevant information

-Timely information with regard to components etc.

Key resources required by the distribution channels are

-Survey of VSP companies

-Marketing capacities

-Mapping of target markets

-Branding experts

-Networks

-Identification of relevant events (industry events, academic events, policy events etc.)

-Contacting and coordination with other Science Parks, surveying their OSS capacities and

needs

-Strategy: what to do in which order

-Financial resources

-Early adopter champions

With regard to the market introduction of the OPEN-SME repository and tools, for which the

identification and approach of early adopters is extremely important, Mohan [41] warns that

a blog post or a launch at a startup event or a press article will not suffice to succeed. He

suggests 'a disciplined 3-step approach':

•Profiling and Identification (persona creation)

-For B2B, 4 important characteristics to profiled and identify early adopters:

--Location

--Title of buyer (for the OPEN-SME business model, decision-makers for software

development and software purchases are probably most relevant, but the survey should

validate this)

--Industry/domain (the survey has to identify the OSS-reuse-intensive domains)

--Size of company (according to Mohan, mid-sized companies and a few large companies

tend adopt new innovations faster compared to smaller companies)

-For B2C , additional characteristics to consider are, inter alia, age, location, gender, monthly

income among others.

•Interaction and Introduction - make an initial connect with early adopters through (one of)

following three mechanisms:

-Engagement online: Following them and posting thoughtful (real human) comments (not

spam or robot messages) on twitter or their blog.

-Events: Instead of presenting at a booth when your startup is not ready, demo your mock-

up or early version to them at events (as an attendee) to get feedback.

-Introductions from other early adopters. Early adopters know each other well and tend to

be connected to each other well. They are usually open to sharing new, innovative ideas

with other early adopters.”

•Nurturing and Engagement - get feedback from early adopters and offer them to influence

the product direction with the goal to categorize early adopters into 3 types and focus on

making your champions successful with your product :

-Champions: They like your product, think it solves a problem and are willing to provide

feedback on what they would like, to make it better. Your goal should be to make these

users the most happy with your service, be very responsive and introduce features they

desire quickly. You can find them by looking at the # of times they return to use your service

after the launch day.

-Bandwagoners: They typically join since some other early adopter has joined who

mentioned the product. They will come if the product is free, test it for an initial period, then

will usually never show up until it is 'more mainstream' or 'many bugs have been worked

out'.

-Naysayers: They have something negative to say about every new product, so while its best

to ignore them, be thoughtful and respond to their feedback, but don’t focus on them a lot.

They will highlight many features that you currently don't have or plan to have. They are

most likely to compare it to other solutions and in a negative light.

Revenue Streams

Revenue streams can be generated in various ways. Given the interview results it is obvious

that customers are not easily willing to pay for OSS reuse analysis and services. However, the

workshops have identified a number of values that appear attractive enough to be paid for

by the target groups. The first value in this regard is certification, as this service provides a

sort of guarantee that the software or component does what it is supposed to do. The idea

of the OPEN-SME partners is to provide a medium-level certification that can be issued

based on extensive testing but without going through the time consuming procedure of

strictly formal certification, like by ISO standards. Another value that target groups are

expected to pay for is tested components. Here, customers have to pay for the tests, not the

components, as these are OSS.

Thirdly, extra documentation seems to be a value companies and freelancers would

probably be more likely to pay for. Premium models with extra information, exceeding the

information generally provided to everyone, could also provide a value customers are willing

to pay for.

Other such values are:

-Security

-Established and trusted brand

-Test and quality assurance

-Basis for demand of services: reference implementations and reputation

-Tools (if partners decide to sell tools)

-In SME clusters: additional service that can be provided to members' customers

Regarding what services and products potential customers (here: VSP members) are

currently paying, it turned out that this applies to hiring of internal programmers,

consultancy (to a limited amount), commodity software, and available components (very

rarely). As a general rule, if a product or service does not serve the core business the

willingness to pay is rather low. However, when problems arise or cost savings become

evident the willingness to pay increases. Regarding preferences of types of payment there

was a strong agreement that one time payments have to be the default, as subscriptions and

licenses are usually rejected by the potential customers.

Dissemination

Project Web Site

The OPEN-SME consortium established a website, (see http://opensme.eu online) for the

support of the dissemination activities. This site provides public access to general

information on the project (objectives, partners, scope, etc.), and to its public deliverables

and presentations. Also the site accommodates restricted sections accessible only by the

consortium members. The project web site is updated with information and content on a

regular basis.

Dissemination Events

During the project a large number of dissemination activities took place from the majority of

the partners. Furthermore, all the kinds of dissemination activities have been covered by the

partners.

http://opensme.eu/

-A member of the OPEN-SME team participated in the DSM-TP 2010 summer school. The

main concept of the DSM-TP summer school was Domain Specific Model (DSM) and Domain

Specific Languages (DSL) which are an important aspect of the OPEN-SME project regarding

the role of the re-use Engineer. Details on the topics of the school can be found at the DSM-

TP 2010 summer school webpage: (see http://ctp.di.fct.unl.pt/DSM-TP/ online).

-A member of the OPEN-SME team participated in the ADAPT 2010 summer school.

The central theme of the ADAPT summer school was software adaptation, which is an

important aspect of the OPEN-SME project. Details on the topics of the school can be found

at the ADAPT 2010 summer school webpage (see http://userpages.uni-

koblenz.de/~adapt/summerschool2010/ online)

-Members of the consortium attended conferences and workshops of high importance in

respect to OPEN-SME project:

1.QUATIS 2010 (7th International Conference on the Quality of Information and

Communications Technology), Oporto, Portugal, 29 September to 2 October 2010.

2.ENASE 2010 (5th International Conference on Evaluation of Novel Approaches in Software

Engineering), Athens, Greece, 24-25 July 2010.

3.Presentation entitled "Software Recycling", by Prof. I Stamelos, at the University of

Groningen, NL on July 2nd. 2012.

4.Presentation entitled 'OPEN-SME Project', by Prof. M. Ivkovic at International Conference

ICIST 2012, ISBN 978-86-85525-10-0,Pages 46-58, 29/2-3/3/2012. Kapaonik.

-Open Source Software Components Reuse Workshop Kopaonik, Serbia, March 8, 2011

The Open Source Software Components Reuse Workshop took place at Kopaonik, Serbia, on

March 8, 2011. The participants of the workshop included members of the OPEN-SME

consortium and members of the public sector and privately funded IT companies interested

in the goals of the OPEN-SME project. The topics discussed during the workshop included an

overview of the OPEN-SME project and its goals, primarily centered on Open Source

Software components reuse from SMEs and the related business advantages. There were

also presentations on the technical aspects of the OPEN-SME project and more specifically

the software comprehension tools and approaches and the domain engineering process.

-VSP Workshop

http://ctp.di.fct.unl.pt/DSM-TP/
http://userpages.uni-koblenz.de/~adapt/summerschool2010/
http://userpages.uni-koblenz.de/~adapt/summerschool2010/

The workshop took place at VSP, Vasteras, Sweden on 25 and 26 January, 2012, with the

participation of AUTH. MDU and UM-MERIT, which delivered a whole day seminar regarding

the OPEN-SME business models. The agenda of the workshop also included a presentation of

the OPEN-SME OSS Reuse Platform and Repository, VSP's plans to make use of OPEN-SME,

usage preconditions (skills and capacities) and roles / collaboration

The event in Vasteras Science Park (VSP) in which AUTH, VSP, UM-MERITMDU members

participated highlighted the need for the robotics domain which resulted in component

extraction from the ROSJava project.

-Second OPEN-SME workshop

The Greek Association of Computer Engineers (EMYPEE) has successfully organized the

Athens OPEN-SME Workshop on Friday 17/2/12, which has been held in the premises of

Technical Chamber of Greece (TEE). The Workshop has attracted the interest of more than

40 participants that originated from SMEs, academia and public organizations in Greece. A

welcome speech has been given by Mr. Spyridon Zanias (member of the TEE management

board). The Workshop program contained 10 presentations and a round table discussion.

The presentations contained results and ongoing developments of the OPEN-SME project,

guest speeches and the results of the 'Open Source' Working Group (WG) that is introduced

and tasked by EMYPEE aiming to analyze the opportunities for the Greek IT engineers with

respect to usage of open source solutions, and to provide suggestions and best practices for

exploiting open source projects in the SMEs, public organizations and educational institutes.

The round table discussion was particularly live and attracted the interest of the

participants.

-Third OPEN-SME workshop

The 3rd OPEN-SME workshop took place on the 30th of May in Nicosia, organized by ETEK.

The workshop was attended by 30 members of the IT Community of Cyprus and was

addressed by the General Cashier of ETEK, Mr. Antonis Valanides. There was considerable

interest from the participants in both the OPEN-SME toolset and the VSP business practices.

-Final OPEN-SME workshop

The final workshop was sponsored by ACM and organised as part of the ACM SigSoft

COmpARch 2012 conference (see http://opensme.eu/ross online), bringing researchers and

industrial experts to present and discuss the issues related to reuse of open-source

components from technical, process, organizational, legal, and business point of view. The

focus was on the potential benefits for Small and Medium Enterprises (SMEs). The workshop

was organized as a combination of submitted papers presentations and open discussions in

Bertinoro, Italy on 26 June 2012. In the event we had the participation of large companies

such as Siemens, ABB and Ericsson as well as the participation of important academic

institutions (e.g. the developers of the Merobase search engine from the University of

Mennheim).

-Preparation of 1st and 2nd OPEN-SME newsletter.

-OPEN-SME poster and presentation at the EMYPEE annual conference in the University of

Patras, Greece on 18/12/2011

-Preparation of SIG questionnaire

--Questionnaire providing an overview of the project, identifying the main research areas,

and requesting contact details and feedback on the interest in specific areas. The OPEN-SME

partners distributed the SIG questionnaire to selected business and research partners.

-Formulation of OPEN-SME SIG (more than 70 questionnaires were returned).

-Creation of OPEN-SME SIG mailing list and communication of information on the project

results. More than 247 members

-Organisation of first EMYPEE SIG meeting in Athens on 11/3/2011

--26 EMYPEE SIG members participated and were presented the rationale, the expected

results and current progress of OPEN-SME

Publications

The consortium achieved the following publications:

Journals:

1.George Kakarontzas, Panagiotis Katsaros and Ioannis Stamelos: "Component Certification

as a Prerequisite for Widespread OSS Reuse", Electronic Communications of the EASST,

http://opensme.eu/ross

Volume 33: Foundations and Techniques for Open Source Software Certification 2010,

http://journal.ub.tu-berlin.de/eceasst/article/view/449/433/

2.Apostolos Kritikos, George Kakarontzas, Ioannis Stamelos. "A semi-automated process for

open source code reuse". In 5th International Conference on Evaluation of Novel

Approaches in Software Engineering (ENASE '10), 24-25 July 2010, Athens, Greece,

http://users.teilar.gr/~gkakaron/AkritikoEtAl-SemiAutomatedProcessForOSSReuse.pdf

3.Apostolos Ampatzoglou, Apostolos Kritikos, George Kakarontzas, Ioannis Stamelos: "An

empirical investigation on the reusability of design patterns and software packages", Journal

of Systems and Software, Volume 84, Issue 12, December 2011, Pages 2265-2283,

http://dx.doi.org/10.1016/j.jss.2011.06.047

4.George Kakarontzas, Eleni Constantinou, Apostolos Ampatzoglou and Ioannis Stamelos:

"Layer Assessment of Object-Oriented Software: A Metric Facilitating White-Box Reuse",

accepted for publication in the Journal of Systems and Software, Elsevier, 2012

Conferences:

1.George Kakarontzas, Vassilis C. Gerogiannis, Ioannis Stamelos, and Panagiotis Katsaros:

"Elastic Component Characterization with Respect to Quality Properties: An Intuitionistic

Fuzzy-Based Approach", In Proceedings of the 15th Panhellenic Conference on Informatics

(PCI '11), pp. 270-274, IEEE, 2011 http://dx.doi.org/10.1109/PCI.2011.27, AWARD: BEST

PAPER AWARD FOR PCI 2011

2.Apostolos Kritikos and Fragkiskos Chatziasimidis: "SFparser: A Tool for Selectively Parsing

SourceForge", In Proceedings of the 15th Panhellenic Conference on Informatics (PCI '11),

pp. 161-165, IEEE, 2011 http://dx.doi.org/10.1109/PCI.2011.42

3.Eleni Constantinou, George Kakarontzas, and Ioannis Stamelos: "Towards Open Source

Software System Architecture Recovery Using Design Metrics", In Proceedings of the 15th

Panhellenic Conference on Informatics (PCI '11), pp. 166-170, IEEE, 2011,

http://dx.doi.org/10.1109/PCI.2011.36

4.Eleni Constantinou, George Kakarontzas, Ioannis Stamelos: "Open Source Software: How

Can Design Metrics Facilitate Architecture Recovery? ", 4th Workshop on Intelligent

Techniques in Software Engineering, 5 September 2011 at the European Conference on

Machine Learning and Principles and Practices of Knowledge Discovery in Databases (ECML-

PKDD), http://arxiv.org/abs/1110.1992v1

5.Skalistis Stefanos, Stamelos Ioannis, Kakarontzas George: "R.O.D.E. Process: A

Configurable Reuse-Oriented Domain Engineering Process", International Conference ICIST

2012, ISBN 978-86-85525-10-0, Pages 46-58, 29/2-3/3/2012. Kapaonik, http://www.e-

drustvo.org/icist/2012/html/pdf/585.pdf

6.George Kakarontzas, Ioannis Stamelos, Stefanos Skalistis and Athanasios

Naskos,'Extracting Components from Open Source: The Component Adaptation

Environment (COPE) Approach', In 38th Euromicro Conference on Software Engineering and

Advanced Applications, September 5-8, 2012, Cesme, Izmir, Turkey

7.Fotios Kokkoras, Konstantinos Ntonas, Apostolos Kritikos, George Kakarontzas, Ioannis

Stamelos, "Federated Search for Open Source Software Reuse". In 38th Euromicro

Conference on Software Engineering and Advanced Applications, September 5-8, 2012,

Cesme, Izmir, Turkey

8.Adnan Causevic, Daniel Sundmark, Sasikumar Punnekkat, "Impact of Test Design

Technique Knowledge on Test Driven Development: A Controlled Experiment", International

Conference on Agile Software Development, XP2012, p 138-152, Springer, Malmö, Sweden,

Editor(s):C. Wohlin, http://dx.doi.org/10.1007/978-3-642-30350-0_10

9.Adnan Causevic, Sasikumar Punnekkat and Ivica Crnkovic: "An Application Engineering

Process Enabling Open-Source Reuse", presented in the Reusing Open-Source Software

Components - (ROSS) Workshop @ ACM SigSoft CompArch 2012, June 25, 2012, Bertinoro,

Italy.

Potential Impact

Based on the capacities of the OPEN-SME repository and tools, a number of (bundles of)

products and services can be offered to each customer segment.

The OPEN-SME tools and repository allow analysis services and quality assurance. If services

that are exclusively based on the tools are considered, OPEN-SME can offer help to solve

legacy issues. The repository only allows offering components. Finally, the tools themselves

can potentially be sold.

Next to the direct outcomes of the OPEN-SME project a number of services can be offered to

the target groups, such as training and knowledge (initially by AUTH), support and

consultancy (also initially by AUTH), domain engineering services, and brokerage.

A third group of offerings relates to building up a stack of expertise, as OPEN-SME allows

generating experts in OSS reuse and reusable OSS components, in OSS (components)

integration, expert users, and domain engineering experts. Though there are a number of

OSS reuse tools available, the unique selling point of the OPEN-SME approach is the

combination of highly integrated reuse analysis tools on the one hand and the provision of a

repository that allows direct access to reusable components with a so far unknown level of

granularity. In this sense, newness and highly improved functionality are two core value

propositions of OPEN-SME.

Another value proposition is performance, as the RODE process that is implied in the OPEN-

SME approach towards OSS reusability allows improved process performance (systematic

and efficient identification and testing of OSS code for reusability that goes far beyond what

is possible today). Another feature resulting in improved performance is ease of

identification of reusable software and its classification (categories). In addition, the metrics

applied or generated in the OPEN-SME approach will improve the identification and

selection of best practices. Finally, the establishing of a code-reuse-oriented community will

allow to externalize a number of tasks from companies / the OPEN-SME partners to other

members of the community, which could particularly accelerate the growth of the number

of components in the OPEN-SME repository. As a result, customized products (components,

test results) will be available earlier than this is possible today, and components can be used

systematically in OSS development, which is expected to significantly reduce the

development time of new OSS products and services. The latter point leads to a third value

that can be offered to clients, which is customization. This is achieved through tailoring the

RODE process to domain-specific and company-specific needs, which may include the

modification of tools.

A fourth value to be offered through the OPEN-SME business model is the capacity to help

companies that so far are not able to perform effective code reuse analyses to get this job

done. Overall, the partners intend to establish the OPEN-SME repository and tools as a

brand. Given their newness and uniqueness, their qualification for a branding strategy is

unquestionable. However, a comprehensive branding strategy depends on all partners’

needs and capacities and has to be clarified and developed in a mid-term perspective (1-1.5

years). Challenges that have to be mastered in this regard are the name, which should

reflect the core functionalities of the OPEN-SME repository and tools, a slogan, and a logo.

'OPEN-SME' might not be appropriate, in this regard. However, other relevant cornerstones

of a branding strategy have been identified: application fields / markets and the unique

selling points are clarifies, as laid out above. The branding strategy might benefit from

applying Kano's model of customer satisfaction (see D26b) distinguishing 'attractive quality'

from 'one-dimensional quality', 'must-be quality', 'indifferent quality' and 'reverse quality'.

The sixth value provided by OPEN-SME is design, as the implied focus on components eases

and improves good software design. Seventh, price is an important value to be offered by

OPEN-SME, since tools and repository are OSS, which implies that the costs related to these

elements are comparably low. However, it should be noted that the efficient usage of the

repository and the tools requires high level expertise, which might result in relatively high

prices for OPEN-SME services.

The latter point is however countered by the eights value OPEN-SME can offer, which is cost

reduction. The outcomes of the OPEN-SME code reuse analyses are a broad set of well

analysed software and software components that are unlikely to produce in-house by most

of the potential customers. This effect should outweigh expenses for high level expertise and

overall result in lower production cost through

-larger supply with reusable code

-shorter development time

-ease of legacy management (for applications)

-less coding effort

However, these cost reductions might not be perceived by customers (due to unawareness

of costs aligned with no or bad code reuse). In addition, cost reduction might be countered

by high learning costs and possibly high transaction costs (when introducing the RODE

process in business processes). The ninth value provided by OPEN-SME is risk reduction, as

IPR issues become more transparent, extensive testing reduces the number of bugs in OS

software and components, and the OSS reuse community and social network provides

potentially a 24/7 service infrastructure. Especially SMEs will benefit from the latter. The

tenth value provided by OPEN-SME is accessibility. OPEN-SME will ease the access to

reusable software, components and test results through the Internet.

Finally, the eleventh value that will be offered with the OPEN-SME business model is

convenience / usability, as the OPEN-SME tools and repository make it easier for firms and

individuals to identify reusable code and components. Though the learning curve for

handling the repository and tools effectively, it must be considered that so far OSS

reusability analyses are performed by a rather eclectic trial and error approach that very

likely overlooks many reusable components and does not provide comprehensive insights in

the reusability features of the code under scrutiny. In this sense, the highly integrated tools

and the OPEN-SME repository will turn out relevant information on reusable code in a faster

and more comprehensive way in shorter time than the code analysis practices especially

SMEs are used to so far.

These offerings help to solve a number of typical problems potential customers have when

OSS code reuse is considered. In the first place, the OPEN-SME approach helps to structure

the process of code reuse. In addition, OPEN-SME provides additional documentation of

code that is not available otherwise. Furthermore, OPEN-SME provides customers with

knowledge of software architecture that is lacking at the customer’s side. The OPEN-SME

tools and repository also help to increase scalability and to enter new markets. Another

problem that can be solved by OPEN-SME is ease of training new employees and of

knowledge transfer. Overall, OPEN-SME helps companies to focus on their core tasks while

OSS code reusability analysis can be effectively outsourced. SMEs benefit from OPEN-SME in

particular through help in solving problems related to

-using and maintaining OSS efficiently

-time to market

-accessibility to code, high quality software, information about reusability of code

-tools

-skills

-knowledge

Individual developers will benefit through improvements of their

-status

-knowledge

-reputation

Against this background, following customer needs have been identified that can be satisfied

by the OPEN-SME business model:

-Improvements of existing products

-Ease generation of new products

-Quality improvements

-Process optimization

-Decrease time to market

-Accelerated response to customer needs / requests

-Ease of support and maintenance

Exploitation plans

Overview

As laid out in Deliverable D2.6a, the various actors in the OSS value network play different

roles. In our case, there are two key actors in the value network of the OPEN-SME toolset:

the technical academic partners of the OPEN-SME project provide the developers of a

toolset for OSS reuse and reuse services, and the OPEN-SME-AGs in the consortium provide

the distributors of the toolset and these services. The technical/academic partners, primarily

AUTH and TELETEL, compile and analyse a set of existing tools for the identification and

evaluation of reusable OSS code and OSS components. These existing tools are transferred

into a suite that allows fast and comprehensive reusability checks of OSS code and

components, which is not offered by any single tool underlying the suite. This act provides

the key value creation process within the OPEN-SME project. However, in a second step the

suite has been adapted to the capacities and needs of the SME-AGs within the OPEN-SME

consortium, which play the role of the key distributors of the OPEN-SME suite, as the RTD

partners within the consortium do not dispose of the required distribution channels and

distribution expertise. The end users - primarily the target groups of the OPEN-SME-AGs,

usually other SMEs and start-ups - either receive the results of an OSS reusability analysis

carried out with the OPEN-SME suite by another actor (an SME-AG, a technical academic

partner like AUTH, another company) based on requirements specified by the end user, use

the OPEN-SME suite themselves in order to evaluate OSS code or components they want to

reuse, or offer reusability services based on the OPEN-SME suite provided to them by an

SME-AG.

Given the diversity of the OPEN-SME-AGs in the OPEN-SME project consortium, they dispose

of very different capacities to distribute the toolset / services and they pursue diverse

strategies with this toolset. For instance, while VSP has a number of OSS-related start-ups in

its portfolio and OSS plays a significant role in the Swedish / Scandinavian economy, other

partners, like ETEK or the Serbian SME-AG ISS first have to raise awareness of OSS among

their members as well as in their members’ domestic and regional key markets (see D26a for

details).

Further advancements and differentiation of the OPEN-SME value network is currently

subject to ongoing discussions. In principle it is possible and preferable to establish

additional distribution channels for the OPEN-SME toolset in order to accelerate and

broaden the market diffusion. One possible way, in this regard, is to establish, for instance,

AUTH, TELETEL, GNOMON or BITGEAR - as core developers of the toolset - as a vendor of

OSS reuse services, which may require alternative distribution channels outside the OPEN-

SME consortium. Additional distribution channels could, for instance, be provided by

academic institutes in the field of computer sciences, by one or more OSS communities, by

other SME-AGs, and by companies.

The composition of a value network around the OPEN-SME suite and the roles the various

actors in such a network play are thus depending on the capacities, objectives and strategies

of the SME-AGs. If a technical partner like AUTH, TELETEL, GNOMON or BITGEAR decides to

operate the OPEN-SME suite in alternative value networks outside the OPEN-SME

consortium in order to push the diffusion of the suite and to enhance the efficiency of OSS

development in the European software industry, it is possible that a number of new value

networks will be created, which again will differ by the requirements and capacities of the

key distributor and the need of the end users served by the distributor. This also involves IPR

and license issues (see next section for a discussion of these points).

Depending on the composition and objectives of the value networks that are formed around

the OPEN-SME suite, business models must be created that meet the requirements of these

value networks. For instance, depending on the capacities and context constraints of the

SME-AGs in the OPEN-SME consortium, it must be decided whether the SME-AG sells the

right to use the suite or sells services based on the OPEN-SME suite, or distributes the suite

for free. Actors within the OPEN-SME value networks, especially the SME-AGs as key

distributors of the OPEN-SME suite, can choose from various Open Source Strategies in

order to deal with the underlying community. A detailed overview of these strategies is

provided in D2.6, here we would like to limit the discussion to the fact that SME-AGs will find

ways to collaborate with the underlying community or to circumvent constraints set by the

community by either follow a road that is independent of the community (e.g. by forking a

community) or that makes the community dependent on one or more of the other actors of

the value network (e.g. by taking over the community).

Proposed SME-AGs Business Strategy

Based on the analysis of the position and role of three SME-AGs that belong to the OPEN-

SME project consortium in business ecosystems and OSS value networks, first

recommendations of suitable OSS reuse business models for these (and similar) SME-AGs

can be given. Overall, VSP shows a very commercial orientation and must be considered as

integral and important part of the business ecosystem in Västerås, in which OSS

development and reuse are widespread. Conclusively, VSP plans to take over an active and

commercial role in the distribution and implementation of the OSS reuse tools and services

based on these tools by advancing itself into a software vendor for the OPEN-SME tools /

suite. Business models developed for this sort of SME-AG should put the SME-AG in the

centre of the model and strive to generate sustainable revenues directly for the SME-AG.

In contrast to VSP, EMYPEE, ETEK and ISS are not part of their members’ value network.

However, their position in the business ecosystem of its members qualifies those

organizations as distributors of the OPEN-SME suite. Further activities that imply playing a

commercial role seem primarily to be limited by the governance structures and traditional

tasks of the organizations and by the underdeveloped market for OSS in the two regions.

Under such conditions, a suitable business model for a SME-AG should try to focus on

commercial members of the SME-AG that are capable to play a leading role in the

distribution, application and advancement of the OPEN-SME suite, while the SME-AG itself

should rather serve as a non-commercial distribution and information platform. The latter

may imply to advance the service offerings of the organization in the direction of training

courses and networking activities. These activities could be organized in collaboration with

member organizations. In fact, such activities take already place, but they are organized

informally by the members. In the case of the OPEN-SME suite, institutionalized information

events and training courses appear a more effective means to achieve an effective

distribution and implementation of OSS reuse tools and services in the Greek and Cypriot

economy (EMYPEE/ETEK case).

In the case of ISS the relative small size of the organization’s portfolio creates a natural limit

to the distribution and exploitation of the OPEN-SME suite. Therefore, the business model

should focus on a commercial partner that is capable to utilize ISS’ huge network of business

contacts in order to create a broader use base and thus ground for sustainable revenues

from OSS reuse tools and services.

OPEN-SME Business Model and Exploitation Strategy

Being aware of the fact that the market introduction of a complex product like the OPEN-

SME repository and tool needs time and a strategy, the partners have agreed to start the

'OPEN-SME business' at a rather small scope, with VSP as key player for familiarizing, testing

and implementing the OPEN-SME repository and tools in the robotics domain of the Science

Park. In this initial phase, training and consultancy shall be provided by AUTH. The roll-out,

which provides the second phase, is intended to happen in different directions. The first one

is collaboration with the SMEs and SME associations in the OPEN-SME consortium. To this

end, VSP and the other OPEN-SME partners involved in the OPEN-SME business model will

survey their members in order to find out to which degree and in which way OSS is used

within their portfolios. Based on the survey results, good starting points for the roll-out of

the OPEN-SME repository and tools can be identified. The second direction for the roll-out is

provided by other Science Parks, as they have been identified as powerful multipliers with a

perfectly matching portfolio of companies and domains in which the OPEN-SME repository

and tools can be applied.

Customer Segments

A number of relevant customers have been identified. In the initial phase, the most

important customers will be the VSP members, specifically those ones in the field of

robotics. This approach has been chosen in order to familiarize with the OPEN-SME

repository and tools in a controllable area. The robotics domain of VSP is particularly useful

for the introduction and testing of the OPEN-SME tools and repository because these

members of VSP have a lot of knowledge of OSS, so that the learning curve is assumed to be

less steep than in other domains. In the second phase, when VSP has accumulated enough

knowledge about the OPEN-SME tools and repositories, other Science Parks and Incubators

will be approached. The International Association of Science Parks (IASP) has currently 388

members with overall 128,000 member companies, thus providing a perfect platform for

disseminating and applying the outcomes of OPEN-SME. In a mid-term perspective SMEs

(outside Science Parks) with a lack of reuse engineers (and maybe domain experts, too) shall

find a possibility to directly receive OSS reuse services from the SME partners or other

Science parks. Finally, in the long run, large companies shall find opportunities to receive

large scale support (training, reuse service) for OSS reuse analyses.

The precondition for successful offerings to SMEs and large companies is an effective and

well-maintained website and a self-sustained OSS reuse community, with expertise in a

broad range of domains. The value that can be created within the OPEN-SME business

model serves, in the initial phase, three clusters within the VSP portfolio: robotics, smart

grid, OSS. After the initial phase, following other actors will benefit from the value created

by OPEN-SME

-wider VSP network

-other Science Parks

-OPEN-SME consortium

-Public sector

-SME clusters

-Software producing companies (not only software houses)

-Consulting companies

-Platform providers

-Quality assurance service providers (OSS and proprietary software)

-Individual developers / 'geeks'

-OSS projects

-Academia (universities, students)

Besides robotics, other relevant domains for the OPEN-SME repository and tools are CRM, e-

commerce, and banking, i.e. the OPEN-SME stakeholders will have to establish contact

points to these domains and market the OPEN-SME outcomes in these areas. For the

geographical dimension of the roll-out strategy, the partners have decided to start on local

scope, then develop markets on national and international scope. Multipliers, in this regard,

are national contact points of the OPEN-SME partners and the International Association of

Science Parks.

Channels

There are three types of channels - distribution, communication and sales - that serve

different purposes and play a role at different points in time.

The OPEN-SME partners identified the following channels through which potential

customers (target groups) presumably want to be reached.

-Internet (webpage, email)

--Software communities

--SME clusters / groups

--Thematic forums

-Social media (Facebook, LinkedIn, Twitter etc.)

--Registered 'followers' from industry, academia and software communities

-Phone

--Companies

--Science Parks

--EU networks

--Industry Associations

-Face-to-face

--VSP

-Teaching / courses

--Academia

--Industry associations / chambers of commerce

-Academia and industry collaboration

--Master theses

--Internships

-Events

--Industry events

--Software community events, e.g. FOSSDEM (fossdem.org)

--Domain-specific events (e.g. conferences in the robotics area)

Since there is no similar service established within the partners of the SME consortium, it

has to be evaluated which channels will be most effective. To this end, a number of

measures have been discussed. During the test and pilots phase, events shall be broadcasted

on the Internet. Challenges and opportunities shall be identified through benchmarking the

success of different launches. Science Parks and SME clusters shall be attracted through

direct contacts in existing networks. Showcases shall be created (prototypes, customer

testimonials), and a download repository will be provided. Measures that shall be taken

particularly in the pre-market phase are presentations at GeekMeets and evaluation of

feedback received from there, conferences in relevant industry domains, and a 'Beta-version

workshop' with early adopter champions from various companies (through Science Parks

and SME clusters, partners’ networks).

In addition, EU networks and national and international events of / with other science parks

and incubators shall be tapped. Finally, the partners decided to involve themselves in OSS

associations and related events and in industry events, e.g. in the field of embedded systems

(e.g. through ARTEMIS). These channels are not considered as means that work only in one

way. Overall, the partners are interested in feedback on which components are used,

characteristics of components' life-cycle, members' roles and flexibility, and how to establish

continuous contact to users / customers / developers through active involvement.

Regarding the integration of existing channels, the focus of the discussion was laid on the

infrastructures at VSP, as these are most decisive for the start of the business model and for

the later roll-out. There is an established and well-tested communication strategy for VSP

members that can be reused and integrated in a wider OSS reuse communication strategy.

This includes the usage of VSP's CRM system, though this requires categorization of member

types.

Based on VSP's infrastructure and the capacities of the OPEN-SME partners, following

channels have to be integrated (integration is led by VSP):

-Established personal relations to key companies

-Personal contact points for distributing OPEN-SME outcomes

-Email, mobile apps, webpage

The integration of the OPEN-SME channels with customer routines shall be achieved through

the creation of the 'big picture' of OSS reuse. Invitations to cooperate in order to create this

big picture shall be distributed to the target groups. Furthermore, a SME component pool

shall be generated. The latter requires as a precondition the establishment of a critical mass

of SMEs involved / interested in OSS reuse

Customer Relationships

The establishment of a self-sustained OSS reuse community is considered to be the key for

all customer relations in the OPEN-SME business model. Regarding the types of

relationships, the partners agreed that fully and semi-automated relationships should be

avoided, as the complexity of the tasks probably does not allow for the level of

standardization that would be necessary for these types of relationships. Within the

community itself, self-service relationships may be an option, as the level of expertise within

the community should be high enough. However, the default setting for customer

relationships should be personal relationships, maybe with dedicated personal assistance as

a special case in domains or for large companies or SME clusters.

There are already a number of relationships established that can be used for the OPEN-SME

business model: These relationships exist between

-VSP members

-other OPEN-SME SME AGs and their members

-OPEN-SME partners

-VSP members and OSS communities

-VSP and other Science Parks

-VSP / VSP members and industry associations

-VSP and government institutions

-VSP and academia

-OPEN-SME SME-AGs and industry associations

-OPEN-SME SME-AGs and government institutions

-OPEN-SME SME-AGs and academia

Key Activities

Key activities that must be performed in order to run the OPEN-SME business model

successfully are twofold, on the one hand they have to help preparing the market for the

OPEN-SME tools and repository and the services based thereof, on the other hand they have

to secure and advance the value propositions offered to the target groups. One key activity

that is important in the initial phase is a survey / overview of OSS activities within the

portfolio of the SME-AGs and SMEs of the OPEN-SME consortium. This survey would provide

an initial overview of the markets for the OPEN-SME tools, repository and services and

contact points for entering these markets. Other activities related to market preparation are

community building, the provision of experts and expertise, problem solving capacities

(directly or through portfolio members), sharing of investment costs, organizing events and

training (initially by VSP, either in Västerås or in Stockholm), and the dissemination to other

Science Parks and SME clusters, industry associations and the like. To the same end, key

partners have to identify contact points in relevant domains, provide software components,

testing, promotion (including academic and commercial publications, such as journal articles

and whitepapers), and distribution. Activities related to securing and advancing the value

propositions are updates of existing software, software extensions, integration of additional

functionalities in existing software, and certification services for special high quality software

and components

Key Partnerships

There are different types of key partnerships that serve different purposes .

The key partners in the OPEN-SME business model are, in the initial phase, the partners of

the OPEN-SME consortium and the VSP member companies (especially in the field of

robotics). These partnerships can at current be considered as informal (as not based on a

contract) strategic alliances between non-competitors. At a later stage, when a critical level

of OSS reuse expertise has been built up at VSP and OPEN-SME consortium partners,

additional contact points in relevant domains (which have to be identified by the partners),

in particular other Science Parks have to be integrated in the business model as key

partners. In this case, other forms of partnerships may be chosen, and the relationships

might get formal (i.e. based on contracts).

A special key partner is academia, as academia does not strive for commercial revenues but

plays a vital role with regard to quality assurance, branding, publications and promotion of

OPEN-SME. The key suppliers of the business model are, in the initial phase, the AUTH-team

(reusability analysis, training), later the key suppliers will be part of a self-sustained

community of SMEs, freelancers and volunteers, related to VSP members and other Science

Parks, OPEN-SME partners and academia. The key resources to be required from partners

are

-Software components

-Trust building / branding capacities and efforts

-Manpower / expertise

-Networks / contact points

Key Resources

There are a number of key resources required by the OPEN-SME value propositions. In the

first place, there is an essential need for domain experts, first in the field of robotics, later in

other domains, too. In addition, hardware is needed for server and storage capacity. Cloud

computing was considered to be an inexpensive and efficient and flexible option, in this

regard. Other key resources are assistance in building the OSS reuse the community /

network and clarifying IPR conditions (rights to OPEN-SME repository and tools).

In the introductory phase there is an 'enabler' needed, i.e. initially one person in charge for

introducing the OPEN-SME tools and repository at VSP. This person has most likely to be

provided by AUTH. Finally, a clearly defined timeframe and network, in which the OPEN-SME

tools and repository will be applied in the initial phase and later roll-out, is required. Key

resources required by the customer relationships are

-Clarification of target groups

-Identification of domains

-Businesses and contact points

-Network

-Branding (through existing distribution channels)

-Grassrooting / community building (as part of marketing)

-Regularly updated webpage with relevant information

-Timely information with regard to components etc.

Key resources required by the distribution channels are

-Survey of VSP companies

-Marketing capacities

-Mapping of target markets

-Branding experts

-Networks

-Identification of relevant events (industry events, academic events, policy events etc.)

-Contacting and coordination with other Science Parks, surveying their OSS capacities and

needs

-Strategy: what to do in which order

-Financial resources

-Early adopter champions

With regard to the market introduction of the OPEN-SME repository and tools, for which the

identification and approach of early adopters is extremely important, Mohan [41] warns that

a blog post or a launch at a startup event or a press article will not suffice to succeed. He

suggests 'a disciplined 3-step approach':

• Profiling and Identification (persona creation)

-For B2B, 4 important characteristics to profiled and identify early adopters:

--Location

--Title of buyer (for the OPEN-SME business model, decision-makers for software

development and software purchases are probably most relevant, but the survey should

validate this)

--Industry/domain (the survey has to identify the OSS-reuse-intensive domains)

--Size of company (according to Mohan, mid-sized companies and a few large companies

tend adopt new innovations faster compared to smaller companies)

-For B2C , additional characteristics to consider are, inter alia, age, location, gender, monthly

income among others.

•Interaction and Introduction - make an initial connect with early adopters through (one of)

following three mechanisms:

-Engagement online: Following them and posting thoughtful (real human) comments (not

spam or robot messages) on twitter or their blog.

-Events: Instead of presenting at a booth when your startup is not ready, demo your mock-

up or early version to them at events (as an attendee) to get feedback.

-Introductions from other early adopters. Early adopters know each other well and tend to

be connected to each other well. They are usually open to sharing new, innovative ideas

with other early adopters.”

•Nurturing and Engagement - get feedback from early adopters and offer them to influence

the product direction with the goal to categorize early adopters into 3 types and focus on

making your champions successful with your product :

-Champions: They like your product, think it solves a problem and are willing to provide

feedback on what they would like, to make it better. Your goal should be to make these

users the most happy with your service, be very responsive and introduce features they

desire quickly. You can find them by looking at the # of times they return to use your service

after the launch day.

-Bandwagoners: They typically join since some other early adopter has joined who

mentioned the product. They will come if the product is free, test it for an initial period, then

will usually never show up until it is 'more mainstream' or 'many bugs have been worked

out'.

-Naysayers: They have something negative to say about every new product, so while its best

to ignore them, be thoughtful and respond to their feedback, but don't focus on them a lot.

They will highlight many features that you currently don't have or plan to have. They are

most likely to compare it to other solutions and in a negative light.

Revenue Streams

Revenue streams can be generated in various ways.

Given the interview results it is obvious that customers are not easily willing to pay for OSS

reuse analysis and services. However, the workshops have identified a number of values that

appear attractive enough to be paid for by the target groups. The first value in this regard is

certification, as this service provides a sort of guarantee that the software or component

does what it is supposed to do. The idea of the OPEN-SME partners is to provide a medium-

level certification that can be issued based on extensive testing but without going through

the time consuming procedure of strictly formal certification, like by ISO standards. Another

value that target groups are expected to pay for is tested components. Here, customers

have to pay for the tests, not the components, as these are OSS.

Thirdly, extra documentation seems to be a value companies and freelancers would

probably be more likely to pay for. Premium models with extra information, exceeding the

information generally provided to everyone, could also provide a value customers are willing

to pay for.

Other such values are:

-Security

-Established and trusted brand

-Test and quality assurance

-Basis for demand of services: reference implementations and reputation

-Tools (if partners decide to sell tools)

-In SME clusters: additional service that can be provided to members' customers

Regarding what services and products potential customers (here: VSP members) are

currently paying, it turned out that this applies to hiring of internal programmers,

consultancy (to a limited amount), commodity software, and available components (very

rarely). As a general rule, if a product or service does not serve the core business the

willingness to pay is rather low. However, when problems arise or cost savings become

evident the willingness to pay increases. Regarding preferences of types of payment there

was a strong agreement that one time payments have to be the default, as subscriptions and

licenses are usually rejected by the potential customers.

Dissemination

During the project a large number of dissemination activities took place from the majority of

the partners. Furthermore, all the kinds of dissemination activities have been covered by the

partners.

-A member of the OPEN-SME team participated in the DSM-TP 2010 summer school. The

main concept of the DSM-TP summer school was Domain Specific Model (DSM) and Domain

Specific Languages (DSL) which are an important aspect of the OPEN-SME project regarding

the role of the re-use Engineer. Details on the topics of the school can be found at the DSM-

TP 2010 summer school webpage: (see http://ctp.di.fct.unl.pt/DSM-TP/ online).

-A member of the OPEN-SME team participated in the ADAPT 2010 summer school.

The central theme of the ADAPT summer school was software adaptation, which is an

important aspect of the OPEN-SME project. Details on the topics of the school can be found

at the ADAPT 2010 summer school webpage (see http://userpages.uni-

koblenz.de/~adapt/summerschool2010/ online)

http://ctp.di.fct.unl.pt/DSM-TP/
http://userpages.uni-koblenz.de/~adapt/summerschool2010/
http://userpages.uni-koblenz.de/~adapt/summerschool2010/

-Members of the consortium attended conferences and workshops of high importance in

respect to OPEN-SME project:

1.QUATIS 2010 (7th International Conference on the Quality of Information and

Communications Technology), Oporto, Portugal, 29 September to 2 October 2010.

2.ENASE 2010 (5th International Conference on Evaluation of Novel Approaches in Software

Engineering), Athens, Greece, 24-25 July 2010.

3.Presentation entitled "Software Recycling", by Prof. I Stamelos, at the University of

Groningen, NL on July 2nd. 2012.

4.Presentation entitled "OPEN-SME Project", by Prof. M. Ivkovic at International Conference

ICIST 2012, ISBN 978-86-85525-10-0,Pages 46-58, 29/2-3/3/2012. Kapaonik.

-Open Source Software Components Reuse Workshop Kopaonik, Serbia, March 8, 2011

The Open Source Software Components Reuse Workshop took place at Kopaonik, Serbia, on

March 8, 2011. The participants of the workshop included members of the OPEN-SME

consortium and members of the public sector and privately funded IT companies interested

in the goals of the OPEN-SME project. The topics discussed during the workshop included an

overview of the OPEN-SME project and its goals, primarily centered on Open Source

Software components reuse from SMEs and the related business advantages. There were

also presentations on the technical aspects of the OPEN-SME project and more specifically

the software comprehension tools and approaches and the domain engineering process.

-VSP Workshop

The workshop took place at VSP, Vasteras, Sweden on 25 and 26 January, 2012, with the

participation of AUTH. MDU and UM-MERIT, which delivered a whole day seminar regarding

the OPEN-SME business models. The agenda of the workshop also included a presentation of

the OPEN-SME OSS Reuse Platform and Repository, VSP's plans to make use of OPEN-SME,

usage preconditions (skills and capacities) and roles / collaboration

The event in Vasteras Science Park (VSP) in which AUTH, VSP, UM-MERITMDU members

participated highlighted the need for the robotics domain which resulted in component

extraction from the ROSJava project.

-Second OPEN-SME workshop

The Greek Association of Computer Engineers (EMYPEE) has successfully organized the

Athens OPEN-SME Workshop on Friday 17/2/12, which has been held in the premises of

Technical Chamber of Greece (TEE). The Workshop has attracted the interest of more than

40 participants that originated from SMEs, academia and public organizations in Greece. A

welcome speech has been given by Mr. Spyridon Zanias (member of the TEE management

board). The Workshop program contained 10 presentations and a round table discussion.

The presentations contained results and ongoing developments of the OPEN-SME project,

guest speeches and the results of the "Open Source" Working Group (WG) that is introduced

and tasked by EMYPEE aiming to analyze the opportunities for the Greek IT engineers with

respect to usage of open source solutions, and to provide suggestions and best practices for

exploiting open source projects in the SMEs, public organizations and educational institutes.

The round table discussion was particularly live and attracted the interest of the

participants.

-Third OPEN-SME workshop

The 3rd OPEN-SME workshop took place on the 30th of May in Nicosia, organized by ETEK.

The workshop was attended by 30 members of the IT Community of Cyprus and was

addressed by the General Cashier of ETEK, Mr. Antonis Valanides. There was considerable

interest from the participants in both the OPEN-SME toolset and the VSP business practices.

-Final OPEN-SME workshop

The final workshop was sponsored by ACM and organised as part of the ACM SigSoft

COmpARch 2012 conference (see http://opensme.eu/ross online), bringing researchers and

industrial experts to present and discuss the issues related to reuse of open-source

components from technical, process, organizational, legal, and business point of view. The

focus was on the potential benefits for Small and Medium Enterprises (SMEs). The workshop

was organized as a combination of submitted papers presentations and open discussions in

Bertinoro, Italy on 26 June 2012. In the event we had the participation of large companies

such as Siemens, ABB and Ericsson as well as the participation of important academic

institutions (e.g. the developers of the Merobase search engine from the University of

Mennheim).

-Preparation of 1st and 2nd OPEN-SME newsletter.

http://opensme.eu/ross

-OPEN-SME poster and presentation at the EMYPEE annual conference in the University of

Patras, Greece on 18/12/2011

-Preparation of SIG questionnaire

--Questionnaire providing an overview of the project, identifying the main research areas,

and requesting contact details and feedback on the interest in specific areas. The OPEN-SME

partners distributed the SIG questionnaire to selected business and research partners.

-Formulation of OPEN-SME SIG (more than 70 questionnaires were returned).

-Creation of OPEN-SME SIG mailing list and communication of information on the project

results. More than 247 members

-Organisation of first EMYPEE SIG meeting in Athens on 11/3/2011

--26 EMYPEE SIG members participated and were presented the rationale, the expected

results and current progress of OPEN-SME

Publications

The consortium achieved the following publications:

Journals:

1.George Kakarontzas, Panagiotis Katsaros and Ioannis Stamelos: "Component Certification

as a Prerequisite for Widespread OSS Reuse", Electronic Communications of the EASST,

Volume 33: Foundations and Techniques for Open Source Software Certification 2010,

http://journal.ub.tu-berlin.de/eceasst/article/view/449/433/

2.Apostolos Kritikos, George Kakarontzas, Ioannis Stamelos. "A semi-automated process for

open source code reuse". In 5th International Conference on Evaluation of Novel

Approaches in Software Engineering (ENASE '10), 24-25 July 2010, Athens, Greece,

http://users.teilar.gr/~gkakaron/AkritikoEtAl-SemiAutomatedProcessForOSSReuse.pdf

3.Apostolos Ampatzoglou, Apostolos Kritikos, George Kakarontzas, Ioannis Stamelos: "An

empirical investigation on the reusability of design patterns and software packages", Journal

of Systems and Software, Volume 84, Issue 12, December 2011, Pages 2265-2283,

http://dx.doi.org/10.1016/j.jss.2011.06.047

4.George Kakarontzas, Eleni Constantinou, Apostolos Ampatzoglou and Ioannis Stamelos:

"Layer Assessment of Object-Oriented Software: A Metric Facilitating White-Box Reuse",

accepted for publication in the Journal of Systems and Software, Elsevier, 2012

Conferences:

1.George Kakarontzas, Vassilis C. Gerogiannis, Ioannis Stamelos, and Panagiotis Katsaros:

"Elastic Component Characterization with Respect to Quality Properties: An Intuitionistic

Fuzzy-Based Approach", In Proceedings of the 15th Panhellenic Conference on Informatics

(PCI '11), pp. 270-274, IEEE, 2011 http://dx.doi.org/10.1109/PCI.2011.27, AWARD: BEST

PAPER AWARD FOR PCI 2011

2.Apostolos Kritikos and Fragkiskos Chatziasimidis: "SFparser: A Tool for Selectively Parsing

SourceForge", In Proceedings of the 15th Panhellenic Conference on Informatics (PCI '11),

pp. 161-165, IEEE, 2011 http://dx.doi.org/10.1109/PCI.2011.42

3.Eleni Constantinou, George Kakarontzas, and Ioannis Stamelos: "Towards Open Source

Software System Architecture Recovery Using Design Metrics", In Proceedings of the 15th

Panhellenic Conference on Informatics (PCI '11), pp. 166-170, IEEE, 2011,

http://dx.doi.org/10.1109/PCI.2011.36

4.Eleni Constantinou, George Kakarontzas, Ioannis Stamelos: "Open Source Software: How

Can Design Metrics Facilitate Architecture Recovery? ", 4th Workshop on Intelligent

Techniques in Software Engineering, 5 September 2011 at the European Conference on

Machine Learning and Principles and Practices of Knowledge Discovery in Databases (ECML-

PKDD), http://arxiv.org/abs/1110.1992v1

5.Skalistis Stefanos, Stamelos Ioannis, Kakarontzas George: "R.O.D.E. Process: A

Configurable Reuse-Oriented Domain Engineering Process", International Conference ICIST

2012, ISBN 978-86-85525-10-0, Pages 46-58, 29/2-3/3/2012. Kapaonik, http://www.e-

drustvo.org/icist/2012/html/pdf/585.pdf

6.George Kakarontzas, Ioannis Stamelos, Stefanos Skalistis and Athanasios

Naskos,'Extracting Components from Open Source: The Component Adaptation

Environment (COPE) Approach', In 38th Euromicro Conference on Software Engineering and

Advanced Applications, September 5-8, 2012, Cesme, Izmir, Turkey

7.Fotios Kokkoras, Konstantinos Ntonas, Apostolos Kritikos, George Kakarontzas, Ioannis

Stamelos, "Federated Search for Open Source Software Reuse". In 38th Euromicro

Conference on Software Engineering and Advanced Applications, September 5-8, 2012,

Cesme, Izmir, Turkey

8.Adnan Causevic, Daniel Sundmark, Sasikumar Punnekkat, "Impact of Test Design

Technique Knowledge on Test Driven Development: A Controlled Experiment", International

Conference on Agile Software Development, XP2012, p 138-152, Springer, Malmö, Sweden,

Editor(s):C. Wohlin, http://dx.doi.org/10.1007/978-3-642-30350-0_10

9.Adnan Causevic, Sasikumar Punnekkat and Ivica Crnkovic: "An Application Engineering

Process Enabling Open-Source Reuse", presented in the Reusing Open-Source Software

Components - (ROSS) Workshop @ ACM SigSoft CompArch 2012, June 25, 2012, Bertinoro,

Italy.

List of Websites:

http://opensme.eu

