

Conducting Organic Materials for Engineering Tissue

Gillian Hendy

14/02/14

Content

- ▶ Conducting polymers and Nerve Regeneration,
 - ▶ Testing materials for biocompatibility
 - ▶ Conductivity and Contact angle measurements
 - ▶ In vitro testing, Cell adhesion, Cell toxicity
 - ▶ *in vivo* histology
- ▶ Functionalization of Polypyrrole using Carbohydrates aiming to create a new biomaterial conducting polymer,
 - ▶ 1,3 Cycloaddition Huisgen reaction CuAAC,
 - ▶ Characterisation of functionalised pyrrole NMR, C13, Dept, Mass spec.,
- ▶ Electrospinning
 - ▶ What is electrospinning?
 - ▶ The set up and materials
 - ▶ Types of applications

Peripheral Nervous System

► Peripheral nervous system (PNS)

- all the nerves in your body, aside from the ones in your brain and spinal cord.
- It acts as a communication relay between your brain and your extremities

Muscle Contraction

Mechanism of Muscle Contraction

Peripheral nerve regeneration

- ▶ Nerves will regenerate
- ▶ 1 mm a day
- ▶ Depending on the severity of the injury

Nerve Injury

**Muscle
Atrophy**

State of the Art

- ▶ Autologous nerve grafts
 - ▶ Limitations
 - ▶ Multiple surgeries
 - ▶ Loss of function at donor site
- ▶ Nerve Conduits
 - ▶ Hollow Collagen tubes
 - ▶ Nerves need guidance
- ▶ Regeneration is slow

Polypyrrole

- ▶ Polypyrrole (Ppy) is a conducting polymer, an organic material comprised simply of C, H and simple N heteroatoms
- ▶ By incorporating anions (doping) into the polymer during synthesis the resistivity is greatly reduced giving it conductivity
- ▶ Polypyrrole has been shown as a material for the delivery of a number of bioactive compounds including Neurotropic factors.⁵
- ▶ Previously shown to release dopamine so has the capability of releasing other growth factors and NTs such as Acetylcholine

PPy⁰

Neutral - reduced
Release of Drug

oxidation
reduction

PPy⁺ A⁻
Oxidized state
anion doping and
binding of Drug

Conducting polymers and Electrical stimulation

- ▶ Promising new approach combining scaffolds with electrical stimulation
- ▶ Recent literature has shown that electrical stimulation enhances the rate of nerve regeneration.⁶
- ▶ Mechanism is unclear but some believe the electrical stimulus alters the local electrical fields of ECM molecules changing protein adsorption.⁷
- ▶ Electrical stimulation as a new therapeutic approach to accelerate nerve regeneration after injury and improve functional recovery
- ▶ Lack of suitable conducting materials
 - ▶ Ppy is promising due to it's conductivity, biocompatibility and its ability to undergo surface modification with bioactive agents

5. *Biomaterials*, Volume 32, Issue 15, May 2011, Pages 3822-3831

6. *Biomaterials*. 2001 May;22(10):1055-64.

7. *Proc. Natl. Acad. Sci. USA* 1997 August; 94, 8948-53

Materials and Methods

Pyrrole

Polypyrrole

Conductivity

- ▶ Difference in conductivity most likely relates to the entrapment of a proportion of CD ions that do not actually dope PPy. For a CD molecule in a PPy film, steric hindrances only allow a fraction of the anions on the molecule to contribute to the conductivity of the film.
- ▶ ToS ions, in contrast, are able to move more freely to allow stronger doping interactions with PPy.
- ▶ The small size and high solubility of chloride make it a less stable dopant, and even washing may have disrupted the doping interactions, resulting in de-doping and thus less conductive Cl-doped films.

Contact Angle

- ▶ Contact angle measures surface energy of test surface-CD and Ppy-PSS doped polymers are highly hydrophilic in comparison to the monocationic doped Cl and ToS polymers
- ▶ Due to the free charges being present in the CD and PSS systems over the no free charges in the Cl and ToS polymers

PC12 cell line

- ▶ PC12 is a cell line derived from a pheochromocytoma of the rat adrenal medulla
- ▶ PC12 cells stop dividing and terminally differentiate when treated with nerve growth factor making them a useful model system for nerve regeneration.
- ▶ They are an adherent dependent cell line

Cell toxicity - MTT assay

1: Seed cells then expose to material/drug for 48 hours

2. Add MTT

3. Incubate 4 hrs

4. Dissolve Formazan and measure Abs at 565 nm

Results - Characterization

Material

Cyclodextrin only

Cell adhesion

- ▶ Cell adhesion to polymer surfaces has obvious implications in the field of tissue engineering
- ▶ Facilitating cellular adhesion, growth and differentiation onto a surface can aid in wound healing and tissue growth
- ▶ A polymer can provide mechanical stability for the newly forming tissue

Cell Immunocytochemistry

- Immunocytochemistry is a technique used to assess the presence of a specific protein or antigen in cells by use of a specific antibody that binds to it.
- The antibody allows visualization of the protein under a microscope.
- PC-12 use a tubulin antibody to adhere to the tubulin protein in the cell
- Hoechst a fluorescent stain that binds strongly to DNA was used to highlight the nucleus of the cell.

Cell adhesion

- ▶ Fluorescent image of PC-12 cells seeded on Ppy-CD polymer

In vivo assessment - Histology

- ▶ Ppy-CD and controls were electrochemically deposited on ITO and peeled off
- ▶ They were sterilized using UV light, ethanol and sterile PBS prior to surgery
- ▶ 4 Implants (0.5 cm²) were embedded in the subcutaneous space of each adult Lewis rat and left for 2 and 4 weeks
- ▶ A necropsy was preformed
- ▶ The tissue samples were prepared:
 - ▶ Fixation stabilizes and preserves the tissue.
 - ▶ Embedding converts the tissue into a solid form which can be sliced.
 - ▶ Sectioning (slicing) provides the very thin specimens needed for microscopy.
 - ▶ Staining provides visual contrast and may help identify specific tissue components.
 - ▶ Haematoxylin and eosin stain (H&E stain) is one of the most commonly used stains in histology
 - ▶ Haematoxylin stains nuclei blue and Eosin stains cytoplasm and collagen pink/red

In vivo assessment - Histology

NUI Maynooth

- ▶ Surface modification of a polymer with a chemical function or biomolecules have been shown to strongly influence protein binding and therefore cell material interactions
- ▶ Using Carbohydrates because
 - ▶ Lectins are specific carbohydrate-binding proteins that recognize and bind to specific carbohydrates found on the surfaces of cells
 - ▶ They play a role in interactions and communication between cells typically for recognition
- ▶ This sort of interaction has an enormous impact on cell adhesion
- ▶ Organic Synthesis and functionalised pyrrole with a carbohydrate
- ▶ We have achieved this synthesis based on the Sharpless 'Click reaction' which is a azide alkyne Huisgen Cycloaddition reaction in the presence of a copper catalyst

Azido-pyrrole synthesis

1-(2-azidoethyl)-1*H*-pyrrole

92 %

1-(6-azidohexyl)-1*H*-pyrrole

81 %

90 %

Glycosylation reactions

3.)

4.)

Galactose Propargyl

Cyclo-addition reaction products

40 %

- ▶ The active Cu(I) catalyst is generated
- ▶ A copper acetylide forms, after which the azide displaces another ligand and binds to the copper.
- ▶ Then, an unusual six-membered copper(III) metallacycle is formed.
- ▶ Ring contraction to a triazolyl-copper derivative is followed by protonolysis that delivers the triazole product and closes the catalytic cycle.

Product Galactosepyrtriazole

Product Mannosepyrtriazole

Current step:

- ▶ Electrochemical and chemical polymerisation have been unsuccessful with the modified pyrrole to date
 - ▶ Steric Hindrance

(2*R*,3*R*,4*S*,5*R*,6*R*)-2-((1-(6-(1*H*-pyrrol-1-yl)hexyl)-1*H*-1,2,3-triazol-4-yl)methoxy)-6-(hydroxymethyl)tetrahydro-2*H*-pyran-3,4,5-triol

What is Electrospinning?

Electrospinning Set-up

SEM of PLGA in HFIP

Uses and Products

Various Parameters needed to spin

- ▶ Process Parameters
 - ▶ Voltage
 - ▶ Flow rate
 - ▶ Concentration
 - ▶ Ambient temperatures
 - ▶ Distance
 - ▶ Motion of substrate
- ▶ System Parameters
 - ▶ Viscosity
 - ▶ Conductivity
 - ▶ Molecular weight

poly(lactic-co-glycolic) acid (PLGA)

Aligned fibers using a rotating collector

Polyvinyl alcohol (PVA)

Collaboration

Frederick Ghosh, Lund University

- ▶ Retinal degeneration disease affects 30 million patients worldwide
 - ▶ Our collaborators want to make a material for retinal transplantation
- ▶ Poly(glycerol-co-sebacic acid)⁹ (PGS) is a biodegradable elastomer
 - ▶ desirable mechanical properties
 - ▶ Limited by difficulties in Casting micro and nanostructures
- ▶ Maintain the mechanical characteristics of PGS yet produce nanofibrous structures for potential drug/protein delivery

Material and Methods

- ▶ The PGS disk were cut into $5 \times 5 \times 3$ mm blocks, embedded in Tissue-Tek OCT compound
- ▶ Then cryo-sectioned into 30 μm membranes at -30 °C with a heavy duty razor blades
- ▶ Slices were then placed in the electrospinning set up and PCL was electrospun onto the fibers at varying thickness

Polycaprolactone (PCL)

SEM of electrospun PCL

Swedish Results

- ▶ The membrane adheres well to the retina
- ▶ No apparent ingrowth of Müller cell fibers can be seen (vimentin labeling)
- ▶ Retinas survive better when cultured with the outer retina up
- ▶ Müller cell fibers in the outer retina sprouts through the cultured membrane

Conclusions

- ▶ Ppy-CD is a biocompatible polymer
 - ▶ Demonstrates good cell adhesion
 - ▶ Shows no toxicity
 - ▶ *In vivo* shows minimal anti inflammatory response
- ▶ ‘Click’ based chemistry is a successful synthesis route for the modification of pyrrole
- ▶ Electrospinning is a technique suitable for producing materials for a variety of applications including tissue engineering, wound healing and drug delivery

Acknowledgements

- ▶ **Funding**
 - ▶ Marie Curie IOF FP7
 - ▶ Armed Forces Institute of Regenerative Medicine
- ▶ **Collaborators**
 - ▶ Prof. Frederick Ghosh at Lund University, Sweden
 - ▶ Dr. Dan Heller, Sloan Kettering Cancer center
- ▶ **Colleagues**
 - ▶ Marty Kolewe,
 - ▶ Liang Guo,
 - ▶ Paulina Hill,
 - ▶ Joshua Doloff,
 - ▶ Ben Larson,
 - ▶ Ben Tang,
 - ▶ Danya Lavin,
 - ▶ Matt Weber,
 - ▶ Omid Veish,
 - ▶ Kevin Love
- ▶ **Everyone at NUIM Chemistry**

Thank you!

