

INDIVIDUAL FELLOWSHIPS

Project n°: <u>253863</u>

Project Acronym: _MATERHY_

Project Full Name: Development and characterisation of novel materials for hydrogen storage

Marie Curie Actions IEF-IOF-IIF-IFFR Final Report

Period covered: fromAug/2010 toAug/2012
Period number:1
Start date of project: _03/Aug/2010
Project beneficiary name: <u>IFE</u>
Project beneficiary organisation name: _INSTITUTT FOR ENERGITEKNIKK_
Date of preparation: 01/Oct/2012
Date of submission (SESAM): 01/Oct/2012
Duration: _24 months_
Version: 1

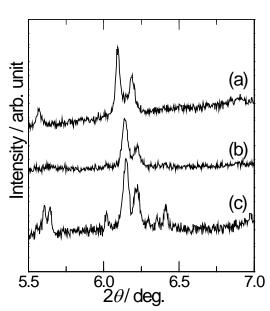
1. Final publishable summary report

Hydrogen storage is considered to be the key challenge in achieving hydrogen based energy economy. The long-term solution especially for mobile applications is hydrogen storage in solid materials. Light-weight complex hydrides are considered as the most promising materials. The project addresses synthesis of novel anion-substituted borohydrides by ball milling and characterisation with respect to thermodynamics, kinetics and structure. Partial substitution of an element, i.e. hydrogen, with a more electronegative element changes the bond strength of the remaining elements, and it may facilitate release of hydrogen. Mg(BH₄)₂ undergoes a polymorphic phase transition around 190 °C and desorbs hydrogen around 300 °C. In order to reduce the temperature for hydrogen release, partial substitution of (BH₄)⁻ by halide anion has been achieved to form mixed phase Mg(BH₄)_{2-x}X_x and the effects on the thermodynamics and kinetics of hydrogen sorption has been investigated.

Mixtures of $Mg(BH_4)_2 + MgX_2$ (X = CI, Br, I) were prepared by ball-milling using different milling times/speeds (Table 1). $Mg(BH_4)_2$ was synthesized at Århus University by wet chemistry methods and the halides MgX_2 were commercially available ($MgCl_2$: 98%, MERCK, $MgBr_2$ and Mgl_2 : 98%, Aldrich). The samples were prepared in 1:1 molar ratio, 0.5 g in total with 1:30 sample to ball mass ratio. Ball milling was performed under 1 bar Ar atmosphere for 1 h and followed by 30 min pause, and repeated until reaching the total milling time listed in Table 1.

Table 1 Samples prepared by ball milling (BM). The molar ratio is 1:1, the milling time and milling speed are listed in the table.

Mg(BH ₄) ₂ + MgCl ₂		Mg(BH ₄) ₂ + MgBr ₂		$Mg(BH_4)_2 + MgI_2$	
BM time	BM speed	BM time	BM speed	BM time	BM speed
2 h	280 rpm	2 h	280 rpm	10 min	by hand
12 h	280 rpm	12 h	280 rpm	30 min	280 rpm
12 h	360 rpm	12 h	360 rpm	1 h	280 rpm
12 h	505 rpm	12 h	505 rpm	2 h	280 rpm
				4 h	505 rpm
				12 h	280 rpm
				12 h	505 rpm


The samples were routinely investigated by laboratory powder X-ray diffraction (PXD) after milling. The diffraction data revealed mechanical mixtures of α -Mg(BH₄)₂ and the halide with no sign of chemical reaction. In-situ synchrotron radiation (SR) PXD measurements of selected samples were performed at Swiss-Norwegian beam line (SNBL) in European Synchrotron Radiation Facility (ESRF), France. In-situ SR-PXD patterns of Mg(BH₄)₂ + MgCl₂ milled for 12 h with milling speed of 505 rpm shows that α -Mg(BH₄)₂ transformed to ϵ -Mg(BH₄)₂ at 123 °C, and then to β -Mg(BH₄)₂ at 162 °C. The β phase decomposed at 274 °C. The ϵ polymorph usually forms from γ phase and has not previously been observed to form from α -Mg(BH₄)₂. Therefore it appears that substitution or ball-milling could alter the relative stability of the different Mg(BH₄)₂ polymorphs.

The milled samples with X = Cl and Br were then annealed around the $\alpha \rightarrow \beta$ transition temperature (200 °C) for 12 hours under 10 bar H₂ back-pressure. Subsequent PXD

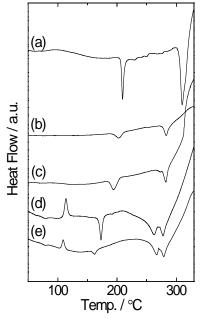

measurements (lab and/or synchrotron) always showed a complete conversion to β -Mg(BH₄)₂ which did not reverse α-Mg(BH₄)₂ on cooling to room temperature. There were clear shifts in the positions of Bragg peaks belonging to β -Mg(BH₄)₂ in both the CI and Br containing samples after annealing, as compared to pure β -Mg(BH₄)₂, as shown in Figure 1. Since α-Mg(BH₄)₂ (without halide) milled and annealed under the same conditions does not show a similar peak shift, it is clear that the shifts are due to substitution of BH₄⁻ (ionic radius r = 2.05 Å) by CI⁻ (r = 1.81 Å) or Br⁻ (r = 1.96 Å). Structure refinement revealed that unit cell parameters decreased by about 0.1-0.2 Å for β -Mg(BH₄)₂ in the mixtures, which corresponds to a volume contraction of the unit cell of about 2%. This is estimated to correspond to approximately 10% substitution of BH₄⁻ by halides.

Figure 2 shows differential scanning calorimetry (DSC) profiles of as-received Mg(BH₄)₂ and the mixtures of Mg(BH₄)₂ – MgX₂ measured under 10 bar hydrogen back pressure. The as-received Mg(BH₄)₂ transformed from α phase to β phase at around 210 °C and desorbed hydrogen at around 310 °C. The temperature of H₂ desorption for the mixtures are decreased by 30 °C compared to as-received Mg(BH₄)₂. Reversibility of the mixtures were investigated with Sieverts type apparatus, however, substitution does not have a beneficial influence on the reversibility under tested conditions.

In summary, substitution of BH₄ ion by halide ion Cl $^-$ / Br in Mg(BH₄)₂ is observed for the first time. The substitution occurs in β -Mg(BH₄)₂ after annealing milled mixtures of α -Mg(BH₄)₂ + MgX₂ (X = Cl, Br). The substitution is evident from the shift of Bragg peaks to higher angles. A slight reduction in temperature of hydrogen desorption due to the halide substitution is observed. These efforts are expected to contribute to a scientific breakthrough in the search for more efficient hydrogen storage materials.

Figure 1 SR-PXD (λ = 0.50123 Å) profile for (a) Mg(BH₄)₂ heated up to 300 °C, (b) Mg(BH₄)₂ + MgBr₂ and (c) Mg(BH₄)₂ + MgCl₂ milled for 12h at 280 rpm and annealed for 10h at 200 °C.

Figure 2 DSC profiles (under 10 bar H_2) for (a) asreceived Mg(BH₄)₂, (b) Mg(BH₄)₂ + MgCl₂ and (c) Mg(BH₄)₂ + MgBr₂ milled for 12 h with 280 rpm, (d) Mg(BH₄)₂ + MgCl₂ and (c) Mg(BH₄)₂ + MgBr₂ milled for 12 h with 505 rpm. Heating rate is 2 °C/min.