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Abstract – Recent experiments have shown that the theory used to descibe the Asaro-Tiller-
Grinfeld instability is inadequate. The problem is identified and shown to arise from an ambiguity
in the equilibrium condition formulated by Gibbs. Classical theories of solidification by Baker and
Cahn (macroscopic) and by Frank and van der Merwe (microscopic) are extended to resolve the
ambiguity. New experiments are presented that support the theoretical treatment.

Introduction. – This is a sample of the working
document 31/10/2011

Fig. 1: Schematic of a simple experiment. A flat crystal placed
on a support is in contact with a saturated solution. Then the
support is bent and the crystal becomes compressively stressed.
The change in chemical potential of the crystal will drive a mass
flux to redistribute mass in the system.

ATG experiments and simulations. Consider the sim-
ple experiment illustrated in Figure 1. The crystal that is
originally in equilibrium with the solution (they have the
same chemical potential, µ0 and there is no macroscopic
change) is bent to generate compressive stress in the re-
gion adjacent to the fluid. The resulting change in the
chemical potential of the crystal is

∆µ = (1− ν2)σ2/2E + γκ, (1)

where σ is the differential stress parallell to the interface,
ν is Poissons ratio, E is Youngs modulus, γ is the interfa-
cial tension and κ the local curvature of the interface. ∆µ
causes dissolution of the crystal. However, if the solution
volume is finite this will raise the chemical potential of the
solution above its equilibrium value µ0 and this will tend
to drive precipitation (growth). If possible, the excess dis-
solved material will precipitate (grow) on the existing crys-
tal surface. What are the possible final outcomes of this

experiment? The lowest free energy end state is clearly
complete dissolution of the stressed crystal and growth of
a new, unstressed crystal with the same volume and equi-
librium crystal shape. What path will the system take
and will it ever reach this low energy configuration?

The ATG instability

A solid under compressive stress with a rough solid-
liquid interface will have higher stress in the grooves than
at the peaks. This will generate a chemical potential gra-
dient between stressed grooves and less stressed peaks and
therefore there is a tendency to dissolve at the grooves and
precipitate at the peaks (see Figure 2). This is the basic
idea of the surface instability that was originally analysed
by Asaro and Tiller [4] and Grinfeld [5]. The elastic energy
tends to roughen the interface and the interfacial tension
tends to smooth it. The critical lengthscale for which the
two contributions balance (for a sinusoidal perturbation
of the interface) is

λc =
Eγπ

σ2(1− ν2)
. (2)

Linear stability analysis of the Asaro-Tiller-Grinfeld
(ATG) instability indicates that there is a maximum un-
stable wavelength which is 3/2 to 2 times λc depending
on the rate limiting process: diffusion or dissolution [1].
Kassner, Misbah et al. [2,3] showed that in the non-linear
regime the ATG model predicts a coarsening and crack-
like growth of the deepest valleys [6]. This cracking under
compression reduces the strain energy of the compressed
system in the same manner that fractures relieve the strain
energy under tensile stress.
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Fig. 2: Schematic of the Asaro Tiller Grinfeld (ATG) insta-
bility. Left side: In a solid under compressive stress in the
horizontal direction a chemical potential gradient will exist be-
tween stressed valleys and less stressed ridge tops, and this gra-
dient drives a mass flux from the valleys to the tops. A linear
stability analysis of this situation yields a maximally unstable
wave numbers depending on the rate limiting process: diffu-
sion or dissolution [1]. Right side: Phase field modeling of
the non-linear behaviour of the stress induced interface insta-
bility. Time evolution of an originally sinusoidal interface from
top graph to bottom graph and between each dashed line in
each graph [2,3].

The best documented experimental observation of the
ATG instability was reported by Balibar et al [7,8] in he-
lium crystals at 1 K under stress. They reported quanti-
tative agreement between the maximally unstable length-
scale predicted by the ATG linear stability analysis and
the observed corrugations of about 7 mm. They also re-
ported a relaxation of the corrugated pattern, but details
were not given and they have never been explained.

Brittle salt in brine

Sodium chlorate (NaClO3) is a brittle, ionic crystal
which is very soluble in water. We have performed a series
of different experiments on sodium chlorate under com-
pressive stress in contact with its aqueous solution with an
initial NaClO3 concentration that is in equilibrium with
the unstressed solid. Figure 3 shows images from one ex-
periment [9] and the schematic interpretation of the whole
set of experiments [9–11]. Initially, the originally smooth
crystal-solution interface becomes rough with grooves per-
pendicular to the main stress direction and with a wave-
length close to the maximally unstable wavelength pre-
dicted by the ATG model. Then the pattern coarsens and
the length scale increases while the amplitude does not
increase. Finally the surface becomes smooth again. Why
does the interface topography go through the smooth -
rough - smooth sequence while no external parameter is
changed? The only possible interpretation is that the ini-
tial smooth crystal surface under compressive stress has a
higher chemical potential than the solution while the final

Fig. 3: Time evolution (top to bottom) of a compressively
stressed crystal in contact with its solution. Left side:
Schematic cross section of the experiment and the interpreta-
tion: an unstressed film is formed on the surface of the stressed
crystal. Right side: Microscopy images of the crystal surface
during one experiment showing the formation of grooves with
the spacing predicted by the ATG theory and the subsequent
coarsening of the pattern towards a smooth final state.

smooth crystal surface has the same chemical potential as
the solution. In some of the experiments we could exclude
the possibility that the chemical potential of the solution
was raised to µ0+∆µ. The conclusion is therefore that the
chemical potential of the crystal at the interface is close
to µ0. This indicates that there is a gradient in stress in
the solid crystal from µ0 + ∆µ in the bulk to µ0 at the
solid-liquid interface. The next section will show that this
interpretation complies well with both experimental obser-
vations and microscopic theories from the field of epitaxial
growth in vacuum.

Ambiguity in Gibbs’ equilibium of non-hydrostatically
stressed solids. Dissolution is relatively simple to un-
derstand because the intitial and final states of the sys-
tem are well specified. Precipitation on the other hand
is more challenging because the final state of a volume of
solute precipitated on a stressed solid is not necessarily
obvious The implicit assumption in continuum models of
dissolution and precipitation is that the precipitate inher-
its the stress state of the existing solid. The underlying
microscopic picture is that precipitation proceeds by epi-
taxial growth, which implies that that atoms or molecules
are added in perfect crystalline order to the existing crys-
talline lattice. Even in the ATG theory that is developed
for perfectly isotropic solids (that is, for amorphous solids)
the assumption that the precipitate “inherits” the stress
state of the existing solid is maintained. Given this as-
sumption it is not possible for the ATG theory to reach
the final state of the experiment: a stress gradient inside
the solid with a smooth surface. In fact there is no com-
pelling reason why the assumption of a stressed precipitate
should hold.

Gibbs understood the necessity of growth of a solid that
was only hydrostatically stressed in order to reach equi-
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Fig. 4: Thermodynamic tangent diagrams to predict solidifying
phase. Left: Gibbs energy diagram for solidifying composition
after Baker and Cahn [13]. Right: Helmholtz energy diagram
for solidifying volume and stress.

librium (In the section The conditions of Internal and Ex-
ternal Equilibrium for Solids in contact with Fluids with
regard to all possible States of Strain of the Solid, pp. 184-
218 of [12]):

. . . yet the presence of the solid which is sub-
ject to the distorting stresses, will doubtless fa-
cilitate the commencement of the formation of
a solid of hydrostatic stress upon its surface, to
the same extent, perhaps, in the case of an amor-
phous body, as if it were itself subject only to
hydrostatic stress.

But in the case of a solid of continuous
crystalline structure, subjected to distorting
stresses and in contact with solutions satisfy-
ing the conditions deduced above, although crys-
tals of hydrostatic stress would doubtless com-
mence to form upon its surface (if the distort-
ing stresses and consequent superaturation of the
fluid should be carried too far), before they would
commence to be formed within the fluid or on the
surface of most other bodies, yet within certain
limits the relations expressed by equations (393)-
(395) must admit of realization, especially when
the solutions are such as can be easily supersat-
urated.

For an amorphous, non-hydrostatically stressed solid the
case was clear to Gibbs, whereas for a crystalline solid the
equilibrium conditions he had formulated must be met un-
less hydrostatically stressed crystals are precipitated. This
conditional statement of equilibrium is highly unsatisfac-
tory in the otherwise pure equilibrium thermodynamics of
Gibbs, and it has been the root of endless scientific de-
bates.

Macroscopic theory of solidification. –

Microscopic theory of stress relaxation during
growth. – In the treatment of phase change of one solid
to another the grain boundary between the two phases
(1 and 2) is considered to be coherent if the lattice pa-
rameters, ai, match perfectly: a1 = a2. If there is only
a small degree of mismatch, ε = (a1 − a2)/a1, an array

of dislocations at the grain boundary will be found. The
coherent (or epitaxial) growth of one crystal on another
crystal is technologically very important and the mech-
anism of dislocation incorporation has been studied in
great detail since the seminal work of Frank and van der
Merwe [14–16]. The energy cost of including a dislocation
array with spacing p is

Ed =
µb2

2π(1− ν)p
(1 + lnh/r0), (3)

where µ is the shear modulus, ν the Poisson ratio, b the
Burgers vector and r0 the core diameter of the dislocation
and h is the thickness of the strained layer. The elastic
energy gained by including the dislocation array is

Ee =
2µ(1 + ν)ε2h

1− ν
. (4)

It follows that there is a critical thickness hc ∝ 1/ε for
which the energy cost, Ed, and gain, Ee, are equal. This
thickness is typically of the order of a nanometer for ε =
0.01. The theory of critical thickness and the dynamics of
inclusion of dislocations agrees well with experiments and
atomistic scale simulations [16,17].

If we now consider growth on a crystal that is subject
to elastic stress parallel to the growing surface, the lat-
tice parameter of the stressed crystal is a1 and that of
the equilibrium crystal is a2. The surface normal stress is
equal to the pressure of the fluid from which the crystal
grows. It follows from the treatment above that if the size
of the stressed crystal (normal to the growing interface) is
more than hc the stressed crystal will gain more energy by
forming misfit dislocations during growth than it costs to
include these dislocations. Recent experiments on uniaxi-
ally stressed crystals in contact with its aqueous solution
showed growth of an unstressed crystal on the stressed
“substrate” [9].

Perspective. It follows from the simple result above
that growth from a fluid phase on a non-hydrostatically
stressed crystal can not be considered to be coherent ex-
cept (perhaps) in the special case of excess surface normal
stress (so-called force of crystallizon [18]). In the case of
surface parallel stress the original stressed crystal and the
unstressed growing phase are best considered two separate
phases separated by a grain boundary.

Conclusions. – Recent experiments have shown that
the theory used to descibe the Asaro-Tiller-Grinfeld insta-
bility is inadequate. The problem is identified and shown
to arise from an ambiguity in the equilibrium condition
formulated by Gibbs. Classical theories of solidification
by Baker and Cahn (macroscopic) and by Frank and van
der Merwe (microscopic) are extended to resolve the am-
biguity. New experiments are presented that support the
theoretical treatment.
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