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1. Goal
Many types of adaptive learning environments (ALE) rely on sophisticated metadata models that help describe the 

parameters of learning objects (LO) presented by these environments. These parameters vary from merely descriptive 
terms facilitating cataloguing and discoverability of LO in content collections, to pedagogical properties of LO and  
semantic relations between them, which are used by adaptation components of the environment and define the logic of 
its adaptive intervention. This is why content and knowledge creation for ALE is a very complex procedure that requires  
considerable time investment and is especially demanding from the point of participating authors’ expertise. It is also 
characterised by some other factors (see fig.1).  This problem has long hindered the dissemination and adoption of 
adaptive and intelligent technologies in e-Learning.

Fig. 1. Factors contributing to the problem of authoring semantic learning content for ALE/ITS

The ultimate goal of the ISASLC project is to advance the state of the art in the field of authoring technologies for  
different types of ALE, and especially, for intelligent tutoring systems (ITS). Content and knowledge creation for ITS is 
a very complex procedure that requires considerable time investment and is especially demanding from the point of  
participating  authors’ expertise.  This  problem  has  long  hindered  the  dissemination  and  adoption  of  adaptive  and  
intelligent technologies in e-Learning. Its solution has not been possible before. But now, with recent advancements in  
Artificial Intelligence and Human-Computer Interaction, and corresponding development of new Web technologies we 
might have just enough tools and resources to take the next step towards solving this problem.

2. Approach
The ISASLC project attempts to take this step by relying on the methods from such fields as Social Computing, 

Semantic Web, and Data Mining. From the practical perspective, ISASLC seek to widen the population of potential ITS  
authors by providing aid to inexperienced authors when it comes to error-prone and expertise-demanding authoring 
tasks, such as new content creation, metadata authoring, interactivity authoring, error detection and quality control.

The R&D activity within ISASLC is divided into five work-packages:
• Interactivity authoring support: the goal is to improve the current practice of authoring interactive exercises in 

ActiveMath through usage of collaborative authoring support and partial generation of solution graphs and 
metadata.

• Collaborative authoring support:  τhe goal is to widely implement the effective authoring patterns developed on 
the Social  Web and to find the benefits  and limitation of collaborative authoring technology for  semantic 
learning content creation.

• Metadata authoring support: the goal is develop a technology that will make authoring semantics for learning 
content available for a broader category of users;

• Gap detection: the goal  is  to develop a technology for  effective detection of  knowledge gaps in  learning 
content;

• Open-corpus content discovery: the goal is to develop a technology for harvesting learning content from online 
sources and its provision with appropriate metadata.



3. Results
In all of the work-packages the project has achieved most of the expected outcomes by designing, implementing and 

evaluating technologies and tools for supporting semantic content authoring.
The main technical outcome of the project is the new authoring platform developed for the ActiveMath/Math-Bridge 

intelligent learning environment. This platform has been implemented as a Web-application and allows authors to create 
individual learning objects and assemble them into courses. Several dedicated tools have been developed to extend this 
platform with unique functionality. EXAMAT component supports authoring of various interactive exercises. Semantic 
Gap detection tool provides authors with an option to verify the correctness of metadata they have supplied (or did not)  
for the newly created learning objects.  Exercise difficulty calibration tool allows post-hoc re-annotation of exercise  
difficulty. The entire authoring platform supports collaborative authoring of learning objects.

3.1 Metadata Schema

ActiveMath uses a fine-grained knowledge representation to encode LOs and a rich metadata schema to specify their  
properties,  primarily,  based  on  OMDoc  and  LOM  representation  standards.  Each  LO  corresponds  to  about  one 
paragraph of text and has a type specifying its primary function. ActiveMath's learning objects are divided into two 
main categories: concept items and satellite items. Concept items include general types of (mathematical) knowledge,  
such as definitions and theorems. Satellite items provide additional information about concepts in the form of examples,  
exercises and texts.

Metadata requirements are necessary to serve as a guideline to check if the metadata in the LOs is being used  
properly. In the proposed approach, these requirements are formalized as an OWL2 ontology. OWL2 allows to specify 
hierarchies of classes to represent the network of LOs and the metadata elements, and instances or individuals of such  
classes to represent the LOs and the values of those metadata elements. To describe how LOs relate to each other and to  
assign metadata to the LOs, OWL2 object properties are used. Object properties are relations, which link elements in  
the ontology, and can have restrictions that define the semantics and usage of those relations. A complete metadata 
ontology was created to explicitly formalize the metadata usage in ActiveMath. This ontology contains all descriptive, 
pedagogic and semantic metadata that is used in the LOs. Fig. 2 shows extracts from this ontology.

Fig. 2. ActiveMath metadata schema (1. hierarchy of LO types and metadata elements; 2. set of relations between LO and 
metadata elements, including the restrictions on applicability of these relations) 

3.2 Semantic Metadata Gap Detection Tool

OWL2 axioms have different types, each representing a particular restriction or property in ontologies. In our case,  
these axioms allow specifying constraints on applicability of metadata elements, and rules enabling inference of new  
knowledge about the LOs. For example, the DisjointObjectProperties axiom indicates metadata relations that cannot be 



applied to the same pair of LOs; the InverseObjectProperties axiom helps to define pairs of inverse metadata relations, 
such that if LO1 is linked to LO2 with one of them, LO2 is linked to LO1 by another. Our algorithm analyses the 
axioms according to their types. Overall, eight types of gaps have been identified:

1. External LO does not exist (ELO): a LO metadata element references another LO from an external collection, but  
the external LO does not exist.

2. External  collection  does  not  exist  (ECO):  a  LO metadata  element  references  another  LO from an  external  
collection, but the external collection does not exist.

3. Undefined LO or metadata value (UND): a LO metadata element references another LO that does not exist, or a  
metadata element has an undefined value (e.g.  hasDifficulty metadata element can have one of the five predefined 
values: VeryEasy, Easy, Medium, Difficult, VeryDifficult; using any other value would introduce an UND gap).

4. Domain of a metadata element is wrong (DOM): a LO is annotated with a metadata element, that it cannot be 
annotated with according to the domain restrictions in this element (e.g. isIntroductionFor metadata relation can be used 
to annotate Satellite LOs, such as Exercise or Example, but not Concept LOs, such as Theorem or Axiom).

5. Range of a metadata element is wrong (RNG): a LO a metadata element has a value of a type that is incorrect 
according to the range restriction of this element (e.g.  isIntroductionFor metadata relation can refer only to  Concept 
LOs, but not Satellite ones).

6. Metadata element is functional (FUN): a LO is annotated with the same metadata element more that once, but  
according to the metadata schema, it can be applied only one time (e.g. the  isProofFor relation is functional, which 
means a certain Proof can be a proof for only one Corollary, Lemma or Theorem).

7. LO or metadata value type definition (TYP): a LO or a metadata value is defined more than once. This is a gap, as  
each LO or metadata value is unique and cannot have multiple definitions.

8. Metadata elements are disjoint (DJN): two LO are connected by metadata elements, which are disjoint (e.g. in the 
ActiveMath metadata schema, object properties isIntroductionFor and isConclusionFor are disjoint, which means it is 
impossible for a LO to be at the same time and introduction and a conclusion to another LO).

After the metadata schema has been created, the metadata validation process can be fully automated. This process  
consists of the four steps(see Fig. 3).

Fig.3. Phases of the semantic gape detection process.

The gap detection tool has been implemented as an extra functionality of the ActiveMath/Math-Bridge authoring  
platform (see right panel of Fig. 4).

Fig. 4. Interface of the semantic gape detection tool.



3.3 Exercise Difficulty Calibration Tool

Inaccurate exercise difficulties will cause an Intelligent Tutoring System (ITS) to produce ineffective instruction:
- Presenting easy exercises that are incorrectly annotated as difficult, to a strong student can cause unnecessary 

drilling practice and boredom;
- Presenting difficult exercises that are incorrectly annotated as easy to an under-performing student might result in  

repeated failures and frustration.
Our approach aims at accurate calibration of exercise difficulty metadata in an ITS. First, we data-mine exercise 

activity logs to predict students’ knowledge of underlying concepts (see Fig. 5); the students’ knowledge predictions are 
used as  estimates  of  their  ability  to  solve the  exercises.  Then,  they are combined  with the observed outcomes of 
consequent exercise attempts to infer the difficulty of the exercises used in the system. The approach relies on two well-
founded techniques widely used in the field of learning analytics for probabilistic estimation of student mastery and 
difficulty of assessment. Bayesian Knowledge Tracing (KT) is used to retrospectively compute student knowledge for  
the  concepts  involved  in  calibrated  exercises.  Item Response  Theory  (IRT)  2PL-model  is  applied  to  estimate  the 
exercise difficulty based on its history of attempts.

Fig. 5. Mane phases of the exercise difficulty calibration process.

3.4 EXAMAT – Authoring Tool for Interactive Exercises

A new authoring tool  for  interactive exercise has  been developed (see Fig.  6).  EXAMAT supports creation of 
various interactive exercises: one-step and multistep, testing and training, with and without graphics, MCQ, ordering,  
free-input, etc. Exercises are provided with exhaustive metadata describing their different pedagogical properties and 
linking them to concepts, theorems, axioms, etc.

Fig. 6. Authoring an exercise in EXAMAT: interactivity is represented with a solution graph.
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