
 
 
 

PROJECT FINAL REPORT 
 
 
 
 
 
 
 
 
Grant Agreement number: 259749 
Project acronym: EUROBATS 

Project title: Identifying Biomarkers of ageing using whole transcriptome sequencing 
Funding Scheme: FP7 HEALTH-2010 
Period covered: from 01/01/2011 to 30/06/2014 
Name of the scientific representative of the project's co-ordinator1,  
Title and Organisation: Professor Tim Spector, King’s College London 
Tel: +44 207 188 6735 
Fax: 
E-mail: tim.spector@kcl.ac.uk 
Project website address: www.eurobats.eu	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 Usually the contact person of the coordinator as specified in Art. 8.1. of the Grant Agreement. 



	
   1	
  

Executive Summary  
The "EuroBATS" (Identifying Biomarkers of Ageing using whole Transcriptome 
Sequencing) project aims to identify biomarkers of ageing and improve our 
understanding of the genetic mechanisms of ageing. EuroBATS undertook a 
multidisciplinary project combining cutting edge RNA sequencing technology and 
novel high throughput telomere measurement in multiple tissues. EuroBATS 
utilized both systems biology and genetic epidemiology approaches to explore this 
dataset and identify biomarkers of ageing at both the tissue and global 
systemic level.  This project is exceptional in delivering all this data in the same 
deeply phenotyped 850 individuals; making these subjects the world’s best 
phenotyped and genotyped group for further investigation of the role of biomarkers 
in cellular senescence. 
 
The major work carried out in this project includes: 
 
• Generation and analysis of whole transcriptome shotgun sequencing data via 

RNAseq from multiple tissues in ~ 800 individuals. With this dataset we identified 
greater than 10,000 regulatory variants, including those that effect total expression 
levels, differential splicing and allele specific expression. This represents the 
largest publically available multiple tissue RNA sequencing resource and is of 
outstanding value to the genomics community as a whole. 

• Generation of a novel telomere length dataset consisting of both longitudinal 
samples from lymphocytes and a multi-tissue measurement of cross-sectional 
telomere length derived from skin biopsies, ultilizing two state of the art 
laboratory techniques. 

• A comprehensive investigation of the genomics of ageing, including 
development and application of novel statistical methodology to identify 
interactions between age, genotype and expression. These methods allowed 
us to identify candidate genes which are likely to affect an individual’s 
physiological age (biomarkers of ageing) in multiple tissues. 

• Identification of organ-system level estimates of biological age and 
development and application of factor analysis methods to identify biological 
pathways implicated in systemic ageing. We found, however, little evidence of 
large numbers of systemic markers for every organ, concluding than age has 
system specific effects that require mode detailed studies. 

• Study of the relationship between multilevel phenotypes to understand the 
mechanism of action of the biomarkers of ageing, providing for the first time 
knowledge of the changes in the relationship of different phenotypes with age. 
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Summary Description of project context and objectives  
By 2050 the number of people in the EU aged 65+ will increase by 70% and the 80+ 
age group will increase by 170% in the same period. If healthy life expectancy evolves 
broadly in line with the change in age-specific life expectancy, then the projected 
increase in spending on healthcare due to ageing would be halved (The impact of 
ageing on public expenditure - DG ECFIN 2006, p. 133). A healthy, active ageing 
population can be supported through effective health policy across the lifecycle. Such a 
policy requires an understanding of the ageing process. The aim of this research is to 
define robust cellular markers of ageing including the identification of robust markers of 
cellular senescence and investigation of their role in ageing.  This research further 
aims to characterize how the genome and transcriptome jointly interact with the aging 
process in order to identify genotype-specific ageing responses.   
 
This ground-breaking project has for the first time investigated in great detail the 
transcriptome of a large cohort of extensively phenotyped twins for the study of ageing. 
This unique data set allowed us to derive robust markers of cellular senescence which 
can be correlated with ageing phenotypes to investigate ageing. We hypothesised that 
obtaining and analysing specific age related RNA sequencing data from skin, blood 
and fat will provide major insights into the ageing process in other biological systems. 
This allowed us to develop biomarkers of ageing that reflect generalised ageing; 
potentially identifying targets for anti-ageing interventions. 
 
Telomeres are nucleoprotein structures capping and protecting the ends of 
chromosomes. Because of the “end-replication problem”, telomeres shorten with each 
cell division and leukocyte telomere length has been shown to decrease with age at a 
rate of 20-40 base pairs per year. Telomere attrition is enhanced by inflammation and 
oxidative stress and short telomere length has been associated to age-related 
diseases as well as to cellular senescence, the loss of a cell’s ability to proliferate. 
Ageing in humans is not a consistent process; this is due to both genetic heterogeneity 
and a variable environment. Biological age estimates the functional status of an 
individual in reference to his/her chronological peers and may help identify individuals 
at risk for age-related disorders, predict disability in later life and mortality independent 
of chronological age. In humans, studies are often limited by the necessity to measure 
telomeres in leukocytes, which is a far from ideal situation, and does not allow 
individual specific predictions in other cell types  
 
We sought to address the lack of ageing biomarkers and improve our 
understanding of the genetic mechanisms of ageing. We have completed a 
multidisciplinary project combining cutting edge RNA sequencing technology and 
novel high throughput telomere measurement in multiple tissues. This unique 
data set has allowed to investigate the role of genomics in ageing. We have 
utilized both systems biology and genetic epidemiology approaches to explore 
this unique twin dataset. This has allowed us to identify a transcriptional signature 
of ageing that reflects generalised ageing as well as genotype-specific signatures 
of ageing; potentially identifying targets for targeted anti-ageing interventions. 
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The primary objectives of the EuroBATS overall project were to: 
1. Obtain whole transcriptome shotgun sequencing data from skin, fat whole 
blood and lymphoblastoid cell lines (LCL) on 800 well phenotyped individuals.  
2. Perform association analysis between sequence variation and RNA 
sequencing (eQTL) on the largest available multiple tissue RNAseq (WP1).  
3. Obtain HT Q-FISH telomere length determination at 2 time points on snap 
frozen peripheral blood lymphocytes taken from the same individuals.  
4. Generation of topographic telomere length maps on histological sections 
(telomaps) in a subset of 200 existing skin (epidermal keratinocytes, dermal 
fibroblasts and melanocytes) biopsy samples to further explore ageing-associated 
differential changes in the different cell types 
5. Explore genetic factors (expression and genomic) that are correlated with both 
telomere length and change in telomere length over time  
6. Develop variables for both skin ageing and global systemic ageing. Using a 
combination of factor analysis and principal component analysis; from extensive 
existing phenotypic data held at Department of Twin Research. 
7. Develop genetic biomarkers of ageing in skin, fat whole blood and 
lymphoblastoid cell lines. 
8. Ascertain those biomarkers of ageing common to all tissues. In the future 
common biomarkers from skin or blood maybe used for their predictive value in 
other less accessible tissues. 
9. Generate the largest available multiple tissue RNA shared sequencing 
resource; allowing future comparison with data derived from diseased tissue. 
 
Description of the main S&T results/foregrounds 

WP1 - RNA sequencing  
This workpackage sought to obtain and analyse whole transcriptome shotgun 
sequencing data via RNAseq from multiple tissues in ~ 800 individuals. The primary 
aims and achievements were the generation and quality control of the large 
sequencing dataset, the comparison of the sequencing data in comparison to previous 
microarray data and a comprehensive interrogation of the genetic regulation of the 
transcriptome data, including regulatory variants that effect total expression as well as 
splicing specific regulation.  The RNAseq data and regulatory variants identified in this 
workpackage have been directly incorporated into analysis in subsequent 
workpackages in this Project. This work has generated the largest publically available 
multiple tissue RNA sequencing resource, which will allow future comparison with data 
derived from diseased tissue and is of outstanding value to the genomics community 
as a whole. All the data will be made available for other researchers via public 
repositories or the project web page (www.eurobats.org). 
 
We present the significant results and details for each task within this package: 

Task 1: RNAseq data generation 
The project is using existing biopsies from skin, fat as well as blood samples (for 
generation of lymphocytes cell lines (LCLs) collected from a maximum of 856 twins 
(154 monozygotic twin pairs, 232 dizygotic twin pairs and 84 singletons) aged 38.7–
84.6 years from the well-characterised TwinsUK Resource. The samples were 
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collected and made available by the MuTHER project (Multiple Tissue Human 
Expression Resource, http://www.muther.ac.uk/). Whole genome transcription profiles 
using microarray technology (illumina HT-12 array) has been already generated 
(Grundberg et al. 2012) and made available for validation of the whole transcriptome 
RNA sequencing produced by EuroBATS. ~400 Whole Blood samples from the same 
individuals were added to the project following suggestions arising from the midterm 
review.   

We assayed LCLs, fat, whole blood and skin RNA samples. For each RNA sample, the 
mRNA fraction was selected and sequenced using IlluminaTrueSeq technology and a 
HiSeq2000 sequencer with 49 base paired-end reads. We obtained an average of 36.3 
million reads per sample in fat, 43.6 million reads per sample in LCL and 33.7 million 
reads per sample in skin (Table 1). We excluded samples that failed in the library prep 
or sequence process. We also excluded samples with less than 10 million reads 
sequenced and mapped to the exons. Finally we excluded samples in which the 
sequence data did not correspond with the actual genotype data. We ended with 766 
samples for fat, 814 for LCL, 716 for skin and 384 for whole blood. 

Task 2: Analysis of raw sequence data  

Read mapping and exon quantification 

Reads were mapped to the reference human genome (GRCh37/hg19) using BWA 
v0.5.9 (allowing 2 mismatches in the first 32 bases). Reads were subsequently filtered 
to include only those which were called as properly paired, had a mapping quality 
score greater than or equal to 10 and overlap with known exons from GENCODE 
annotation (version 10). This yielded an average of 22.4 million reads per sample in 
fat, 22.4 million reads per sample in LCL and 19.3 million reads per sample in skin 
(Table 1). We looked at the distribution of counts per gene per sample and we 
observed that more than 12000 genes are very well covered with more than 100 reads 
per sample in all four tissues.  Other 5000 genes are covered with between 10 and 100 
reads per sample. 

Allelic Specific Expression (ASE) 
We took advantage of the digital expression profiles obtained by RNAseq to define 
genome-wide allele-specific expression profiles in all individuals and tissues. which will 
provide a comprehensive view of the transcriptome in multiple individuals and multiple 
tissues. We assessed statistically significant ASE sites using a binomial test. We did a 
test for each heterozygous SNP in every individual to detect the presence of 
statistically significant allelic imbalance. For each site-individual we counted the 
number of reads covering each allele and calculated a binomial test comparing the 
observed proportion of reference allele counts with the expected proportion. In theory, 
this expected proportion should be 0.5 but mapping bias can change it a little bit. To 
correct for systematic bias in allelic ratios we calculated the overall reference to total 
allele ratio for each individual for each SNP base combination. These ratios were then 
used as the expected ratios in the binomial test. We called significant ASE sites using 
a 10% FDR threshold and found 3136 genes with significant ASE in fat, 3956 in LCL 
and 3911 in skin. 
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Task 3: Genetics of gene expression 
eQTL discovery 

To look for ciseQTLs in the three tissues we used a linear regression approach with 
SNPs in a 1Mb window each side of the TSS for each gene. We identified 9166 
significant ciseQTLs in fat, 9551 in LCLs, 8731 in skin and 5313 in whole blood (1% 
FDR) (Table 2, Figure 1).  

Genotying and imputation. Samples were genotyped on a combination of the 

HumanHap300, HumanHap610Q, 1M-Duo and 1.2MDuo 1M Illumina arrays. Samples 
were imputed into the 1000 Genomes Phase 1 reference panel (data freeze, 
10/11/2010) using IMPUTE2 (Howie et al. 2009)and filtered (MAF<0.01, IMPUTE info 
value < 0.8). 

Exon quantifications: All overlapping exons of a gene were merged into meta-exons 
with identifier of the form “geneID_start.pos_end.pos”. We counted a read in a meta-
exon if either its start or end coordinate overlapped a meta-exon.   

Normalization: All read count quantifications were corrected for variation in sequencing 

depth between samples by normalizing the reads to the median number of well-
mapped reads. We used only exons quantified in more than 90% of the individuals. We 
removed the effects of technical covariates regressing out the first 50 factors from 
PEER (Parts et al. 2011)including BMI and age in the model to preserve important 
biological sources of variation. 

eQTL association: Since our data samples are twins, they are not independent 
observations and we needed to take that into account in our models. We used the two-
steps strategy described by Aulchenko et al. (Aulchenko et al. 2007). First we kept the 
residuals of a mixed model that removed the effects of the family structure using the 
implementation in GenAbel R package. We then transformed those residuals using a 
rank normal transformation. Finally, we performed a linear regression of the 
transformed residuals on the SNPs in a 1Mb window around the transcription start site 
for each gene, using MatrixeQTL R package (Shabalin 2012).  We did the association 
at the exon level and we kept the best association per gene. 

Permutations: We permuted the quantifications of each exon 2000 times, keeping the 
best p-value per exon from each round. From these data, we adjusted the empirical 
FDR to 1% according to the most stringent exon of each gene, stratifying the analysis 
on the number of exons for a given gene. 

 

Comparison with microarray results 
We repeated the same analysis using the same individuals and the same SNPs but 
expression measures derived from microarrays (Grundberg et al. 2012) instead of 
RNAseq counts.  At the same threshold of statistical significance (FDR 10%) we found 
1593 ciseQTL in fat, 2363 in LCL and 1470 in skin. That means that RNAseq 
measures of expression allow a substantial increase in the discovery of 
ciseQTLcompared with microarrays in the three tissues. To measure the degree of 
replication of eQTL discovered with both sets of data we calculated the association in 
the microarray data for SNP-Gene pairs found significant at different pvalue thresholds 
in the RNAseq data and calculated Pi1 as an estimate of the proportion of true 
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positives (Storey and Tibshirani 2003).  We found that as the significance threshold 
increases, the degree of replication increases, supporting the idea that we are getting 
similar results using both sets of data 

eQTL browser 
We added the eQTLs as custom tracks to the UCSC browser. In this way the users 
could see the eQTLs in the context of all the other annotation information shown in this 
widely used genomic browser. These tracks will be accessible to the general public 
once the main paper describing the eQTL is accepted for publication.  The links to 
access the eQTL information in the browser will be in the paper itself and in the 
EuroBATS web page. 

Variance components of gene expression 
cis-eQTL are only a small part of the genetic effects that affect gene expression. By 
exploiting the twin structure of our sample, we dissected the proportions of gene 
expression variation which is due to different genetic and non-genetic causes. We 
observed that, on average, common cis-eQTL only explained about a 20% of the 
heritability of gene expression while other genetic variants in cis (mainly rare variants 
or common variants with small effects) explained about 30% of heritability. The 
remaining 50% of the heritability was explained by genetic variants in trans. 

Alternative Splicing Analysis and asQTL discovery 
Genetic variation may also affect gene expression by modifying mRNA splicing 
processes. HalitOngen in our lab has developed a novel method for the relative 
quantification of splicing events (Ongen, 2014, under review). The method uses the 
paired-end nature of the RNA-seq experiment. When one read maps to one exon and 
its mate to a different exon, we count a “link” between two exons. For a given exon, we 
calculate the fraction of links that forms with every other exon respect to the total.  

We used these exon-exon link fractions as our phenotype to measure alternative 
splicing and calculated the association with cis SNPs following the same pipeline 
described for eQTL discovery. We identified 2481 asQTL in fat, 4102 in LCL and  1566 
in skin.  

Genetic architecture of allele-specific expression (ASE) 
ASE may be caused by genetic or epigenetic / environmental factors. To measure the 
relative contribution of the underlying causes of allelic expression we estimated the 
variance components of the ASE ratios using the identity-by-descended status (IBD) of 
the twin pairs at the ASE site and the identity-by-state status (IBS) at the best eQTL. 
We found that about 40% of the variance in ASE is due to the effect of the best eQTL , 
17% to the additive effect of the other genetic variants in cis, 23% to the interaction 
between cis and trans variants and 20% to the individual environment. The additive 
trans and the shared environmental effects were negligible. There were small 
differences among tissues. The sum of all the genetic effects gives an average 
heritability estimate of 80%. Our results show a complex genetic architecture for allelic 
expression that identifies GxG and putative GxE effects. We utilized the twin structure 
of our sample to look for examples of GxE interactions. Since MZ twins are genetically 
identical, differences in allelic expression in a MZ pair are determined by non genetic 
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effects. For every site, we calculated the association between allelic expression 
differences within MZ pairs and SNPs around the site and found examples of potential 
GxE interactions. One example in fat tissue was found for ADIPOQ, a gene that 
codifies for adiponectin, whose expression has been observed to be affected by 
environmental factors such as diet and physical exercise. 

 In summary, we propose a model that best fits the data is one where ASE requires 
genetic variability in cis, a difference in the sequence of both alleles, but where the 
magnitude of the ASE effect depends on trans genetic and environmental factors that 
interact with the cis genetic variants.  

Tables  
Table1. Average number of reads per sample and per tissue 

 Total reads Exonic and good quality 
reads 

FAT  36,343,383 22,433,747 (61%) 

LCL  43,637,726 22,368,953 (51%) 

SKIN  33,721,164 19,273,820 (57%) 

BLOOD 30,829,602 15,877,864(51%) 

 
 

 
 
Table 2. Number of regulatory variants identified per tissue 

 CiseQTLs Splice QTLs ASE 

FAT  9166 2481 3136 
LCL  9551 4102 3956 
SKIN  8731 1566 3911 
BLOOD 5313 * 4379 

 

* the calculation of the splicing eQTLs is in progress 
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Figure 1. eQTLs related to its distance to the TSS of the gene (F for fat, L for LCL, S 
for skin and B for blood). 

 
 
 

WP2 - HT Q-FISH telomere length measurement and histological 
telomapping 
 
This workpackage obtained a novel telomere length dataset consisting of both 
longitudinal samples from lymphocytes and a multi-tissue measurement of cross-
sectional telomere length derived from skin biopsies.  This work package employed 
two state of the art laboratory techniques (HT Q-Fish and Telomapping) and generated 
a unique dataset with which to investigate the role of cellular senescence in aging, and 
its interplay with tissue specificity.   
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HT Q-FISH measurement of telomere length in lymphocyte 

 Overview: Life Length´s participation in this project was focused on measuring 
telomere length of peripheral blood mononuclear cells (PBMC) by its proprietary TAT 
technique based on Q-FISH. The analyzed samples belong to a collection of snap 
frozen PBMCs taken at two time points (1999 and 2009) of healthy UK twins. A total of 
724 samples were analyzed in 2013. Five replicates were assessed per sample in a 
single plate. Other 824 samples were analyzed in 2014. The same number of 
replicates per sample were included for this second set but each sample was plated in 
two independent plates (hence, there was a total of 10 replicates per sample). 

To measure median  telomere length in peripheral blood lymphocytes, Life Length 
used a high-throughput (HT) Q-FISH technique. This method is based on a quantitative 
fluorescence in situ hybridization method modified for cells in interphase (Canela et al, 
ProcNatlAcadSci U S A. 2007 Mar 27;104(13):5300-5). In brief, telomeres are 
hybridized with a fluorescent Peptide Nucleic Acid probe (PNA) that recognizes three 
telomere repeats (sequence: Alexa488-OO-CCCTAACCCTAACCCTAA, Panagene). 
Images of nuclei and telomeres are captured by a high-content screen system (see 
below). The intensity of the fluorescent signal from telomeric PNA probes that hybridize 
to a given telomere is linearly proportional to the length of the telomere. Intensities of 
fluorescence are translated to telomere lengths, by comparing the obtained intensities 
of fluorescence versus a standard regression curve built with control cell lines of known 
telomere length. 

Control cell lines and Southern blot: Life Length’s control cell lines C0126, C0154, 
C0106 are immortalized human B cells purchased from European Collection of Cell 
Culture (ECACC). Lymphoblastoidtumoral cell lines REH and RAJI were purchased 
from ATCC (CRL-8286, CCL-86). Cellular stocks were prepared and kept in liquid 
nitrogen. Telomere length of these cell lines  was determined by a non-radioactive TRF 
(Southern blot) assay following a protocol as described in Kimura et al. (Kimura et al., 
Nat Protoc. 2010 Sep;5(9):1596-607.) 

Sample Preparation for HT Q-FISH: On processing day, samples and control cell lines 
were thawed at 37ºC and cell counts and viability were determined. Aliquots with 
viability lower than 80% were invalidated as well as samples contaminated with 
erythrocytes. Cells were seeded in a clear bottom black-walled 384 well plates at the 
density of 25.000 cells/ well with 5 replicates of each PBMC sample and 8 replicates of 
each control cell line. Two identical independent plates were prepared for each set of 
samples. Cells were fixed with methanol/acetic acid (3/1, vol/vol). On the next day, 
fixed cells were treated with pepsin to digest cytoplasm and nuclei were processed 
for hybridization in situ with the PNA probe. After few washing steps adding DAPI for 
DNA staining, the plate was filled up with mounting medium and kept overnight at 4ºC. 

HT Microscopy: Quantitative image acquisition and analysis were performed on a High 
Content Screening Opera System (Perkin Elmer), using the Acapella software, Version 
1.8 (Perkin Elmer). Images were captured, using a 40x 0.95 NA water immersion 
objective. UV and 488 nm.excitation wavelengths were used to respectively detect the 
DAPI and A488 signals. With constant exposure settings, 15 independent images were 
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captured at different positions for each well. After image acquisition, the nuclei image 
was used to define a region of interest for each cell measuring telomere fluorescence 
intensity in the A488 image in all of them. Results of intensity for each foci identified 
were exported from the Acapella software (Perkin Elmer). The telomere length 
distribution and median telomere length were calculated with  Life Length´s proprietary 
program. 

A total number of 1,548 blood samples were processed, of which 1,211 passed quality 
control checks. Of those samples, 742 correspond to repeated extractions from the 
same individuals (two time points), which allow longitudinal study of telomere attrition. 
Figure 2 show the difference in year between samples. The long bar on the left indicate 
that approximately half of the individuals of the study had only one time point available.   

 

Figure 2.Difference in year between longitudinal HT –QFISH samples   

Telomapping of histological sections of skin biopsies taken from a subset of 200 
twins. 

For the analysis of telomere length of cells in a tissue section Beneficiary No. 4 has 
developed telomapping, a method for the generation of topological maps of telomere 
length in which confocal telomere Q-FISH is performed directly in tissue sections 
coupled to a single-cell high-throughput image analysis platform Telomapping of 
human healthy skin sections will allow monitoring of changes in telomere length in the 
different cell types of the ageing skin and will advance the understanding of both the 
human skin ageing process and of the functionality of the ageing biomarkers 
uncovered in the project. 

For Q-FISH analysis on skin tissue samples, OCT sections were hybridized with a 
PNA-tel Cy3-labeled probe, and telomere length was determined as described 
(Zijlmans et al. 1997;Gonzalez-Suarez et al. 2000; Samper et al. 2000; Muñoz et al. 
2005, Flores et al. 2008). DAPI and Cy3 signals were acquired simultaneously into 
separate channels using a confocal ultraspectral microscope Leica TCS-SP5 and 
maximum projections from image stacks were generated for image quantification. 

For image acquisition we used a new tool for intelligent screening named “intelligent 
matrix screening remote control (iMSRC)” developed at CNIO. iMSRC application 
manages a first fast scan with low-resolution settings, generating one image per 
sample of the whole tissue and later localizes the areas of interest, extracting their 
coordinates and surface area. With the spatial information, the iMSRC application 
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interacts with the microscope and load high-resolution settings, scanning automatically 
just the areas of interest. 

Quantitative image analysis of telomere fluorescence intensity was performed on 
confocal images using the Definiens Developer Cell software (Definiens Developer 
XD). The DAPI image was used to define the nuclear areas that were separated by a 
Cellenger-Solution. After defining the nuclear areas a predefined Ruleset was used for 
the quantification of telomere fluorescence intensity (Cy3 image). 

Fluorescence intensities were measure together with L5178Y-S cells as calibration 
standards. Using the controls, telomere measurements were converted into kb. 
Telomere fluorescence values were normalised by dividing mean telomere 
fluorescence intensities of all nucleus per sample by the corresponding mean telomere 
fluorescence intensity of the control sampleA total of 166 samples were processed for 
telomapping measurement. Of those, 133 passed all quality controls and were suitable 
for further analysis. The data were analysed as part of the WP4, and are fully 
described in that section.  

 

WP3 - Ageing Phenotype Refinement  
Phenotypic data has been cleaned to develop variables for both tissue specific 
ageing and global systemic ageing from data held at DTR. The phenotype data 
has been analysed and modelled to report measured and inferred quantitative 
ageing traits for use in WP4.   
 
Ageing-related measurements from the Twins UK cohort were selected which 
covered a number of different systems in the body. Preference was given to 
phenotypes that had at least two repeated measures per individual, but 
categorical data, such as age of menarche or diseases prevalence, which does 
not change over time but affects ageing, has also been collected in order to 
establish a high quality replicable dataset of ageing related phenotypes.  
The work here reported involved collection and cleaning of data from self-
reported and clinically measured phenotypes. Beneficiary 1 has been collecting 
an extensive set of high quality data since 1992; however, over this considerable 
period of time inevitably some data quality issues and missing information have 
been reported. To guarantee the highest possible quality of the data, quality 
checks (QC) process were established to document phenotypes and also to 
identify and report any potential issues within each selected phenotype (e.g.: 
coding change, typos, questionnaires changes, etc). The data validation process 
based on data issues reported during the QC process included retrieval and 
confirmation of original values recorded on paper or electronic format when 
necessary.  
 
Longitudinal data cleaning of Twins UK cohort 
The EuroBATSproject is using existing biopsies from skin, fat as well as blood 
samples (for generation of LCLs) collected from a maximum of 856 twins aged 
38.7–84.6 years from the TwinsUKcohort. Initially, objectives for the WP involved 
collection of phenotypic information for these 856 individuals with available 
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biopsies. The list of phenotypes here reported differs slightly from the list of 
selected phenotypes on the grant agreement due to the limitations on the data 
from the subgroup individuals with available biopsies. Phenotypes were selected 
according to availability of two or more values at different time-points for a 
majority of individuals with biopsy. However, maximising the sample size is a 
critical factor in producing accurate models for phenotypic change with both 
chronological and biological age. 
 
For this reason, all the available individuals ever recorded in Twins UK (>8000) 
were included in the cleaning and QC process for each selected phenotype. 
Moreover, identifying and cleaning phenotypic data, especially longitudinally, is 
not a trivial task and must be undertaken meticulously to ensure reproducibility 
and accuracy. Therefore, we chose to focus our efforts on reduced number of 
longitudinal phenotypes (Table 3) and confounding variables (Table 4), while 
establishing collaboration with other researchers working with Beneficiary 1 to 
increase the set of clean longitudinal data. The phenotypes, currently available for 
all beneficiaries,have been utilized for the different projects within WP4 to develop 
better understanding of physiological function changes with age and the ageing 
process. 
 
Projects in WP4 include association with fat-related phenotypes (e.g.: lipids and 
glycamina); gene expression affected by age and association with age-related 
phenotypes; or estimation of biological age and association with inferred 
phenotypes (see WP4 report for further details).   
 

System Phenotypes Nr. 
Individuals 
1 data-
point 

Nr. 
Individuals 
2 data-
point 

Max. number 
of repeated 
measurements 

Respiratory FEV1/FVC 7120 7005 5 
Anthropometrics BMI 8006 8003 4 
 Weight 8003 8003 12 
Cardiovascular ECG 5535 1862 3 
Renal Creatinine 6937 1929 3 

Table 3: Set of ageing-related selected phenotypes with longitudinal information list of 
cofounding variables 
 
 

Confounding 
variables 

Number 
individuals 

Smoking 10117 

COPD 8127 

Asthma 7710 

Asthma medication 1117 
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Menopause status 11630 

 
Table 4: List of confounding variables and the number of individuals with available 
data. 
 
 
Phenotype data from EuroBATS individuals 
Beneficiaries 3 and 4 successfully generated high resolution molecular 
phenotypes (RNA sequencing and telomere length measurements) from 856 
individuals with the available biopsies and blood samples (WP1, WP2). Projects 
in WP4 require high quality phenotypic information from those individuals. From 
the longitudinal data cleaning of TwinsUK cohort previously described, we have 
extracted the corresponding phenotypic information during the longitudinal data 
cleaning of Twins UK (Table 5). Also, we have extracted cross sectional 
phenotypic information from 40 phenotypes covering multiples organ systems at 
the closest available date to biopsy extraction.  This valuable information allows 
complex association studies between genome, transcriptome and age-related 
phenotypes in a multilevel approach.  
 
 

System Phenotyp
e 

Nr 
individuals 
1 
measurement 

Nr individuals 
2 
measurement
s 

Nr individuals 
3 
measurements 

Respiratory FEV1 850 739 438 

Anthropometri
cs 

BMI 857 701 324 

 Weight 857 701 324 
Cardiovascular ECG 817 573 225 

Renal Creatinine 787 342 90 

Table 5: List of longitudinal phenotypes data available for EuroBATS individuals and 
number of individuals with repeated measurements per phenotype.  
 
Inferred ageing variables 
Phenotypes data have been analyzed to measure and define indicators of their 
strength of association with age. As an example, we present here results from the 
descriptive analyses of the respiratory system.  Pulmonary function is often 
measured and assessed with two correlated measurements: force vital capacity 
(FVC) and forced respiratory volume in 1 second (FEV1). Our current data set for 
these measurements include approximately 7,000 individuals with up to five 
repeated measurements over the last 20 years. The age of the individuals range 
from 15 to 85 years old (Figure 3, left). Lung function is known to increase during 
childhood until 20-25 years of age, when an age-related decline on lung function 
affects the pulmonary function (Kerstjens et al. 1997).This trend can be 
significantly affected by environmental variables such as smoking or physical 
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activity (exercise), or respiratory diseases such as asthma or chronic obstructive 
pulmonary disease (COPD). By considering all available data 2273 individuals, 
out of 7005, can be identified as “lung healthy” (never reporting from asthma or 
COPD) and people who have never smoked. These individuals may be 
considered healthy control cases for further analysis of genetic and 
environmental factors affecting lung function. The remaining individuals (4621) 
either reported to be asthmatic, diagnosed with COPD or current or ex-smokers 
and were therefore considered to have compromised lung functions. Our current 
work aims to determine the degree of impact on lung function by different 
covariates and their influence on the decline of the phenotypes with age.  
 
 
 

 
 
Figure 3: Descriptive plot for pulmonary function. The left-hand figure shows the age 
distribution of the twins with recorded measurements for FEV1. The right shows a 
scatter plot of over 11,000 measurements for FEV1 over 20 years and its strong 
negative Pearson correlation with age (r=-0.612). 
 
 
 
In conclusion, we have produced a set of age-related phenotypes from the Twins UK 
cohort and a collection of confounders/phenotypes known to affect them. The 
phenotypes cleaned were available for all beneficiaries involved in WP4 and other 
collaborators for further studies. Cross sectional phenotypes have been utilized to 
develop measurements of biological age (see projects WP4) and estimations of 
physiological function changes with age to be used in combination with other molecular 
phenotypes (WP1 and WP2) to infer a causative model of ageing. The phenotypes 
have been also tested for specific association with genes expression provided by WP2 
as well as association with genetics markers to better understand the genetic control of 
age related phenotypes.  
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WP4 - Analysis 
The aim of Work Package 4 was to identify markers of cellular senescence to 
investigate the role these markers had in ageing and to develop descriptive models of 
ageing by integrating genomic (WP1), telomeric (WP2) or phenotypic data (WP3) data. 
In addition we used the analyses in this workpackage to explore the validity of various 
hypotheses of mechanisms of ageing 
 
We have employed several strategies to meet this aim, which are detailed below.  
Overall we have 1) Completed a comprehensive investigation of the Genomics of 
Ageing, including development and application of novel statistical methodology to 
identify interactions between age, genotype and expression, 2) Used factor analysis 
methods to derive novel summary phenotypes to identify biological pathways 
implicated in systemic ageing; 3) Used models of biological age at the level of the 
organ system to inform risk of disease and co-morbidity; 4) integrate multiple omics 
phenotypes and different phenotypes association in the identification of biomarkers of 
ageing.  
 
Genomics of Ageing 
This project represents the largest genome-wide analysis of gene expression with age 
in humans and the first study utilising RNAseq data from the same individuals in 
multiple tissues. We have analyzed differential expression at multiple levels with age to 
identify candidate genes which are likely to affect an individual’s physiological age 
(biomarkers of ageing). In addition, the regulation of gene expression also varies as the 
organism gets older. Previous studies have suggested that the regulation of gene 
expression tends to decrease with age, leading to more (stochastic) variation in gene 
expression. Therefore, regulation of gene expression is assumed to decrease with age 
due to an increase in random loss of fidelity in molecules interactions. To investigate 
this hypothesis, we dissected the causes of variation in gene expression with age to 
describe global regulatory changes in gene expression which occur as an individual 
gets older. In parallel to the RNA-seq analysis (WP1), the causes of variation were 
dissected by investigating the age influence on eQTL and heritability of expression. 
 
In this way, we investigated genotype and age influences in gene expression 
simultaneously in multiple tissues (the first time such a study has been carried out 
using human samples). Moreover, we have investigated the change in gene expression 
regulation by analysing the generation of splice variants. mRNA splicing allows a single 
gene to code for more than one transcript (isoform) which may have a different function 
in a highly regulated process. The production of aberrant splice products has been 
linked to the etiology of several diseases. Genes containing splice variants which are 
sensitive to ageing are likely candidate genes to increase susceptibility to age related 
diseases.  
 
Ageing is known to affect expression of genes, but tissue specificity of age-related 
sources of variation in expression is largely unknown. Using the Eurobats RNAseq 
dataset generated in WP1, we first identified genes with an age-related component to 
expression. We found that 34% genes in all tested tissues changed in expression with 
age with age (Figure 4A). Of those 5,224 genes affected by age, 8.3% were significant 
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in two tissues with only 5 genes in common among the three primary tissues. However, 
Pvalue enrichment analysis comparing the values per tissues indicated shared age 
related effects from 21% to 60% between primary tissues. In addition, we found that 
59.7% and 32% of genes with multiple exons have also signs of age effect in splicing, 
including genes associated with age-related diseases like APOE, LMNA, SIRT2, AKT1 
and AKT2 (Figure 4D). With the increased power of RNAseq and our results, we 
conclude that ageing effects on gene expression are to be less tissue specific than 
implied by microarrays results (Glass et al. 2013). 
 
Increased variation of gene expression during aging is often assumed to be the result 
of decreased gene expression regulation and assumed to play a role in the ageing 
process. We aimed to identify genes in which age had an effect in their variance, rather 
than in the mean effects, as these genes would be markers for change in gene 
regulation with age. We used the established framework for identifying variance-eQTL 
and developed by beneficiary 2 (WT) (Brown et al. 2014). A Spearman correlation test 
identified evidences for an age effect on variance in gene expression in all tissues and 
found 3,112,19 and one genes for which the variance in gene expression changed with 
age in Fat, Skin, Blood and LCLs respectively (Figure 4B) To our surprise,a majority of 
significant genes showed a decrease in variance with age. 
 
 
 
 

 
Figure 4: Schematics of the possible effects of ageing in gene expression a) mean, b) 
variance, c) MZ discordance and d) splicing. Bellow each diagram we show the actual 
number of exons and genes with a significant effect in a genome wide analysis for age 
effects. The last row shows the percentage of exons with positive (+) or negative (-) 
age effect in expression, variance, discordance and splicing. Discordant analysis only 
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compared monozygous twins. For the splicing analysis, only links (reads between two 
exons) were considered.  
 
To further understand whether these changes in gene expression were due to gene by 
environment interactions (GxE) or environmental factors we took advantage of the 
unique genetic characteristics of twins to investigate changes in discordance of 
expression within monozygous twin (MZ) pairs with age. We found 2 genes in adipose, 
69 in skin, and 1 in blood and LCLs where discordance was age-dependent 
(Figure4C). As MZ twins are genetically identical, age-dependent differences must be 
due to a changing environmental component. Due to the genetic relationship between 
the individuals in the dataset, we where also able to perform a decomposition of 
variance affecting gene expression. 
 
Development of novel statistical methodology to identify gene x age 
interactions on gene expression as biomarkers of ageing 
We showed that age related genes had a larger genetic component, and that the 
sources of variation were highly tissue specific. While this could be due to increased 
stochasticity, it is plausible that some of this effect is due to the eQTL being modified 
as the individual ages. To identify such SNPs whose effects on gene expression 
changed with age we performed a genome-wide scan looking for age-genotype 
interactions (GxA) using the framework developed by beneficiary UNIGE for WP1. We 
hypothesise that genetic variants interacting with age would be relevant to explain the 
progression and onset of age related diseases. One gene, CD82, was genome-wide 
significant in fat, showing a concrete example of  how genetic control of expression is 
modified over time. Interestingly this gene, showed increased expression with 
increasing age in individuals with a particular, potentially protective, allele (Figure 
5).The gene is a metastasis suppressor so could have an important role in age-related 
cancers, suggesting that the identification of GxA may be a good approach to identify 
relevant age related variants. 

 
 
 
 
 
 
 
 
 
Figure 5 – Genotype 
x Age interaction on 
expression levels of 
CD82 
 

Furthermore, in published work (Brown et al. 2014), we have looked for the presence 
of non-additive interactions between genetic variants, or epistasis, affecting gene 
expression. This is a possible explanation for the gap between heritability of complex 
traits and the variation explained by identified genetic loci. Filling this gap may help to 
identify the underlaying causes of age-related diseases. Therefore, interactions give 
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rise to genotype dependent variance, and the identification of variance quantitative trait 
loci can be an intermediate step to uncovering epistasis. Using RNA-sequence data 
from lymphoblastoid cell lines (LCLs) from WP1, we identify a candidate set of 508 
variance associated SNPs (variance-eQTL). Further investigation of these loci reveals 
57 epistatic interactions that replicated in a smaller dataset, explaining on average 
4.3% of phenotypic variance. In 24 cases, more variance is explained by the 
interaction than their additive contributions. Using molecular phenotypes in this way 
may provide a route to uncovering genetic interactions underlying more complex traits. 
This study has also demonstrated that gene expression has sufficient power to 
discover aspects of genetic architecture which would require sample sizes that are 
orders of magnitude larger with other complex traits. This has motivated further work in 
which we have looked for cases in which environments accumulated during the 
lifespan of the individuals can modulate the effects of genetic variants, in particular 
when we see that the age of an individual can change the effects of DNA. 
 
Such cases are known as gene-environment interactions (GxE). Because GxE also 
affects trait variance in a genotype dependent fashion, we used the strategy of 
prioritising SNPs that associated with variance in expression (v-eQTLs) when looking 
for interactions. Similarly, SNPs associated with a change in discordance of expression 
between monozygotic twin pairs (d-eQTLs), would indicate presence of GxE.  We 
found 1198 v-eQTLs in LCLs, 620 in fat, 368 in skin and 39 in blood, and 73, 211, 63 
and 1 d-eQTLs in those tissues. Functional overlap analysis using ENCODE data 
revealed that in LCLs v-eQTLs were significantly depleted in transcriptionally 
repressed regions (odds ratio, 0.82) and enriched in enhancers (OR 1.71); d-eQTLs 
were enriched in promoters (OR 5.29). Skin d-eQTLs were enriched in H3K36me3 
regions (OR 4.02), a mark of active transcription.                                                                                                                                                                                                                                                                                                                                                                                         
 
To find environments involved in GxE signatures, we tested all v- and d-eQTLs for 
interactions with age, BMI and 20 expression principal components (PCs), having 
previously shown that the PCs can be highly heritable.  We observed 4 interactions 
with age affecting expression of HLA-DRB5 in LCLs, COX20 in blood and SLFNL1 and 
ARID4B in skin.  There were three Bonferroni significant interactions between 
genotype and BMI observed in fat expression (p<1.94e-5). We saw large numbers of 
interactions with PCs: 2 in blood, 10 in fat, 39 in skin and 66 in LCLs (p<9.70e-7). 
Analysis of separate dermis and epidermis data suggested that some skin d-eQTLs 
are cell specific eQTLs.  In summary, we detect widespread variance effects in gene 
expression and observe that d-eQTLs consistently have more success at mapping 
GxE with phenotypes, PCs and tissue composition measures.  
 
In summary, we have produced a comprehensive description of how aging affects 
expression and its genetic control, observing that these effects are frequently tissue 
specific. Genes commonly affected by age in multiple tissues, are strong candidates 
for systemic biomarkers of ageing.  
 
Factor analysis methods to derive novel summary phenotypes to identify 
biological pathways implicated in systemic ageing.   
Statistical factor analysis methods have previously been used to remove noise 
components from high dimensional data prior to genetic association mapping, and in a 
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guided fashion to summarise biologically relevant sources of variation. We 
demonstrated how the derived factors summarize pathway expression can be used to 
analyse the relationships between expression, heritability and ageing, and to derive 
new biomarkers of ageing. We used the skin gene expression data from TwinsUK and 
applied factor analysis to concisely summarise patterns of gene expression, both to 
remove broad confounding influences and to produce concise pathway-level 
phenotypes.  We derived 930 “pathway phenotypes” which summarised patterns of 
variation across 186 KEGG pathways (five phenotypes per pathway).  
 
 We identified 69 significant associations of age with phenotype from 57 distinct KEGG 
pathways at a stringent Bonferroni threshold (P<5.38x10^-5).  These phenotypes are 
more heritable (h^2=0.32) than gene expression levels. On average, expression levels 
of 16% of genes within these pathways are associated with age. Of the 57 significant 
pathways, we frequently see four types of pathways, all of which have been previously 
linked with ageing: i) insulin signalling; ii) sugar and fatty acid metabolism; iii) 
xenobiotic metabolism; and iv) cancer related pathways. We have demonstrated that 
factor analysis methods combined with biological knowledge can produce more reliable 
phenotypes with less stochastic noise than the individual gene expression levels, which 
increases our power to discover biologically relevant associations. Finally, our analysis 
reveals pathways that have been seen to be important in longevity from a number of 
previous studies, as well as novel pathways that can be further investigated [ref Brown 
and Ding, under review G3] 
 
Using models of biological age at the level of the organ system to inform risk of 
disease and co-morbidity 
 
Biological age has been studied mainly at the whole body level, but the complexity of 
the phenotypes used, and the lack of reliable data in a sufficient number of individuals 
have made very difficult the reliable estimation of a systemic global biological age in 
humans. On the other hand, at the respiratory system level, an estimate of biological 
age has a potentially more powerful type of information which has been used in 
motivating smokers to quit. Several studies have investigated the possibility of 
estimating biological age of the respiratory system by using as biological age of a 
smoker the chronological age of a non-smoker of same height, gender and average 
FEV1 obtained from predictive equations. Therefore we decided to used spirometry 
tests results to evaluate lung function collected from The TwinsUK Registry (Chiappa 
et al. 2013). The data were investigated and cleaned by beneficiaries 1 and 3 for WP3 
and are described in detail in their section. For this study, we considered female 
individuals with spirometry data collected between 1992 and 2010 and with recorded 
height. Males were excluded as their number was too small to enable reliable 
estimation of model parameters and for consistency within the EuroBATs project that 
produced RNAseq data only from females.  
 
We propose a probabilistic model that expresses the effects as number of years added 
to chronological age or, in other words, that estimates the biological age of the lungs. 
In our model, chronological age and other factors such a smoking and reported 
respiratory diseases affecting the health status of the lungs generate biological age, 
which in turn generates lung function measurements. This structure enables the use of 
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multiple types of measurement to obtain a more precise estimate of the effects and 
parameter sharing for characterization over large age ranges and of co-occurrence of 
factors with little data. Furthermore, we use the model to investigate the effects of 
smoking, asthma and COPD on the TwinsUK Registry.  
 
Our results suggest that the combination of smoking with lung disease(s) has higher 
effect than smoking or lung disease(s) alone, and that, in smokers, co-occurrence of 
asthma and COPD is more detrimental than asthma or COPD alone. Moreover, we 
proposed that our model or other models based on the estimation of specific organs 
biological age could be of help in improving the understanding of factors affecting the 
organs function by enabling characterizations over large age ranges and of co-
occurrence of factors with little data and the use of multiple types of measurement. The 
software implementing the model is available here: http://silviac.yolasite.com/ and it 
has the potential to be used to motivate life style changes in individuals under serious 
risk of suffering failures on the respiratory system due to hazardous exposures.    
 
Integrating multilevel molecular phenotypes to reveal their putative mechanism 
of action under a causative model of ageing  
 
Identifying age biomarkers can help to predict and monitor age-related physiological 
decline and disease, and, importantly, it can also provide molecular insights into the 
aging process and into early developmental processes that influence aging. Many of 
the genes and genetic markers (SNPs) identified have the potential to become reliable 
biomarkers of ageing. In order to better understand the relationship of multiple 
molecular phenotypes and the effect of ageing on them,we employed available 
datasets to investigate the relationship between expression and other molecular 
phenotypes in relation with ageing in an attempt to identify the causes of age related 
changes in expression.  
 
Age and telomeres 
Telomeres are nucleoprotein structures capping and protecting the ends of 
chromosomes. Telomeres shorten with each cell division and leukocyte telomere 
length has been shown to decrease with age at a rate of 20-40 base pairs per year. 
Telomere attrition has been associated with age-related diseases and expression 
regulation of genes near the ending of the chromosomes, but little is known of their 
regulation of effect on genes expression regulatory changes with age or tissue 
specificity effect.  
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Figure 6: Blood telomeres data correlate with age.  
 
Using telomapping measurements of human healthy skin sections provided by 
beneficiary 4 (CNIO) in WP2, we monitored the changes in telomere length in the 
different skin layers in an ageing population. We observed a very low correlation of 
telomere attrition with age in the skin telomapping measurements (spearman 
correlation = 0.06). However, it is not clear whether this is attributed to the small 
sample size or the high turnover of stem cell renewing the skin cell composition. To 
test this, we performed a genome wide association of telomere length measure in three 
skin layers, outer layer, basal layers and fibroblast cells, measure by telomapping. 
Although the small sample size did not allow us to find any significant association for 
specific genes, we were able to investigate potential significant results by Pvalue 
enrichment analysis. From the expressed genes in skin, up to 20% of them were 
associated with telomere length in the basal layer, 15% in outer layer and only 8% in 
fibroblast. These different results  between layers suggested that some of those 
associations were cell-type specific, suggesting that telomere length may act by 
regulating genes in a cell type specific manner. 
 
Using Quantitative fluorescence in situ hybridization (Q-FISH) in a high throughput 
platform developed by beneficiary 5 (LL), which has potential advantages over PCR 
and Southern Blot methods, we obtained quantitative information on telomere length 
distributions from whole blood samples in 1703 samples from 800 individuals. Our 
analysis indicates that telomere length correlated negatively with chronological age 
(Spearman correlation = -0.249, Pvalue< 2.2e-16) (Figure 6).  
 
In conclusion, we aimed to investigate the potential of telomere analysis for the 
development of biomarkers of skin ageing. However, our results indicated that 
although relevant to understanding the process of cellular senescence in skin, 
telomeres may not be the best marker for the study of systemic ageing in skin and are 
unlikely to have clinical potential. Telomeres in blood have been proved to be a useful 
tool for their association to difference diseases and their relationship with ageing and 
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expresison, however, different measurement methods tend to produce different results 
with no clear gold standard with strong clinical use potential.  
 
 
Age and methylation 
Multiple studies have found that age modifies methylation patterns; however it is not 
yet clear if these changes have consequences in the transcription of genes or if they 
only act as markers of ageing. We used fat methylome data available for 552 of the 
Eurobats twins with RNAseq data (Grundberg et al. 2013)(MuTHER Multiple Tissue 
Human Expression Resource, http://www.muther.ac.uk/). From 370,731 CpGs maker 
tested, 39,092 were significantly affected by age (10.54%), compared to the 1,511 
exons affected by age (1.49%) indicating a wider effect of age in methylation levels 
than in expression in fat tissue. Applying Bayesian Networks we tested whether 
changes in expression with age were mediated by epigenetic markers, but in most 
cases we found little evidence that epigenetic markers were involved in differential 
expression, suggesting the greater effect of age in methylation does not necessarily 
translate into changes in gene expression. 
 
Age and proteomics 
Studies on aging using high-throughput proteomics identified proteins whose plasma 
levels and cerebrospinal fluid (CSF) levels substantially change with increasing age. 
Available subproteome targeted data by the SOMAscan assay was profiled in blood 
samples from 202 females from the TwinsUK cohort. Eleven proteins were associated 
with chronological age and were replicated at protein level in an independent 
population. Of those proteins, we found that the coding genes for three of them were 
also associated with age in their expression. We conclude that the relationship with 
age is the same both for mRNA and protein levels, although it is not significant with 
mRNA. There are many processes between transcription and translation, which result 
in a weak correlation between protein levels and mRNA levels and protein stability is a 
big factor (Menni et al. 2014) 
 
Age related phenotypes and genotype 
It has been established that the study of the respiratory system, which functionally 
changes with age, has the potential to provide relevant information to understand the 
ageing process, but the function of the respiratory system has not previously been 
linked to the genetics of individuals. In order to identify genotype-specific signatures of 
ageing and potentially identifying targets for anti-ageing interventions in the respiratory 
system we, performed genome-wide association study meta-analysis of force vital 
capacity (FVC) in collaboration with other groups(Loth et al. 2014).  The collaborative 
study included 52,253 individuals from 26 studies and followed up the top associations 
in 32,917 additional individuals of European ancestry  The study found six new regions 
associated at genome-wide significance (P< 5 × 10−8) with FVC in or near EFEMP1, 
BMP6, MIR129-2–HSD17B12, PRDM11, WWOX and KCNJ2. Two loci previously 
associated with spirometric measures (GSTCD and PTCH1) were related to FVC.  We 
also investigated the association of available telomere length measurements from 
circulating leukocytes and respiratory disease (COPD and asthma), and the 
spirometric indices described above. We observed negative associations between 
telomere length and COPD (β=-0.0676, p=0.018) as well as asthma (β=-0.0452, 
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p=0.024) with stronger effects in women compared to men. These results indicate that 
lung function may reflect biological aging primarily due to intrinsic processes which are 
likely to be aggravated in lung diseases. Shortened telomeres in lung disease suggest 
that aging processes are involved in the pathogenesis of COPD and asthma with some 
genetics variants playing an important role on the progression of the age related decay 
(Albrecht et al. 2014). 
 
Age related phenotypes and expression 
Finally, we investigated the association between multiple ageing and health related 
phenotypes and concurrently measured expression levels across all four tissues 
(blood, LCL, adipose, skin).  We found strong tissue-specific correlations between 
expression levels and multiple traits (Table 6).   Notably, we find very few associations 
between phenotypes and LCL expression, indicating that cell lines are not the best 
model to capture in vivo relationships between phenotypes and expression.  
 
 
Domain Phenotype Fat Skin Blood LCLs 

Lipids 

Triglycerides 11,268 6 180 1 
HDL 13,002 50 5 2 
LDL 4,272 4 3,409 0 
Total Cholesterol 9 10 1,095 1 

Glycaemina 
Glucose 1,275 5 2 0 
Insulin 8,289 19 6 0 
Adiponectin 10,848 0 0 0 

Anthropometric 

BMI 16,816 9,216 6,640 0 
Hip 26 --- --- --- 
Waist 3,897 5 2,420 --- 
WHR 7,232 1 8 --- 

 
Table 6: Genes within each tissue with expression levels associated to a range of 
cross-sectional phenotypes (significance cutoff = FDR 5%) 
 
 
In conclusion, the projects in Work Package 4 have successfully studied age 
related effects in the genome in a way that fully exploits the data generated in 
WP1, WP2 and WP3.   
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WP6 – Dissemination 
	
  
Dissemination for the project included publications in peer reviewed journals, 
presentations, talks and posters at conferences, a public symposium, a scientific blog 
and a website which contained both public and private areas. All activities and 
publications have been uploaded to the portal. 
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Presentations at Meetings and Conferences 
 
Participation at conferences, workshops and meetings have continued throughout the 
EuroBATS project, with members of the Consortium and young scientists encouraged 
to attend, and to submit abstracts. 
 
Conference based dissemination activities (oral and poster presetations) were made at 
the following major meetings: 
Title: Genetic Variation of Gene Co-Expression Networks in Three Tissues  
Place: International Congress of Human Genetics. American Society of Human 
Genetics. Montreal 11-15th October 2011.  
Alfonso Buil, University of Geneva 
 
Title: Population genetics and genomics of cellular phenotypes. 
Place: International Congress of Human Genetics. American Society of Human 
Genetics. Montreal 11-15th October 2011. 
Manolis Dermitzakis, University of Geneva 
 
The Fourth International 
Conference of Quantitative Genetics: Understanding Variation in Complex 
Traits - Edinburgh International Conference Centre, 17-22 June 2012 
Attended by Ana Vinuela, Andrew Brown, Sanger Institute 
 
 
Selected talk presentation in the RoSyBA: Rostock Symposium on Systems Biology 
and Bioinformatics in Ageing Research. 15th-17th September 2011.   
Title : Genome-wide transcriptome analysis with age and the effect of natural genetic 
variation in humans 
Ana Viñuela, King’s College London, UK. 
 
 
 
European Society of Human Genetics, Paris 2013 
Cold Springs Harbour, USA, May 2013 
American Society of Human Genetics, Boston, USA 2013 
American Society of Human Genetics, Montreal, 2012 
	
  
American Society of Humans Genetics, San Francisco, November 6-10, 2012 
21th Annual International Genetic Epidemiology Society. Stevenson, Washington, 
USA. October 18-20, 2012 
 
In addition presentations and talks were given at many smaller meetings, 
including at Wellcome Trust Sanger Institute, Genomic Medicine in the 
Mediterranean, Rostock Symposium on Systems Biology in Ageing Research, 
Genetic variation and human health, Basel, Switzerland. 
 
Abstracts have been accepted for the American Society of Human Genetics in  
San Diego, 2014. 
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In addition EuroBATS scientists have attended conferences and meetings 
including EMBL, Heidelberg (October 9-12 2013), Genomics of Common 
Diseases, Oxford, 26/5/13, Conference on Ageing Genetics, Edinburgh, 17-
21/6/12. 1000 Genomes and Beyond, Cambridge, 23/6/14. 
 
Symposium: Genomics of gene expression and ageing, a one day symposium at the 
Royal College of Physicians, London, May 2 2014. Presentations from EuroBATS 
Consortium members and invited speakers. The full programme is available on the 
EuroBATS website www.eurobats.eu/news 
 
 
Collaborations 
EuroBATS has close collaborations with the MuTHER Consortium, 
http://www.muther.ac.uk 
 
EurHEALTHAGEING (FP7 277849) and EpiTwin, http://www.epitwin.eu 
 
and will continue to  provide useful data to other projects such as BPomics and 
MRC projects at the Department of Twin Research. 
 
 
 
Website 
 
The project website, www.eurobats.eu has been running since the beginning of 
the project and is a repository for members’ publications, and meeting minutes 
etc, in addition to having a public face and general information. In order to 
maximise the impact of eurobats dissemination the website is being redesigned 
and will provide a platform for future collaborations and a repository for eurobats 
data. All documents and papers relating to EuroBATS will be held on the website, 
either in the public or password protected areas, depending on their nature. 
 
All publications and dissemination activites have been uploaded to the SESAM 
reporting portal. 
 
Blog 
 
http://sangerinstitute.wordpress.com/2014/06/12/the-­‐search-­‐for-­‐
epistasis/	
  
http://sangerinstitute.wordpress.com/2014/06/12/en-­‐busca-­‐de-­‐la-­‐
epistasia/	
  
	
  
Published in both English and Spanish. 
	
  
 
 



	
   27	
  

Publications 
 
Hypermethylation in the ZBTB20 gene is associated with major depressive disorder 
Matthew N. Davies, Ph.D et al, Genome Biology, 15/4 1 Jan 2014 R56 
 
A probabilistic model of biological ageing of the lungs for analysing the effects of 
smoking, asthma and COPD, Silvia Chiappa et al, Respiratory Research, 14/60 
30 May 2013 epub 
 
Omics technologies and the study of human ageing, Ana Valdes et al, Nature 
Reviews Genetics 14, 13/8/13 601-607 
 
Gene expression changes with age in skin, adipose tissue, blood and brain D. 
Glass et al, Genome Biology, 14/R75, 26/7/13 epub 
 
Genetic interactions affecting human gene expression identified by variance 
association mapping. A.A. Brown et al. elife, Vol 3/0 1/1/13 
 
Circulating proteomic signatures of chronological age, Cristina Menni et al, 
Journals of Gerontology, epub 14/8/14 doi 10.1093/gerona/glu121 
 
Telomere length in circulating leukocytes is associated with lung function and 
disease, Schultz H, et al, European Respiratory Journal, Vol 42, epub 1/9/2013 
 
 
 
 
 
 
 


