Annex NanoOnSpect – Final publishable summary report Figures and tables

- 1. Executive summary
- 2. Summary description of project context and main objectives

- 3. Description of project context and main S&T results / foregrounds
- 3.1 WP1 Online nanocomposite characterization device
- 3.1.1 Main objectives
- 3.1.2 Pressure and temperature sensing

Figure 3.1.2.1: FOS measuring principle of the fiberoptical pressure sensor.

Figure 3.1.2.2: FOS miniature fiberoptical pressure sensor with Ø 3 mm frontend.

Figure 3.1.2.3: FOS IR-Melt-Thermometer with amplifier unit.

Figure 3.1.2.4: FOS IR-Melt-Thermometer signal readout during a test run. Red line = IR-Temperature signal. Blue line = Sensor head and extruder case temperature (thermocouple).

Figure 3.1.2.5: FOS IR-Melt-Thermometer signal readout during a test run. Upper line = IR-Temperature signal. Lower line = Sensor head and extruder case temperature (thermocouple). The step in the upper line was caused by a sudden change of screw speed.

Figure 3.1.2.6: FOS IR-Melt-Thermometer mounted at an extruder head during test runs.

Figure 3.1.2.7: FOS multi point gradient thermometer frontend.

Figure 3.1.2.8: FOS multi point gradient thermometer measuring setup.

Figure 3.1.2.9: FOS multi point gradient thermometer mounted at an extruder nozzle with signal display and temperature profile diagram.

3.1.3 Thermal conductivity sensing system

Figure 3.1.3.1: The prototype phase: ONBOX with two concepts of thermal needle: model NOS01 in blue/green; a needle in the melt flow. Two pieces of model NOS03, flush with the surface of the channels in the ONBOX. Model NOS03, although more robust did not attain the necessary sensitivity and reproducibility.

Figure 3.1.3.2: Example of experiments carried out for performance verification of NOS01. Experiments were carried out at different melt flows, expressed in rotations per minute, rpm, of the ONBOX pump/extruder, and with different plastics PE and PP. The ideal experiment for absolute thermal conductivity measurement takes place under static conditions, at 0 rpm. In case of flowing melt, at > 0 rpm, the measurements show an error; it is no longer possible to perform absolute measurements and only comparative measurements or monitoring of trends is possible.

Figure 3.1.3.3: Measurements at Gneuss on a real ONBOX in March 2012 on prototype sensors and measurement and control unit. The measurement and control in this phase are still autonomous.

Figure 3.1.3.4: Melt properties and room temperature properties do no correlate. Blue squares are room temperature measurements on the solid plastic material on the THASYS system. Red squares are measurements performed on the melt at 20 rpm with NOS01. Results obtained in cooperation with AIMPLAS, who operated the extruder with ONBOX and made the solid specimens.

3.1.4 Rheology sensing system by capillary rheology

Figure 3.1.4.1. Basic design of rheology sensing unit and measurement principle

Figure 3.1.4.2: Prototype system and HMI Interface screenshot

3.1.5 Optical spectroscopy sensing system

 Table 3.1.5.1: Legend equation (1)

I _R	Raman intensity
IL	laser intensity
σ	Raman scattering cross-section
K	measuring parameter
Р	path length
С	concentration

Table 3.1.5.2: The vibrational spectra of PP/MWCNTs (δ- bending; r- rocking; v-streching; t- twisting; w- wagging)

	Schwingungsart	Raman-Shift
1	Al_2O_3 –Peak	415 cm ⁻¹
2	Al ₂ O ₃ –Peak	447 cm ⁻¹
3	Al_2O_3 –Peak	577 cm ⁻¹
4	Al_2O_3 -Peak	748 cm ⁻¹
5	v(C-C), r(CH ₂) of PP	833 cm ⁻¹
6	r(CH ₃), v(C-C) of PP	969 cm ⁻¹
7	PP-Peak	1017 cm ⁻¹
8	v(C-C), δ (CH) of PP	1150 cm ⁻¹
9	D-Peak of CNTS	1310 cm ⁻¹
10	δ [-CH ₂ -] of PP	1460 cm ⁻¹
11	G-Peak of CNTS	1605 cm ⁻¹

Equation. 3.1.5.1

 $I_R = (I_L \bullet \sigma \bullet K) \bullet P \bullet C$

Equation. 3.1.5.1

 $I = I_0 \bullet e^{(\epsilon(\lambda) \bullet c \bullet d)}$

(Eq. 3.1.5.1)

(Eq. 3.1.5.2)

Figure 3.1.5.1: a) Raw spectra b) normalized spectra of pp/CNTs-composites containing 0.1%; 0.2%; 0.3%; 0.4%; 0.5%; 0.6%; 0.8%; 1.0%; 1.2%; 1.5% and 2% CNTs.

Figure 3.1.5.2: a) PLS multivariate calibration model with 4 PLS factors for the CNTs concentration range between 0.1 to 0.8 percent. b) PLS multivariate calibration model with 2 PLS factors for CNTs concentration range between 1 to 2 percent.

Figure 3.1.5.3: Results of the multivariate analysis of Raman spectra for the determination of the CNTS concentration. The plot shows predicted with error bar vs. actual concentration. a) CNTs concentration range between 0.1 to 0.8 percent. b) CNTs concentration range between 1 to 2 percent.

Figure 3.1.5. 4: NIR energy spectra pf PP/clay samples

Figure 3.1.5.5: linear regression model for determination of the total content of clays at λ =1317nm

Figure 3.1.5.6: VIS-transmission spectra of PP/clay samples

Figure 3.1.5.7: schematic view of generating prediction model for determination of exfoliation degree of the clays by VIS spectroscopy

Figure 3.1.5.8: Prediction of exfoliation degree vs. reference exfoliation degree (determined by turbidimetric method).

Figure 3.1.5.9: The prediction of the optical average agglomeration particle size (exfoliation degree of the clays) of 2469 spectra by PLS-model.

Figure 3.1.5.10: FOS optical transmission probes mounted at the OnBox-Unit.

Figure 3.1.5.11: Measuring setup for transmission mode spectroscopy.

Figure 3.1.5.12: Measuring setup for reflection mode spectroscopy.

Figure 3.1.5.13: Principle of function of FOS ATR-NIR-FO-Probe with sapphire crystal tip.

Figure 3.1.5.14: Frontend of FOS ATR-NIR-FO-Probe with sapphire crystal tip.

Figure 3.1.5.15 shows the spectral transmission of a 30°-ATR-probe when the probe tip is immersed in already used or aged motor oil. Motor oil is optically very similar to polymer melt.

Figure 3.1.5.16: FOS ATR-NIR-FO-Probe mounted at an extruder for testing.

3.1.6 Ultrasonic sensing system (Ateknea)

Figure 3.1.6.1: Global view of the ultrasonic measurement system

Figure 3.1.6.2: Adapter and ultrasonic sensors

Figure 3.1.6.4: Density measurements of different blends of PP and cloisite

3.1.7 Microwave spectroscopy sensing system (ICT)

Figure 3.1.7.1: Schematic diagram of the cavity perturbation measurement principle

Figure 3.1.7.2: Schematic diagram of the Corbino measurement principle

Figure 3.1.7.3: Schematic diagram of the resonant cavity sensor

Figure 3.1.7.4: Resonant cavity sensor

Figure 3.1.7.5: Schematic diagram of the Corbino sensor

Figure 3.1.7.6a: Corbino sensor Figure 3.1.7.6b: Corbino sensor tip

Figure 3.1.7.7a: Circuit board

Figure 3.1.7.7b: Measuring system with housing

Figure 3.1.7.8: Variation of temperature on neat PP

Figure 3.1.7.9: Variation of rotational velocity on neat PP

Figure 3.1.7.10 Variation of clay content in PP/Clay material system

Figure 3.1.7.11: Variation of rotational velocity in PP/Clay material system

Figure 3.1.7.12: Variation of CNT content in PC/CNT material system

Figure 3.1.7.13: Variation of rotational velocity in PC/CNT material system

Figure 3.1.7.14: Variation of Clay content in PP/Clay material system

Figure 3.1.7.15: Variation of CNT content in PC/CNT material system

Figure 3.1.7.16: Variation of rotational velocity in PC/CNT material system

3.1.8 Development of the onBOX device (Gneuss)

Figure 3.1.8.1: Rheology sensing unit with various sensors in sensor block for online side stream measurement.

3.2 WP2 New compounding process technology and automation

3.2.1 Main objectives

3.2.2 Nexxus compounding technology

Figure 3.2.2.1: Nexxus Melting and Mixing in cascade

Figure 3.2.2.2 a: 3D view of the rotor

Figure 3.2.2.2b: Rotor section

Throughput [kg/h]	RPM	Rotor speed [m/s]	Melting rate/rpm [Kg/hrpm]	Melting Model Tadmor [Kg/hrpm]	Total Kwh	Kw/hkg [SEC]	Temp- [°C]	End taper pressure [bar]
10	10,9	0,11	0,92	0,434	1,5	0,15	236/206	4
15	15,1	0,16	0,99	0,3755	1,65	0,11	235/202	4
25	29,0	0,30	0,86	0,327	2,85	0,114	235/201	4
40	78,7	0,82	0,51	0,36	6,1	0,153	233/202	4
50	108,9	1,14	0,46	0,355	8,4	0,168	235/220	5

(Polymer PP Homo Total 9760 MFI 24)

Figure 3.2.2.3a: Melting rate vs speed compared with the familiar Tadmor's model

Not yet evaluated but estimated nearly around zero

Figure 3.2.2.3d

Figure 3.2.2.5. Early tests with waterborne CNT dispersion processed in Nexxus ((July 2013)

Figure 3.2.2.6: Tests stage in Jan 2015

Figure 3.2.2.7: VMS arranged with Nexxus

Figure 3.2.2.8: VPS arranged directly with cTSE HP18 Leistritz

Figure 3.2.2.9: On line measurement of melt resistivity

Figure 3.2.2.10: Optical evidence of superior CNT dispersion with Nexxus-VMS technology

3.2.1 Optimised conventional extrusion techniques

3.3 WP3 Material and process characterisation

- 3.3.1 Main objectives
- **3.3.2** Polycarbonate CNT material system
- 3.3.3 Polypropylene Clay material system

Figure 3.3.3.1: Pr1 6.200.190

3.4 WP4 Intelligent Module

3.4.1 Main objectives

Figure 3.4.1.1. IM Software Architecture

Figure 3.4.1.2. System Architecture

3.4.2 Artificial Neural Network

Figure 3.4.2 1. Artificial Network Training

Nº3. C-10-C1-300														
Sample NR	R(Multimetro)	Resistance[Ohm]	medidas pieza	() () () () () () () () () () () () () (I(dist_elect)	Resistivity[Q*cm]	Average	Conductivity[S/cm]	Average	Ateknea	Correlations	Absolute difference	value ABS (Offline - On-line)	
	A applace (abov)	Pichm	b(ancho)(cm)	d/alto\(cm)	1	o=lb*d/ll*P	Desistivity	g=1/o	Conductivity	Posistivity [Otem] Average	Conductivity (Slope) Average	Record and	Construction	
S 20 5	4 cables (onin)	ryoning	Diamono/(cm)	Glaso/(Gill)	2 ana 1	p-to ail is	resistivity	0-np	Conductivity	Resistivity [12 citi] Average	Conductivity[archi] Average	NEWCOVICY	Conductivity	
1	51	5,100E+01	0,98	0,38	2,46	7,720E+00		1,295E-01	ě.					
2	49	4,900E+01	0,98	0,38	2,46	7,418E+00		1,348E-01						
3	52	5,200E+01	0,98	0,38	2,46	7,872E+00	7.569E+00	1,270E-01	1.323E-01	3.919E+00	2.297E-01	3.64994	0.09740	
4	47	4,700E+01	0,98	0,38	2,46	7,115E+00		1,405E-01		1700000000	1000000000			
5	52	5,200E+01	0,98	0,38	2,46	7,872£+00		1,270E-01						
6	49	4,900E+01	0,98	0,38	2,46	7,418E+00		1,348E-01				<u> </u>		
Nº4_C-10-C1-	600										· · · · · · · · · · · · · · · · · · ·		-	
Sample Nº	R(Multimetro)	Resistance[Ohm]	medidas pieza	2	Idist elect)	Resistivity[Q*cm]	Average	Conductivity[S/cm]	Average	Resistivity [Q*cm] Average	Conductivity[S/cm] Average	Resistivity	Conductivity	
CONTRACTOR OF	(cables (obm)	R(ohm)	h(ancho)(cm)	d(alto)(cm)		o=lb*d/ll*B	Recistivity	g=1/o	Conductivity			9		
4	4 cables (onni)	4 0005 (01	0.09	0.39	3.46	6.0555.00	resistivity	1 65 15 01	conductivity					
2	40	4,0002401	0,36	0,36	2,40	5,0355400		1,6532-01						
2	39	3,900E+01	0,98	0,38	2,46	5,9046+00		1,094E-01	-	2 5 6 7 9 7	10 MT 701 PM	1.10000	0.05303	
	3/	3,700E+01	0,98	0,38	2,46	5,6016+00	5,803E+00	1,785E-01	1,725E-01	3,6296+00	2,2576-01	2,18385	0,05323	
4	- 57	3,700E+01	0,98	0,38	2,46	5,6011+00		1,785E-01						
2	39	3,900E+01	0,98	0,38	2,46	5,904E+00		1,694E-01						
6	38	3,800E+01	0,98	0,38	2,46	5,753E+00		1,738E-01						
Nº5_C-6-C1-6	00			1.11		2			A		*	-	576 (S. 1997)	
Sample N ^g	R(Multimetro)	Resistance[Ohm]	medidas pieza	1 and a start of the	I(dist. elect)	Resistivity[Ω [*] cm]	Average	Conductivity[S/cm]	Average	Resistivity [Ω*cm] Average	Conductivity[S/cm] Average	Resistivity	Conductivity	
000000000000000	4 cables (ohm)	R(ohm)	b(ancho)(cm)	d(alto)(cm)		p=[b*d/]*R	Resistivity	σ=1/p	Conductivity					
1	50	5.000E+01	0.98	0.38	2.46	7.569E+00	20	1.3216-01						
2	49	4 900E+01	0.98	0.38	2.46	7 4186+00		1 3485-01						
	40	4,3000-01	0,30	0,30	2,40	7,4100-00		1,0402-01		4.4005+00	3.0035.01	4.00000	4,26806 0,07069	
3	50	5,000E+01	0,98	0,38	2,46	7,5696+00	7,695E+00	1,321E-01	1,300E-01	4/4006700	2,0075-01	4,20000		
4	52	5,200E+01	0,98	0,38	2,40	7,8721+00		1,2/0E-01	5					
2	51	5,100E+01	0,98	0,38	2,46	7,720E+00		1,295E-01	-					
6	53	5,300E+01	0,98	0,38	2,46	8,023E+00		1,246E-01				6 E		
Nº6 C-6-C1-30	0					0	15	400	17. AL					
Sample Nº	R{Multimetro}	Resistance[Ohm]	medidas pieza	6	I(dist. elect)	Resistivity[Ω*cm]	Average	Conductivity[S/cm]	Average	Resistivity [Ω*cm] Average	Conductivity[S/cm] Average	Resistivity	Conductivity	
2 - ²⁷ - 3	4 cables (ohm)	R(ohm)	b(ancho)(cm)	d(alto)(cm)	1900 - 1903 1900 - 1903	p=[b*d/l]*R	Resistivity	σ=1/ρ	Conductivity				N	
1	32	3,200E+01	0,98	0,38	2,46	4,844E+00		2,054E-01	J					
2	29	2,900E+01	0.98	0,38	2,46	4,390E+00		2.278E-01	19			1		
3	31	3 100E+01	0.98	0.38	2.46	4.693E+00		2 1316-01		6.284E+00	1.887E-01	1.59092	0.02482	
4	20	2 0005+01	0.99	0.39	3.46	45416+00	4,693E+00	2 2026-01	2,135E-01	Statistic state		100010000	1000000	
5	30	3,0000+01	0,58	0,38	2,40	4,5412+00	100 C 100 C 100 C 100 C	2,2020-01						
6	31	3,1002401	0,58	0,38	2,40	4,0535700		2,151001	-					
0	35	3,300E+01	0,98	0,38	2,40	4,9906+00		2,0026-01				<u> </u>		
N=/_L-0-L1,5-	000		I		Location and the									
Sample N [®]	R(Multimetro)	Resistance[Ohm]	medidas pieza	-	I(dist. elect)	Resistivity[Ω*cm]	Average	Conductivity[S/cm]	Average	Resistivity [II*cm] Average	Conductivity[S/cm] Average	Resistivity	Conductivity	
10 m S	4 cables (ohm)	R(ohm)	b(ancho)(cm)	d(alto)(cm)		p=[b*d/I]*R	Resistivity	σ=1/p	Conductivity					
1	36	3,600E+01	0,98	0,38	2,46	5,450E+00		1,835E-01						
2	39	3,900E+01	0,98	0,38	2,46	5,904E+00		1,694E-01						
3	37	3,700E+01	0,98	0,38	2,46	5,601E+00	1.2020.00	1,785E-01	A TYPE OF	4,104E+00	2,270E-01	1,59839	0,05155	
4	38	3,800E+01	0.98	0,38	2,46	5,753E+00	5,7026+00	1,738E-01	1,7558-01			2002		
5	38	3.800E+01	0.98	0.38	2.46	5.753E+00		1.738E-01	t l					
6	38	3.800E+01	0.98	0.38	2.46	5.753E+00		1.738E-01	19 III					
N28 C-6-C1 5	300			(c)	19. AN 19.		2	No.	S		N			
Sample Nº	R/Multimetro)	Resistance[Ohm]	medidas piez	8	l(dist elect)	Resistivity[O*cm]	Average	Conductivity[Slem]	Average	Resistivity (O*cm) Average	Conductivity[S/cm] Average	Resistant	Conductivity	
sourceback to a	A applage (above)	Pichen	h(ancho)(cm)	d(alto)(arts)	-laise cicoli	o=lb*d/l*P	Desistivit	a=1/o	Conductivity	instantial for and threadle	- suggestigterouil receige		consideration	
2 2 2	4 cables (onin)	Rionini	Dianonononi	Ganoyony	1 2022 1	p-to and it	Resistivity	0-np	Conductivity					
1	40	4,000E+01	0,98	0,38	2,46	6,055E+00		1,651E-01						
2	39	3,900E+01	0,98	0,38	2,46	5,904E+00		1,694E-01		10000000	100.000	100000	and the second se	
3	40	4,000E+01	0,98	0,38	2,46	6,055E+00	6.005E+00	1,651E-01	1.667E-01	3,698E+00	2,358E-01	2,30673	0,06906	
4	39	3,900E+01	0,98	0,38	2,46	5,904E+00		1,694E-01						
5	42	4,200E+01	0,98	0,38	2,46	6,358E+00		1,573E-01						
6	38	3,800E+01	0,98	0,38	2,46	5,753E+00		1,738E-01	÷			2 · · · · · · ·		
Nº9_C-10-C1,	5-300	- 							a sea a					
Sample Nº	R(Multimetro)	Resistance[Ohm]	medidas pieza		I(dist_elect)	Resistivity[Ω ⁺ cm]	Average	Conductivity[S/cm]	Average	Resistivity [Ω*cm] Average	Conductivity[S/cm] Average	Resistivity	Conductivity	
8	4 cables (ohm)	R(ohm)	b(ancho)(cm)	d(alto)(cm)	8 8	p=[b*d/I]*R	Resistivity	σ=1/ρ	Conductivity					
1	39	3,900E+01	0,98	0,38	2,46	5,904E+00		1,694E-01						
2	41	4,100E+01	0,98	0,38	2,46	6,207E+00		1,611E-01						
3	36	3,600E+01	0,98	0,38	2,46	5,450E+00		1,835E-01		3,698E+00	2,3696-01	1,92773	0,05849	
4	37	3,700E+01	0.98	0.38	2.46	5,601E+00	5,626E+00	1,785E-01	1,7846-01			1990 (1990) (19900) (19900) (1990) (1990) (1990) (1990) (1990) (1		
5	34	3.400E+01	0.98	0.38	2.46	5.147E+00		1.943E-01						
6	36	3 600E+01	0.98	0.38	2.46	5.450E+00		1.835E-01						
								alesses as						

Figure 3.4.2.2 Artificial Neural Network Case Study Correlations

STAT Manual C	OPC STAT DE	sconne	Hide Fiel.				
	Marhine	ablest	0.0				
	Practicity of	Open New					
throughput_SP :	0.0	Filer	0.0				
speed SP:	d_SP1 0.0 home/andma/workspace/IM Develoment 20131003/urv/ExpertSystem/Bules IM 2.drl						
	money and a second construction of a second s						
cnts_SP :	0.0	Regla 2: Get Down Throughput Edit	0.0				
temperature_SP :	0.0	Regla3 Get Up Throughput	0.0				
4		Regla Test					
nexxus_Throughput_	SP 20,0		0.0				
nexxus_Temperature	SP0.0						
normal Encoder	R	tule	1.7				
nexxus_speed_set	0.0	Name: Regial I woncing Hangs Throughput Salience: 1	1.				
Run	St V	When -					
mlanation							
apromacioni.	3	Select fact:					
-promotion		Select fact: Name: ExtruderParameters IM •					
paración -		Select fact: Name: EstruderParameters_IM v					
promaceur.		Select fact: Name: ExtruderParameters_IM					
ринныхник		Select fact: Name: ExtruderParameters_IM • Add restriction on a field: Field: throughput_SP • Condition: • Value:	_				
		Select fact: Name: ExtruderParameters_IM Add restriction on a field: Field: throughput_SP Condition: Value: throughput <- 20	Edit				
		Select fact: Name: ExtruderParameters_IM • Add restriction on a field: Field: throughput_SP • Condition: • Value: throughput <= 20 throughput >=10	Edit				
		Select fact: Name: ExtruderParameters_IM Add restriction on a field: Field: throughput_SP throughput <= 20 throughput >=10	Edit +				
		Select fact: Name: ExtruderParameters_IM Add restriction on a field: Field: throughput_SP Condition: Value: throughput <= 20 throughput >=10	Edit +				
		Select fact: Name: ExtruderParameters_IM Add restriction on a field: Field: throughput_SP Condition: Value: throughput <= 20 throughput >=10	Edit +				
		Select fact: Name: ExtruderParameters_IM Add restriction on a field: Field: throughput_SP Condition: Value: throughput <= 20 throughput >=10 then	Edit +				
		Select fact: Name: ExtruderParameters_IM Add restriction on a field: Field: throughput_SP Condition: Value: throughput <= 20 throughput >=10 Then Add restriction on a field:	Edit +				
		Select fact: Name: ExtruderParameters_IM Add restriction on a field: Throughput <= 20 throughput >=10 hen Add restriction on a field: Field: setThroughput_SP New value:	Edit				
		Select fact: Name: ExtruderParameters_IM Add restriction on a field: Field: throughput_SP Condition: Value: throughput <= 20 throughput >= 10 Then Add restriction on a field: Field: setThroughput_SP New value:	Edit +				
	Ţ	Select fact: Name: ExtruderParameters_IM • Add restriction on a field: Field: throughput_SP • Condition: • Value: throughput <= 20 throughput >=10 Then Add restriction on a field: Field: setThroughput_SP • New value:	Edit Edit				
	Ţ	Select fact: Name: ExtruderParameters_IM • Add restriction on a field: Field: throughput_SP • Condition: • Value: throughput <= 20 throughput >= 10 hen Add restriction on a field: Field: setThroughput_SP • New value:	Edit Edit				
	Ţ	Select fact: Name: ExtruderParameters_IM • Add restriction on a field: Field: throughput_SP • Condition: • Value: throughput <= 20 throughput >= 10 Then Add restriction on a field: Field: setThroughput_SP • New value:	Edit + - Edit 4				
	Ţ	Select fact: Name: ExtruderParameters_IM • Add restriction on a field: Field: throughput_SP • Condition: • Value: throughput <= 20 throughput >= 10 Then Add restriction on a field: Field: setThroughput_SP • New value:	Edit + Edit				

3.4.3 Expert System

Figure 3.4.3.1: Expert System Rules editing interface

3101 Solar 00	C PLANE T CHARMON				ilide Testita	
	Bactiew values:	Select	Proposed values :	throughput	810	
teroughpert_SP:	0.0	1946	0.0	-speed:	300.0	
speed_SP:	00		6.8	- control	11	
rais_SP:	0.0		1.0	formapointeflaire 1	2754	
Nenperature_SPi	00		0.0	recons_Throughput:	11	
eccosi, Threephor, 59 :	0.0	(12)	0.0	novoret_Temperaturo :	11	
exxes_Temperature_SP:	00		44	nonzan_Spend :	11	
eener Speed SP :	0.0	19	0.0	trended 5 1	14	
Ann.	Mag			ANN_Presistivity	11.4254104020607070	
plesation 1 Thread is surroup				AMI, Conductivity :	1.3438-080988142542	
etent Critis value 3.0 Supposited CNTD Self-Web	004.0.1%			AMI_Surface_Resistority/	11	
EGLAT DR_BW_PRODUCTION	ue is out af range (HD-194	convent value >0.0		AMI_Softex_Contactivity:	11	
				On_Law_Residence:	ju	
presit Crito Value >3.0				Ce_box_lemperature:	11	
Cappenan UNI's catronic COLA1 Dr., Bax, Pressurevai	unit is out al range (163-164	carrent value ~6:0		Cin_Ros, Pressante :	11	
New York, N	01000000000000000000000000000000000000			· Cat Rea Maconita	lines.	

Figure 3.4.3.2. Viscosity value = 169, Cnts = 3.0, Expert System suggest Cnts=1

hroughput_SP:	0.0	0	0.0		speed :	300.0
speed_SP:	0.0		275.0		ents:	1.0
cots_SP :	0.0		1.0		temporature :	275.0
temperature_SP:	0.0		0.0		nexxus_Throughput:	0.0
nexcus_Throughput_SP :	0.0		0.0		nexxus_Temperature :	0.0
nexxus_Temperature_SP;	0.0		0.0		nexxus_Speed:	0.0
nexus_Speed_SP:	0.0		0.0		textoE 5 :	0.0
Run	Stop				AMN_Resistivity:	8.09630498953643
oplemation S Thread is running				14	ANN_Conductivity:	0.1634781514049029
Decrease speed in order to	Increase OnBox press	ure, Current Speed->300 0	Suggested Speed_SP → 275.		ANN_Surface_Resistivity :	0.0
ule2 On_Box_Pressure value NTs value corred->1.0	is bellow range (103-1	64) current value->0.0			AMN_Surface_Conductivity:	0.0
					On_Line_Resistance ;	0.0
> Decrease speed in order to	increase OnBox press	ure, Current Speed->303.0	Suggested Speed_SP →275 (On_Box_Temperature :	0.0
tule2 On_Box_Pressure value INTs value correct->1.0	is bellow range [163-1	64) current value->0.0			On_Box_Pressure :	0.0
				•	On_Box_Viscosity:	169.0

Figure 3.4.3.3: Viscosity value = 169, Cnts = 1.0, Expert System suggest Speed_SP = 275

3.5 WP5 Application development and industrial case studies

3.5.1 Main objectives

3.5.2 Case Study Polycarbonate - CNT

Figure 3.5.2.1: Extrusion line Berstorff ZE 25 at Colorex Master Batch B.V.

Figure 3.5.2.2: ^{on}BOX with installed sensors

3.5.3 Case Study Polypropylene – Nanoclay

Figure 3.5.3.1 Extrusion line at Addiplast SAS.

3.6 WP6 Standardisation and technology evaluation

- 3.6.1 Main objectives
- 3.6.2 Economic and ecological evaluation
- 3.6.3 Standardisation

4. Description of potential impact, dissemination activities and exploitation of results

	Key exploitable re		
Nr.	Key exploitable results	Exploitation manager	
1	^{on} BOX characterisation device	Gneuss	
2	Nanocomposite compounding	Nexxus	
3	Intelligent Module for nanocomound processing	Ateknea	
	Exploit	able Results	Input for Key exploitable result Nr.
1	Sensor for Microwave	HBH/FhG-ICT	1
2	Knowledge on microwave spectroscopy -	HBH/FhG-ICT	1
3	Sensor for thermal conductivity	Hukseflux	1
4	Knowledge on optical spectroscopy	FhG-ICT	1
5	Knowledge on Raman spectroscopy	FhG-ICT	1
6	Sensor for ultrasonic spectroscopy	Ateknea	1
7	Sensor for nanocompound rheology	Gneuss	1
8	Optical multi-spot temperature sensor	FOS	1
9	Sensors for pressure	FOS	1
10	Knowledge on nanocompound processing	AIMPLAS/FhG- ICT/Nexxus/Colorex/Addiplast	2
11	Nexxus channel technology for nanocompound processing	Nexxus	2
12	Knowledge on nanocompound characterisation	AIMPLAS/FhG- ICT/Nexxus/Colorex/Addiplast	1/2/3

Figure 4.3.1 List of exploitable results of the project

Short description of the Nexxus channel

Figure 4.3.2: 1. Nexxus Melting NXBG200W80 ME, 2. Pumping group for the slurry, 3. Nexxus Degassing NXBG200W80 DE