Optimization Framework for Design of Morphing Wings

Jian Yang, Raj Nangia & Jonathan Cooper
Department of Aerospace Engineering, University of Bristol, UK
&
John Simpson
Fraunhofer IBP, Germany
Traditional Aircraft Design

- Single point for the design
 - Minimum weight
 - Maximum C_L/C_D
 - Suboptimal elsewhere

maximise cruise speed – ie cruise at high altitude

$$R = \frac{V}{fg} \left(\frac{C_L}{C_D} \ln \left(\frac{W_1}{W_2} \right) \right)$$

a measure of thermodynamic efficiency – ie minimise fuel consumption f

a measure of aerodynamic efficiency – ie minimise drag D

a measure of structural efficiency – ie minimise fixed weight W_2
Morphing, when applied to aerospace vehicles, is a technology or set of technologies applied to a vehicle that allow its characteristics to be changed to achieve better performance or to allow the vehicle to complete tasks it could not otherwise do.

Jason Bowman, AFRL/VSSV
Configuration Morphing

• Change in planform
 – Aircraft control
 – Aircraft performance

• Change in mission
 – High aspect-ratio glide
 – Attack mode

MFX 1, Span & Sweep
Configuration Morphing

(Joshi et al., 2004, AIAA)
Performance Morphing

• Change in structural properties
 – Stiffness
 – Camber
 – Leading / trailing edge shape

• Aircraft control

• Aircraft performance
 – Lift / drag
 – Roll control
 – Loads
Variable Stiffness Morphing

- Range of different adaptive stiffness methodologies to be explored
- Vary EI_x, EI_y, GJ, flexural axis using changes in internal structure
- Changes to spar orientation, rib position, spar cap position – used in several previous EU projects
 - 3AS, SMorph, NOVEMOR
Aims

• Develop an inverse design approach
 - optimise internal wing stiffness distribution
 - morphing capability.

• Meet optimal aerodynamic shape throughout the flight envelope

• Define the required changes in stiffness / elastic axis

• Minimize the amount of morphing

• Minimize the weight

• Satisfy any other constraints – to be defined progressively
Inverse Design Approach

- Define required aerodynamic distributions
- Define required wing shapes – Twist / camber / bending
- Optimise weight to determine stiffness distributions
- Evaluate required stiffness changes
- Determine morphing concept(s) to achieve stiffness changes

![Diagram showing the inverse design approach process]

Flight Condition 1
- Aerodynamic pressure distribution
 - Aeroelastic shape

Flight Condition 2
- Aerodynamic pressure distribution
 - Aeroelastic shape

Structural Optimisation
- Static Aeroelastic Weight Optimisation
 - Stiffness Distribution and Jig Shape

Morphing requirements
Wing Aerodynamic shape
Via Lifting Surface VL or DL (lattice) (Lamar) mean camber for minimum drag

• Planform dimensions

<table>
<thead>
<tr>
<th></th>
<th>wing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspect ratio (AR)</td>
<td>12</td>
</tr>
<tr>
<td>Taper ratio</td>
<td>0.5</td>
</tr>
<tr>
<td>Sweep angle</td>
<td>10 degrees</td>
</tr>
<tr>
<td>Semi-span</td>
<td>20 meters</td>
</tr>
</tbody>
</table>

Camber lines required to achieve M0.74 loading

Vortex panels

Mean camber lines
Aerodynamic shape design
- Lifting Surface, Mach Effect

- ΔC_p distributions

Design for 4 different test cases – thin lifting surface
Aerodynamic shape

- Super-Critical (twist & Camber)
- Panel & Euler (AR=12, Ma=0.74)
Aerodynamic shape
Different approaches, 0.5 C_L
Structural model

(a)

(b)

Cross section

- wingbox, front
- wingbox, rear
- centre line

t_L, t_R, t_H,
l, b_c, d
Weight Optimisation

Minimize weight

\[W(t) = \rho \sum_{i=1}^{N_e} [2b_c t_{Hi} + d(t_{Li} + t_{Ri})] l \]

subject to

\[g_j(u, t) \geq 0, \ j = 1, \ldots, n_j. \quad \text{(constraint functions)} \]

• Consider deflection/stress constraints & minimum gauge of design variables.

• Use optimality criteria method
Application: Aero design

Mach 0.74

Camber, M0.74

ΔCp, M0.74

Cp√x, M0.74

Mach 0.6

Camber, M0.6

ΔCp, M0.6

Cp√x, M0.6

Mach 0.4

Camber, M0.4

ΔCp, M0.4

Cp√x, M0.4

Mach 0.25

Camber, M0.25

ΔCp, M0.25

Cp√x, M0.25
ΔC_p (using M0.74 camber)

(a) ΔC_p, M0.6

(b) ΔC_p, M0.4

(c) ΔC_p, M0.25

(d) $\Delta C_{p\sqrt{x}}$, M0.6

(e) $\Delta C_{p\sqrt{x}}$, M0.4

(f) $\Delta C_{p\sqrt{x}}$, M0.25
Spanwise loadings - effect of M

Non-D by CL

0.74M camber. Evaluated at different test cases
Local AoA required to achieve reference loading of **M0.74** with M0.74 camber.
ΔC_p Distributions before --- & after adding twist ---

ΔC_p & $\Delta C_p \sqrt{x}$

30% Note
Structural Optimisation, 0.74M solution process

Weight Convergence - fast

Flex. axis varies as function of t_R / t_L
Predicted Jig shapes & Twist, different M

Using M0.74 camber
Achieving M0.74 pressure dist using wingbox twist only
Morphing required
(Twist only example from half span)

Elastic twist

GJ

ΔGJ
Morphing required
(Twist & camber morphing example)
Morphing required
(Twist & camber morphing example)

Elastic twist

GJ

ΔGJ

Note Strong Reduction
Twist & camber
Camber morphing case

- TE Morph: to achieve desired spanwise loading and reduce RBM
LE morphing effects

- LE Morph: to reduce leading edge suction and flow separation

(a) M0.25, Without LE morphing

(b) M0.25, With LE morphing
LE morphing

(a) M0.25, constant LE morphing
(b) M0.25, varying LE morphing

(c)

\[\Delta C_P \]

\[x/c \quad 1 \quad 0 \quad y/s \]

\[0 \quad 0.5 \quad 1 \]

\[-1 \quad 0 \quad 1 \]

\[0 \quad 1 \quad 2 \quad 3 \]

\[\Delta C_P \]

\[x/c \quad 1 \quad 0 \quad y/s \]

\[0 \quad 0.5 \quad 1 \]

\[-1 \quad 0 \quad 1 \]

\[0 \quad 1 \quad 2 \quad 3 \]

(c)

\[\text{LE droop angle (degs)} \]

\[0 \quad 5 \quad 10 \quad 15 \quad 20 \]

\[y/s \]

- constant LE morph
- varying LE morph
Mean camber shape

- Variations from M 0.74 to M 0.25 case
Conclusions

• Multiple point design useful for enhancing aircraft efficiency
• Adaptive wing / morphing concepts reviewed
• An inverse design approach to optimise the internal stiffness distribution & morphing capabilities
• Application to a regional aircraft wing
• Weight reductions achieved via structural optimisation
• Required morphing examined to meet the multi-design points
• Need a lot of twist morphing to achieve required shape over flight envelope
• Use of camber morphing reduces the amount of required twist
Ongoing Work

• Continue with aerodynamic shape determination
 – Configuration / flight conditions (Panel, Euler)
 – Winglet
 – Controls

• Implement inverse approach on coupled-beam model, using more advanced Aero
 – Panel & Euler, Bodies

• Determine required stiffness variations in terms of morphing approaches

• Investigate reasonable morphing requirements
PANAIR Results

- M0.25, varying twist
Euler results

Design M 0.74

Off-design, Mach 0.6