HELM – FINAL REPORT – Figures and Tables

Fig. 1: design of MW-CVI plant: dimension of MW and CVI parts(a) and field homogeneity (b)

Fig. 2: assembly in ATL facilities (UK)

Fig. 3: Scheme of the microwave furnace

Fig. 4: Infiltration set-up representation.

Fig. 5: Samples produced by MW RSI. A Si SiC ceramic antiballistic plate (Petroceramics), Parts of a Si SiC composite for brake disks (BSCCB) and a Si SiC foam (Erbicol).

Fig. 6: 3D and lateral view of the MW furnace including the main components

Fig. 7: MW-CVI plant assembled and tested in Pisa

Fig. 8: SiC Nicalon fabric (left), hand-made preform (center) and infiltrated preform (right)

Fig. 9. Assembled MW-furnace for LSI of SiC foams.

Fig. 10: Scheme of the new design of the MW furnace for GE and picture of the final set-up

	Overall Carbon	Relative Carbon	LCC (energy	
	footprint	footprint	included)	
	kg CO2	kg CO2/kg	€/kg	
MW ind CVI	4.169	2,20	104,70€	
MW ind LSI	5.730	0,76	42,04€	
MW ind GE	3.804	0,30	19,09€	
MW ind PIP	975	0,11	15,20€	

Table 1: MW industrial Furnace absolute and relative carbon footprint and LCC results.

			MW Industrial	Improved	% vs
kg CO2 eq / kg	Conventional	MW Lab scale	scale	scenarios	conventional
CVI process	1161		2226	687	41%
LSI BSCCB process	82	78,2	61,8	42,7	48%
LSI Erbicol process	74		50		32%
GE process	0,7	3,2	1,7	1,1	-57%
PIP process	4,5	6,4	5,5	4,2	7%

Table 2: Carbon footprint assessment for every pillar at every stage of the project.

	Exergy yield		Unit exergy consumption		Unit exergy cost				
	Conv. furnace	MW furnace	Variation	Conv. furnace	MW furnace	Variation	Conv. furnace	MW furnace	Variation
CVI process	0.92%	2.13%	+131.52%	97.3	45.79	-52.94%	114.08	82.19	-27.95%
LSI process (foams)	12.68%	54.40%	+329.02%	6.39	1.73	-72.93%	7.88	1.84	-76.65%
LSI process (antiball.)	14.70%	33.90%	+130.61%	5.21	2.48	-52.40%	5.58	2.97	-46.77%
GE process	83.39%	88.03%	+5.56%	1.16	1.11	-4.31%	1.16	1.11	-4.31%
PIP process	60.22%	63.37%	+5.23%	1.57	1.49	-5.10%	1.66	1.57	-5.42%

Table 3: exergy balances related to the different techniques

Industrial scenarios

materials Antiballistic plates Aerospace Brake disks SIC foams Graphite PETRO-HERAKLES HERAKLES SKT CERAMICS 5 Thermal treatments (r-CVI) PETROhigh heating rates (LSI like) AGI BSCCB ERBICOL IMERYS CERAMICS SKT PETRO-CERAMICS AGI SKT BSCCB

Fig. 11: Pillars and industrial applications considered in HELM project

Plants	CVI	LSI and GE	PIP		
laboratory	-	1 LSI (new), 1 GE	1 PIP (refurb)		
		(refurb)			
pilot	1	2	1		
Total per pillar	1	4	2		
Total in HELM	7 (4 pilot plants)				
project		_			

Table 4: number of plants developed in HELM project

Fig. 12: Demonstration samples of HELM project products: (a) antiballistic plates; (b) SiSiC foams

Fig. 13: HELM Website

Fig. 14: HELM Social Media

Fig. 15: HELM Newsletters

Fig. 16: HELM Brochure

Fig. 17: HELM Posters

Fig. 18: HELM Events and Conferences participation

Fig. 19: HELM Final Workshop