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4.1 Final Publishable Summary Report

• An executive summary (not exceeding 1page)

This report summarizes research activities and academic achievement of the fellow, Dr. Yongyun
Hwang, from 1st September 2012 to 8th October 2013, by carrying out the project ‘Pattern formation
in microorganism suspensions: shear and confinement’. The project leads the fellow to a permanent
academic position, thus it is terminated in the middle of progress.

The research activities for the period have been focused on understanding the role of external shear
flow in a collective behaviour of swimming gyrotactic microorganism suspensions by performing
mathematical and computational analysis of the state-of-the-art continuum model. A summary of
the research activities is as follows:

1. Gaining fundamental understanding and prediction on the role of uniform shear in bioconvec-
tion pattern in gyrotactic swimming microorganism suspensions;

2. Elucidating the physical mechanisms of the blip instability observed in downflowing gyrotactic
swimming microorganism suspensions (currently in progress)

The research activities leads the fellow to the following academic achievement:

1. Two scientific papers are expected in peer-review journals, one of which is already accepted
and the other is currently in preparation. In particular, the first paper will appear in the
Journal of Fluid Mechanics, the leading journal in fluid mechanics,

2. Attended four international and domestic conferences to interact with internationally renowned
academics in the field,

3. Gave four invited talks at academic institutions such as University of York, Imperial College
London, University of Manchester, and University of Cambridge,

4. Have been established research activities in the field of biological fluid mechanics and have
been developing collaboration with academics at University of York (M. A. Bees), University
of Oxford (Dr. W. M. Durham) and University of Cambridge (Dr. O. A. Croze).

5. Gained a permanent academic position at Imperial College London.

• A summary description of project context and objectives (not exceeding
4 pages)

Microorganisms are present in almost every part of temperate aqueous environments, and play a
critical role in pathogenic infection, digestion, reproduction, and food chains in the oceans. They
are also an important source of alternative fuel which can be harvested in bioreactors. Therefore,
understanding and modelling their motility, collective dynamics, and interaction with the environ-
ment are crucial to overcome important challenges of today such as collapse of ecological systems,
global warming, environmental pollution, and energy depletion. However, our understanding of
the dynamics of the swimming microorganisms remains elusive particularly for their collective be-
haviour, which highly interacts with the surrounding fluid flows. Collective behaviors of swimming



microorganisms have been observed in a number of experiments, and their fundamental mechanisms
have often been found to originate from the interaction of microorganism motility with surrounding
fluids. This interaction often involves instability of the suspension, and it eventually leads to large-
scale collective behavior. In this work, we consider the collective dynamics in a gyrotactic swimming
microorganism suspension, bioconvection, and study how hydrodynamic shear affects the collective
dynamics of swimming microorganisms.

Bioconvection is a pattern forming motion observed in shallow suspensions of cells which swim up-
ward (against gravity). The up-swimming cells accumulate at the top and form a layer with dense
population. If the cell concentration is great enough, the heavy layer at the top results in gravita-
tional overturning, leading to a convection pattern analogous to that in Rayleigh-Bénard convection.
Childress and coworkers [6] developed a mathematical model in which they took the vertical drift by
the up-swimming of cells into account, and showed the appearance of the gravitational instability.

The mechanism by which the individual cells swim upward is often governed by biased swimming
of the given cell species in response to external stimuli such as gravity, light, and chemicals (i.e.
taxes) [34, 17, 29]. Of particular interest to the present study are algal cells such as C. Nivalis and
Dunaliella, and colonies such as Volvox, that respond to gravity in the absence of flow. These cells
are structurally featured to be bottom-heavy: their center of mass is located behind the center of
buoyancy. Therefore, when a cell of this type is not oriented vertically, the bottom heaviness results
in a gravitational torque which changes the cell’s swimming direction to align with the vertical. In
a moving fluid, a viscous torque originating from the shear is also applied to the cell. Therefore, in
this case, the cell experiences both gravitational and viscous torques, and the swimming direction
is determined by the balance between them. This process, known as ‘gyrotaxis’, was proposed and
demonstrated by Kessler in a series of pioneering experiments [24, 25, 26]. In particular, he showed
that, in the presence of a downward shear flow, the cells swim toward the region of most rapid
downflow as a result of gyrotaxis.

The gyrotactic nature of the cell has been found to cause instability even in a uniform suspension,
which does not exhibit the instability mechanism of gravitational overturning. Imagine a uniform
suspension in which natural fluctuations create a ‘blob’ of cells denser than its surroundings. The
blob will sink relative to its surroundings, and will create a downward shear flow in its wake. Owing
to the gyrotaxis, other cells in the surroundings swim toward the blob and its wake, where the
downflow is most rapid. The blob therefore becomes denser and creates more rapid downflow,
resulting in instability of the suspension. The fluid motion resulting from this instability mechanism
appears in the form of a bottom-standing plume, which is typically observed in relatively deep
suspensions (d > 1cm where d is the depth of the suspension) [26, 34]. Pedley and coworkers [31]
analysed this instability by describing the swimming of the cell in a deterministic manner with
a prescribed translational diffusivity to take randomness in the cell motion into account. This
is later further extended with an improved description on the cell’s random behaviour observed
to resemble a random walk [33]. They introduced a quasi-steady Fokker-Planck equation for the
probability density function (pdf) of the cells’ orientation, which allowed them to calculate the mean
cell orientation and the related translational diffusivity in a statistical manner. In that study, the
effect of the cells’ swimming on the fluid motions was also assessed although it was found to be
negligible for the gyrotactic instability. Recently, Pedley further extended this model by allowing
the pdf of cell orientation to vary over time and space as well as its swimming direction [30]. The
model was designed to be more general than the early one, so that it can be applied to other cells
such as bacteria and spermatozoa. Thus, it exhibits not only the gyrotactic instability but also the
instability observed in dense bacterial suspensions and shown to be a consequence of the intrinsic
stresslet of swimming cells [41, 9, 37, 38].



While the early studies focused mostly on suspensions in stationary fluid, many swimming microor-
ganisms in aqueous environments are exposed to shear flow; for gyrotactic cells, in particular, the
shear plays a critical role in their swimming behaviour. As mentioned, the swimming direction of a
gyrotactic cell is determined by the balance between gravitational and viscous torques. When the
shear rate is not large, the balance simply makes the cell’s swimming direction tilt towards that of
the shear. With an increase of the shear rate, the swimming direction is tilted more and more and
the effect of the viscous torque gradually becomes dominant. When the shear rate is large enough,
the viscous torque dominates over the gravitational one. In this case, the swimming direction of
the cell becomes unsteady and changes periodically in time [32, 34], similarly to that of a passive
particle in a shear flow [20]. Owing to this behaviour, gyrotactic cells in a strong shear flow tumble
and exhibit greatly reduced up-swimming velocity on average. As a consequence, dispersion of the
cells in the vertical direction is significantly disturbed, leading to the formation of layers of cells in
regions of strong shear [11, 19].

In spite of the interesting behaviour of gyrotactic cells under shear flows, there have been few studies
of how shear affects the bioconvection pattern. Only recently, this issue has been addressed in an
experimental study by [7], in which they examined the effect of a cross flow on a bioconvection
pattern. They showed that the cross flow tilts the convection pattern in the direction of the shear.
Also, with an increase of the flow rate, they observed an increase in the wavelength of the convection
pattern. In particular, when the cell concentration is relatively low, the convection pattern was
shown to be nearly extinguished. In spite of this interesting observation, no theoretical study which
examines the role of shear in bioconvection is currently available, and thus no sound explanation of
the observation has yet been provided.

The purpose of the present study is therefore to understand how shear affects the instability of a
shallow suspension of gyrotactic cells within a theoretical and computational framework. To gain
fundamental understanding of the role of shear, we consider a very simple flow configuration in
which a uniform horizontal shear is imposed in a channel by moving the upper and lower walls in
opposite directions: i.e. a plane Couette flow (see also figure 1). The mathematical description of
the suspension follows [30] and a few approximations are then made. Particular emphasis in the
analysis is given to understanding the physical mechanisms by which the shear affects bioconvective
instability. From this perspective, we carefully reexamine the physical mechanisms of bioconvection,
and this enables us to find an additional physical mechanism for the instability that originates from
negative cross diffusion in the unstably stratified circumstances. We will see that shear orchestrates
these three instability mechanisms in a different manner, resulting in intricate competition dynamics
between them.

• A description of the main S & T results/foregrounds (not exceeding 25
pages)

Problem formulation

- Equations of motion

We consider a fluid flow with density ρ and kinematic viscosity ν in which gyrotactic cells are
suspended with gravity heading downward. We denote x∗, y∗, and z∗ as the streamwise, wall-normal,
and spanwise directions, respectively, and t∗ is the time (the superscript ∗ indicates dimensional
variables). The suspension is bounded by two infinitely long and wide parallel walls, respectively
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Figure 1: Schematic diagram of flow configuration in the present study.

located at y∗ = ±h, and they are set to move in opposite directions with velocity U∗
0 . The fluid

motion is described by the following equations:

∇∗ · u∗ = 0, (1)

∂u∗

∂t∗
+ (u∗ · ∇∗)u∗ = −1

ρ
∇∗p∗ + ν∇2u∗ − n∗υg′j+∇∗ · Σ∗

p, (2)

Here, u∗ is the velocity, p∗ the pressure, n∗ the cell number density, g′ = g∆ρ/ρ the reduced gravity
(∆ρ is the density difference between cell and fluid, and g the gravitational acceleration), υ the
volume of a single cell, and Σ∗

p the additional stress term caused by the presence of swimming cells
in the suspension. This term Σ∗

p was first analysed by [33], in which they showed that it is dominated
by the stresslets associated with the locomotion of the cells. Recent analyses have shown that this
term actually plays a cruical role in generating an instability in dense suspensions of ‘pusher’-type
swimmers (e.g. bacteria and spermatozoa), which generate thrust by pushing the fluid behind the
cell body [41, 37, 38, 30]. However, in the present study, we will consider only ‘puller’-type swimmers
(e.g. Chlamydomonas), which swim by pulling fluid from the front to the back. In this case, the
cell-stress term is not in general responsible for generating such an instability [37, 38, 30]. Also,
the instability in bioconvection is typically observed in dilute suspensions (typically less than 1% of
cell concentration), in which this term was shown to be negligible [33]. Therefore, this term will be
neglected throughout the present study.

For the spatial distribution and orientation of the cells in the suspension, we consider a Smoluchowski
equation which describes a conservation law for the probability density distribution as a function of
spatial position x∗ = (x∗, y∗, z∗) and of the unit vector in the swimming direction, e = (e1, e2, e3):

∂Ψ∗

∂t∗
+∇∗ · (dx

∗

dt∗
Ψ∗) +∇e · (

de

dt∗
Ψ∗) = 0, (3a)

where
dx∗

dt∗
= u∗ + V ∗

c e− V ∗
s j−D∗

T · ∇∗(lnΨ∗), (3b)

de

dt∗
=

1

2B
[j− (j · e)e] + 1

2
Ω∗ ∧ e+ α0e ·E∗ · (I∗ − ee)−D∗

R∇e(lnΨ
∗). (3c)

Here, Ψ∗(x∗, e, t∗) is the probability density distribution function, i, j, and k are respectively unit
vectors in the streamwise, wall-normal and spanwise directions, V ∗

c is the cell swimming speed, V ∗
s



the cell sedimentation speed, D∗
T the translational diffusivity tensor, B = να⊥/2gl is the gyrotactic

time scale (l is the center of gravity offset), Ω∗ the vorticity, E∗ the strain rate tensor, and D∗
R the

rotational diffusivity. Here, α0 in (3c) and α⊥ in the definition of B are constants given by geometry
of the cell: for example, α0 = 0.31 and α⊥ = 6.8 for C. Nivalis [31]. In the present study, we assume
for simplicity that the cell is completely spherical, giving α0 = 0 and α⊥ = 6. It is worth pointing
out that this assumption excludes the appearance of instability mechanisms due to the cell shape:
for example, rod-like swimming cells in suspension may yield the instability proposed by e.g. [27]
and [36]. However, we should also point out that, in many practical situations, this is not a great
limitation, as typical gyrotactic cells are often close to a spherical shape (especially Volvox ). We also
note that the sedimentation speed of the cell V ∗

s is explicitly included, as it appears to be crucial at
high shear rates.

The probability density function is decomposed such that Ψ∗(x, e, t) ≡ n∗(x∗, t∗)f(x∗, e, t∗) where
f(x∗, e, t∗) is the probability density function only for the swimming direction of the cell, satisfying∫

Se

f(x∗, e, t∗) d2e = 1, (4a)

where Se is surface of a unit sphere on which the e-space is defined. The probability density
distribution function f(x∗, e, t∗) allows us to calculate a local ensemble average of an arbitrary
variable at a given location x∗: for example, the local ensemble average of the swimming direction
at a given location x∗ and time t∗ is given by

⟨e⟩(x∗, t∗) ≡
∫
Se

ef(x∗, e, t∗) d2e. (4b)

It is convenient to split (3) into two equations respectively for n∗ and f . Integrating (3) over e-space
yields the equation for n∗:

∂n∗

∂t∗
+∇ · [n∗(u∗ + V ∗

c ⟨e⟩ − V ∗
s j)] = ∇∗ · (D∗

T · ∇∗n∗), (5)

where the diffusivity tensor is approximated by the simplified expression given by [33]:

D∗
T = V ∗

c
2τ(⟨ee⟩ − ⟨e⟩⟨e⟩). (6)

Here, τ is the correlation time of a cell’s random walk, which we will set as a constant. However, in
principle, it does not need to be independent of shear rate or of the swimming direction e. We now
multiply (5) by f and subtract it from (3). Dividing by n∗ then yields the equation for f :

∂f

∂t∗
+ (u∗ · ∇)f +∇e ·

{ 1

2B
[j− (j · e)e]f +

1

2
Ω∗ ∧ ef

}
= D∗

R∇e
2f. (7)

Here, in obtaining (7), the translational transport by swimming and diffusion of cells is neglected
as its contribution appears to be very small for the system of interest: i.e. h ∼ O(1cm) and
U∗
0 /h ∼ O(B−1).

Regarding the equations of motion here, some additional remarks should be made. First, the ran-
domness in the behaviour of the cell is assumed to be modeled only by the translational diffusivity
tensor D∗

T and the rotational diffusivity D∗
R. However, the randomness of the real cells exists in

various properties (e.g. swimming speed, size, shape, etc). In this respect, this setting itself is
essentially ad hoc, as also pointed out by [29]. Furthermore, we also assume that the rotational
diffusivity D∗

R does not depend on the shear rate. However, this appears not to be true: a recent



experimental study has shown that the rotational diffusivity exhibits a very large value at the shear
rate at which a deterministic swimmer would start to tumble [13]. Finally, it should be pointed out
that the translational diffusion model (6) with a ‘constant’ τ may not be a good approximation par-
ticularly when the shear rate is quite large. This issue has been addressed by several recent studies
[15, 28, 1, 8], which have proposed that the spatial dispersion of the cells in strong shear flows is
better described by the so-called generalised Taylor dispersion theory. We note that, in practice,
the difference between the present analysis and Taylor dispersion theory appears in calculating D∗

T .
In particular, the expression (6) in the present study requires an experimental measurement of the
correlation time scale τ as in [16] and [42, 43], and such a measurement is not available in the
presence of shear. However, it has been found that (6) with constant τ is not a bad approximation
when the shear rate is not very large [8].

- Non-dimensionalisation

The governing equations (1), (2), (5), and (7) are non-dimensionalised using the following dimen-
sionless variables:

t =
t∗DV

h2
, x =

x∗

h
, u =

u∗h

DV
p =

p∗h2

ρµDV
, n =

n∗

N
, Vc =

V ∗
c h

DV
, Vs =

V ∗
s h

DV
, (8)

where DV = V ∗
c
2τ is the scale for the translational diffusivity, and N = 1/V

∫
Ω
n∗dV where Ω is

the domain of interest with its volume V . The equations of motion in terms of these variables are
then given as follows:

∇ · u = 0. (9a)

Sc−1 ∂u

∂t
+ Sc−1(u · ∇)u = −∇p+∇2u− Ra nj, (9b)

∂n

∂t
+∇ · [n(u+ Vc⟨e⟩ − Vsj)] = ∇ · (DT · ∇n), (9c)

D−1
R

∂f

∂t
+D−1

R (u · ∇)f +∇e · [λ[j− (j · e)e]f +
1

2DR
Ω ∧ ef ] = ∇e

2f, (9d)

with boundary conditions
u|y=±1 = (±U0, 0, 0), (9e)

[n(u+ Vc⟨e⟩ − Vsj)−DT · ∇n]|y=±1 · j = 0, (9f)

where

Sc ≡ ν

DV
, Ra ≡ Nυg′h3

DV ν
, DT =

D∗
T

DV
, λ =

1

2BD∗
R

, DR ≡ D∗
Rh

2

DV
. (9g)

Here, Sc is the Schmidt number, Ra, the Rayleigh number, DT , the dimensionless translational dif-
fusivity tensor, λ, the dimensionless inverse of the gyrotactic time scale, and DR is the dimensionless
rotational diffusivity. We note that the boundary condition for n imposes zero flux across the walls,
which enables the total number of cells to be preserved in time. On the other hand, a boundary
condition for f is purposely excluded because the further approximation of (9d) does not allow us
to prescribe it. For this reason, we simply assume that (9d) holds even at the walls although this is
not technically correct. From this viewpoint, it should be pointed out that prescribing the boundary
condition for f might allow one to describe the reported interaction of swimming cells with the solid
boundary [22]. However, this issue is beyond the scope of the present study.

- Basic state



We calculate a basic state, about which we will add small perturbations. Geometrical homogeneity
of the given flow configuration in the streamwise and spanwise directions gives

∂

∂x
=

∂

∂z
= 0, u0 = (Ū , 0, 0). (10)

We first rescale the base-flow velocity Ū with the upper-wall velocity, so that the Reynolds number
for the given shear is extracted: i.e. u0 = (ScRe U, 0, 0) where Re = U∗

0h/ν is the Reynolds number.
The equations for the basic state are then given as

d2U

dy2
= 0, (11a)

dP0

dy
= −Ra n0, (11b)

[
Vc⟨e2⟩0 − Vs

]dn0

dy
= D22

T0

d2n0

dy2
, (11c)

∇e · [λ[j− (j · e)e]f0 +
S

2
Ω0 ∧ ef0] = ∇e

2f0, (11d)

with boundary conditions,
U |y=±1 = ±1, (11e)

(Vc⟨e2⟩0 − Vs)n0|y=±1 −D22
T0

dn0

dy
|y=±1 = 0. (11f)

Here, S (≡ ScRe/DR = U∗
0 /D

∗
Rh) is the dimensionless shear rate normalised by the rotational

diffusivity, P0 is the basic-state pressure, and the subscript 0 in ⟨e2⟩0 and D22
T0 indicates statistical

properties obtained with f0. We note that (11d) does not contain any partial derivatives in x and
that it depends only on e. This allows us to solve it separately from the other equations. Once f0(e)
is obtained, it can be used to build the following solutions of (11a) and (11c):

U(y) = y, (12a)

n0(y) = N0e
κy, (12b)

with

N0 =
κ

sinhκ
, κ =

Vc⟨e2⟩0 − Vs

D22
T

. (12c)

where N0 is a normalisation constant such that 1/V
∫
Ω
n0dV = 1.

- Linearised equations for small perturbations

Now, we consider a small perturbation around the basic state:

u = u0(x) + ϵu′(x, t) +O(ϵ2), p = P0(x) + ϵp′(x, t) +O(ϵ2), (13)

n = n0(x) + ϵn′(x, t) +O(ϵ2), f = f0(e) + ϵf ′(x, e, t) +O(ϵ2),

where u′ = (u′, v′, w′). The linearised equations of motions are then given as

∂u′

∂x
+

∂v′

∂y
+

∂w′

∂z
= 0, (14a)



Sc−1 ∂u
′

∂t
+Re U

∂u′

∂x
+Re v′

∂U

∂y
= −∂p′

∂x
+∇2u′, (14b)

Sc−1 ∂v
′

∂t
+Re U

∂v′

∂x
= −∂p′

∂y
+∇2v′ − Ra n′, (14c)

Sc−1 ∂w
′

∂t
+Re U

∂w′

∂x
= −∂p′

∂z
+∇2w′, (14d)

∂n′

∂t
+ ScRe U

∂n′

∂x
+ Vc⟨e1⟩0

∂n′

∂x
+ (Vc⟨e2⟩0 − Vs)

∂n′

∂y
+ Vc⟨e3⟩0

∂n′

∂z

+ (v′ + Vc⟨e2⟩′)
dn0

dy
+ Vcn0

(∂⟨e1⟩′
∂x

+
∂⟨e2⟩′

∂y
+

∂⟨e3⟩′

∂z

)
− ∂D12

T
′

∂x

∂n0

∂y
− ∂D22

T
′

∂y

∂n0

∂y
− ∂D32

T
′

∂z

∂n0

∂y
−D22

T
′ d2n0

dy2

− D11
T0

∂2n′

∂x2
− 2D12

T0

∂2n′

∂x∂y
−D22

T0

∂2n′

∂y2
−D33

T0

∂2n′

∂z2
= 0. (14e)

D−1
R

∂f ′

∂t
+ S U

∂f ′

∂x
+∇e · [λ[j− (j · e)e]f ′ +

S

2
Ω0 ∧ ef ′]−∇e

2f ′

= −D−1
R ∇e · [

1

2
Ω′ ∧ ef0], (14f)

with boundary conditions
u′|y=±1 = v′|y=±1 = w′|y=±1 = 0, (14g)

[(Vc⟨e2⟩0 − Vs)n
′ + Vc⟨e2⟩′n0]−D22

T0

∂n′

∂y
−D22

T
′ dn0

dy
|y=±1 = 0. (14h)

Here, the superscript ′ for ⟨ei⟩ and Dij
T (i, j = 1, 2, 3) indicates the statistical properties obtained

with f ′.

It appears that performing a linear stability analysis directly with (14) is quite difficult as f ′ is
six-dimensional owing to its dependence on t, x, and e. A numerical approach evidently requires
extremely expensive computational cost. Given the number of parameters in the present system,
such an approach would not be feasible in practice. Therefore, some approximations should be made
to overcome this difficulty. In the present study, we assume that f ′ is quasi-steady and quasi-unform,
yielding the following equation for f ′ instead of (14f):

∇e · [λ[j− (j · e)e]f ′ +
S

2
Ω0 ∧ ef ′]−∇e

2f ′ = − 1

2DR
∇e · [Ω′ ∧ ef0]. (15)

It should be mentioned that this approximation would be strictly valid only if f ′ is slowly varying
in time and space: f ′(t,x, e) = f ′(T,X, e) where T = δt and X = δx with δ ≪ 1. Therefore, the
approximation may not be good when the vortical perturbation Ω′ carries rapidly varying spatio-
temporal fluctuation of high wavenumber or frequency. However, such a vortical perturbation would
probably be damped by viscosity, thus the approximation may not significantly disturb the range
where the instability appears. We also note that the approximation removes the partial derivatives
in t and x in (14f). Thus, the initial and boundary conditions for these independent variables cannot
be set. Also, this approximation makes the present approach practically identical to that in [33].

Under this approximation, the left-hand side of (15) turns out to be linear and depends only on the
swimming direction vector e. On the other hand, the right-hand side is simply a linear combination



of e-dependent functions with coefficients ω′
1, ω

′
2, and ω′

3 which are respectively the streamwise,
wall-normal, and spanwise components of Ω′(= (ω′

1, ω
′
2, ω

′
3)). This suggests that the solution of (15)

is written in the following form:

f ′(x, e, t) =
1

DR
[ω′

1(x, t)f
′
ω1
(e) + ω′

2(x, t)f
′
ω2
(e) + ω′

3(x, t)f
′
ω3
(e)]. (16)

Here, f ′
ωi
(e) (i = 1, 2, 3) is the solution of (15) depending only on e when DR = 1, ω′

i = 1, and
ω′
j = 0 for j ̸= i. The solution form (16) implies that ⟨e⟩′ and D′

T in (14e) are also written as a
linear combination of ω′

i. Examining numerical solution of f ′
ωi
(e) allows us to write ⟨e⟩′ and D′

T

as follows:

⟨e1⟩′ =
ζ1
DR

ω′
3, ⟨e2⟩′ =

ζ2
DR

ω′
3, ⟨e3⟩′ =

ζ3
DR

ω′
1 +

ζ4
DR

ω′
2, (17a)

D12
T

′
=

ζ5
DR

ω′
3, D22

T
′
=

ζ6
DR

ω′
3, D32

T
′
=

ζ7
DR

ω′
1 +

ζ8
DR

ω′
2, (17b)

where ζi are essentially obtained from the first- and the second-order moments of f ′
ωi
(e), and they

are given in (20).

The approximation allows us to consider the following normal-mode solution of (14),

v′(x, y, z, t) = v̂(y)ei(αx+βz−ωt) + c.c, η′(x, y, z, t) = η̂(y)ei(αx+βz−ωt) + c.c

n′(x, y, z, t) = n̂(y)ei(αx+βz−ωt) + c.c, (18)

where α and β are respectively the streamwise and spanwise wavenumbers, and ω is the frequency,
resulting in the following equations for linear stability:

iω

 Sc−1(k2 −D2) 0 0
0 Sc−1 0
0 0 I

 v̂
η̂
n̂

 =

 LOS 0 k2Ra
iβReDU LSQ 0
Dn0 + Lv

C Lη
C LC

 v̂
η̂
n̂

 ,

(19a)

where
LOS = iαReU(k2 −D2) + iαReD2U + (k2 −D2)2, (19b)

LSQ = iαReU + (k2 −D2), (19c)

Lv
C =

[
G1

(
ζ2Dn0

iα

k2
− n0(ζ1

α2

k2
− ζ2D

iα

k2
− ζ3

β2

k2
)
)
−G2

(
ζ6D2n0

iα

k2

− ζ5Dn0
α2

k2
+ ζ6Dn0

iα

k2
D + ζ7Dn0

β2

k2

)]
(k2 −D2), (19d)

Lη
C =

[
G1

(
ζ2Dn0

iβ

k2
− n0(ζ1

αβ

k2
− ζ2D

iβ

k2
+ ζ3

αβ

k2
)
)
−G2

(
ζ6D2n0

iβ

k2
+ ζ5Dn0

αβ

k2

− ζ6
iβ

k2
Dn0D + ζ7Dn0

αβ

k2

)]
D −G2ζ8Dn0iβ, (19e)

LC = iαScReU + iαVc⟨e1⟩+ (Vc⟨e2⟩ − Vs)D + iβVc⟨e3⟩
+ α2D11

T0 − 2iαD12
T0D −D22

T0D
2 + β2D33

T0. (19f)

with boundary conditions,
v̂|y=±1 = Dv̂|y=±1 = 0, η̂|y=±1 = 0,



Parameter Description Reference Value Units

ρ Fluid density 1 g/cm3

g Gravitational acceleration 980 cm/s2

ν Dynamic viscosity 0.01 cm2/s
d(= 2h) Depth of suspension 0.5 cm
N Cell mean number density 1× 104 ∼ 1× 108 cells/cm3

∆ρ/ρ Relative cell density 0.05 −
υ Cell volume 2.1× 10−9 cm3

g′(= g∆ρ/ρ) Relative gravity 49 cm/s2

l Center of gravity offset 10−4 cm
α0 Cell geometry constant 0 −
α⊥ Cell geometry constant 6 −
B gyrotactic time scale 3.4 sec
U∗
0 /h Shear rate 0 ∼ 0.74 1/s

V ∗
c Swimming speed 6.3× 10−3 cm/s

V ∗
s Sedimentation speed 6× 10−4 cm/s

τ Correlation time scale 5 s

D∗
V (= V ∗

c
2τ) Nominal translation cell diffusivity 1.98× 10−4 cm2/s

D∗
R Rotational diffusivity 0.067 1/s

Table 1: Parameters and their reference values in the present study. Most of the parameters for the
cell properties are taken from the data for C. Nivalis [33, 3, 30].

[
(Vc⟨e2⟩0 − Vs − iαD12

T0)n̂−D22
T0Dn̂+ (G1ζ2n0 −G2ζ6Dn0)( iα

k2
(k2 −D2)v̂ +

iβ

k2
Dη̂

)]
y=±1

= 0, (19g)

where G1 describes the importance of swimming relative to rotational diffusion, and G2 represents
the importance of translational diffusion relative to rotational diffusion. Here, LOS is the Orr-
Sommerfeld operator, LSQ the Squire operator, LC the advection-diffusion operator for the cell
number density, Lv

C the coupling operator between v̂ and n̂, and Lη
C the coupling operator between

η̂ and n̂. We note that if G1 = G2 = 0, the form of the linearised equation is identical to that for
Rayleigh-Bénard convection with a cross flow [14, 23, 21]. Computation for the linear instability by
excluding the operators for η (i.e. LSQ, L

η
C and iβReDU) show that their contribution is small, as

one might have expected from Squire’s theorem [10, 39] and the fact that the wall-normal vorticity η′

in the Squire equation becomes only a passive variable if Lη
C = 0. However, it should be mentioned

that these operators induce large temporal transient growth of the perturbation even for the stable
linear system and that they play a crucial role in the disturbance amplification in bypass transition
[12, 5, 35] and fully-developed turbulent flows [18]. This instability, which grows algebraically in
inviscid flows [12], can be typically analysed by the so-called ‘non-modal’ stability analysis [39, 40].
However, this mechanism is active only for Re ≥ 20, at least [39], whereas the Reynolds number in
the present study is less than 20 (see table 2). Therefore, this transiently growing instability can be
safely neglected.



Parameter Description Reference Value

Sc Schmidt number 50
Ra Rayleigh number 101 ∼ 105

S Shear rate normalised by D∗
R 0 ∼ 11

Re Reynolds number of base-flow shear 0 ∼ 18
λ gyrotactic time scale normalised by D∗

R 2.2
DR Rotational diffusivity normalised by D∗

V 21

Table 2: Dimensionless parameters and their values in the present study.

Parameters

A list of parameters and their reference values are summarised in table 1. As in previous studies
[33, 3, 30, e.g.], most of the parameters are taken from the values relevant for C. Nivalis except α0

and α⊥, which are set for a spherical cell. We note that the correlation time scale for the translational
diffusivity model is chosen as τ = 5s instead of τ = 1.3s used in e.g. [30] because this value was
shown to give better agreement with the experimental data [3]. The depth of the suspension and
the shear rate are chosen by considering typical conditions for laboratory experiments [11, 7], so
that the results can be compared with the experimental data when available. The dimensionless
parameters and their reference values are given in table 2.

Fokker-Planck equation

- Basic state

The solution of the Fokker-Planck equation f0(e) under uniform shear was extensively discussed
in [4]. For S = 0, the numerical solution is identical to the analytic solution in [33] (f0(θ) =
λ/(4π sinhλ)eλ cos θ), which is symmetric about the e2-axis (figure 2a). As the shear rate S increases,
the peak location of f0(e) is tilted in the direction of shear. However, with increasing S, the peak
value decreases and f0(e) tends to be distributed more uniformly.

The mean swimming direction vector ⟨e⟩0 and the diffusivity tensor DT0 are computed using the
calculated f0(e). Figure 3 (a) shows the mean swimming direction vector. For S = 0, only the
vertical component appears, implying that the cells swim only upward in this case. With an increase
of S, this component of the mean swimming vector gradually decreases. On the other hand, the
streamwise component increases until S ≃ 5, after which it also decays with shear. We note that the
shear rate at which the deterministic swimmer would experience tumbling is Sc = 4.4, suggesting
that the decay of the streamwise component is probably associated with this. For very large shear
rate (S > 10), both components become small although the streamwise one is more persistent than
the vertical one. The spanwise component is found to be zero for all S as is to be expected by
symmetry. The diffusivity tensor is also shown in figure 3 (b). When the shear rate is small, DT0

generally appears to be highly anisotropic. For S = 0, D22
T0 is smaller than D11

T0 and D33
T0, and

D12
T0 = 0. With the increase of the shear rate from S = 0, D22

T0 and D33
T0 increase while D11

T0 and D12
T0

decrease. The behaviour of D11
T0 and D12

T0 is changed around S = 3 ∼ 5 similarly to the streamwise
component of the mean swimming vector (figure 3a). However, D22

T0 and D33
T0 monotonically increase

with the shear rate. For very large shear rate (S > 10), the diffusivity tensor becomes nearly isotropic
(i.e. D11

T0 ≃ D22
T0 ≃ D33

T0 and D12
T0 ≃ 0).
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Figure 2: Basic state of probability density function of the cell orientation vector f0(e) (λ = 2.2):
(a) S = 0; (b) S = 2; (c) S = 4; (d) S = 8. All the functions exhibit planar symmetry about the
e1 − e2 plane.
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Figure 3: (a) Mean cell swimming vector and (b) diffusivity tensor (λ = 2.2). Here, the dashed
vertical lines indicate S = 4.4 at which the deterministic swimmer begins to experience tumbling.
The terms not shown here are zero in numerical precision.
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Figure 4: Dependence of ζi on S: (a) ζ1,...,ζ4; (b) ζ5,...,ζ8. Here, the dashed vertical lines indicate
S = 4.4 at which the deterministic swimmer begins to experience tumbling.

- Perturbed state

The perturbed Fokker-Planck equation (15) is also solved, giving the ζi’s in (17) as follows:

ζ1 = ⟨e1⟩′|ω3 , ζ2 = ⟨e2⟩′|ω3 , ζ3 = ⟨e3⟩′|ω1 , ζ3 = ⟨e3⟩′|ω2 , (20a)

ζ5 = ⟨e1e2⟩′|ω3 − ⟨e1⟩0⟨e2⟩′|ω3 − ⟨e2⟩0⟨e1⟩′|ω3 , (20b)

ζ6 = ⟨e2e2⟩′|ω3 − 2⟨e2⟩0⟨e2⟩′|ω3 , (20c)

ζ7 = ⟨e3e2⟩′|ω1 − ⟨e2⟩0⟨e3⟩′|ω1 , (20d)

ζ8 = ⟨e3e2⟩′|ω2 − ⟨e2⟩0⟨e3⟩′|ω2 . (20e)

The computed ζi’s are shown in figure 4.

Results

- Basic state

To complete the basic state in (12), κ should be first calculated from the solution of the Fokker-
Planck equation f0(e). The calculated κ is reported in figure 5. For a given depth of suspension,
κ decreases with the shear rate S. This indicates that the cells would accumulate less at the top
and that the thickness of the dense cell layer would increase with the shear rate. The decrease of
κ is not surprising because the mean up-swimming velocity Vc⟨e2⟩0 decays with the shear rate (see
also figure 3a). The decrease is particularly drastic for shear rates less than S ≃ 4.4, the value at
which a deterministic cell would begin to tumble. For S & 10.9, κ becomes negative because the up-
swimming velocity becomes even smaller than the sedimentation velocity (Vc⟨e2⟩0 < Vs). Therefore,
in this regime, n0(y) becomes stably stratified. Finally, we note that κ ∼ O(h) (from (12c) and the
non-dimensionalisation (8)): with the increase of the depth, κ generally becomes large.

- Neutral stability curves
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Figure 5: Dependence of the stratification parameter κ on the depth of suspension (d(= 2h) =
0.05, 0.1, 0.2, 0.5cm) and the shear rate S. Here, the vertical dashed line in the left indicates the
shear rate (S = 4.4) at which a deterministic swimmer begins to rumble, while the one in the right
is the shear rate (S = 10.9) where κ = 0 due to sedimentation of the swimmer.

10-1 100 101 102 103
101

102

103

104

10-1 100 101 102 103
101

102

103

104

2000

1000

0

-1000

-2000

10-1 100 101 102 103
101

102

103

104

10-1 100 101 102 103
101

102

103

104

Ra
0=iω

0=iω

Ra
0=iω

α α

)(a

)(c

)(b

)(d

0=S 4=S

8=S 11=S

α α
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for α ̸= 0 and β = 0: (a) S = 0; (b) S = 4; (c) S = 8; (d) S = 11.
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Figure 7: Contour of ωi of the most unstable mode and its neutral stability curve in the Ra-β plane
for α = 0 and β ̸= 0: (a) S = 0; (b) S = 4; (c) S = 8; (d) S = 11.

Linear stability analysis is performed with the reference parameters in tables 1 and 2. We remind the
reader that α and β are respectively the streamwise and spanwise wavenumbers. We first consider
two-dimensional modes (i.e. α ̸= 0 and β = 0). Figure 6 shows contours of the growth rate ωi

and the corresponding neutral stability curve (ωi = 0) in the Ra-α plane for S = 0, 4, 8, 11. Here,
note that S = 11 gives slightly stable stratification of n0(y). In the absence of shear (S = 0),
the instability appears at Rac ≃ 830 with the critical wavenumber αc ≃ 19 (figure 6a), giving
Nc = 1.05 × 106 cells/cm3 and λc = 0.1 cm. These values compare reasonably well with Nc =
1.0×106 cells/cm3 and λc = 0.3 ∼ 5 cm in the experiment by [2]. For S = 0, the wavenumber giving
the largest growth rate tends to increase with Ra, forming strong instability at α > 20. However,
when shear is introduced, the high-wavenumber instability is drastically damped out (figures 6b, c,
and d). In contrast, at relatively low wavenumbers, the shear is destabilising: the suspension is
unstable at α < 1 ∼ 10 even for Ra ≃ 103 when S = 4 and S = 8 (figures 6b,c). For S = 11, the
instability at small α is stabilised again, thus the suspension does not exhibit instability any more
(figure 6d).

We now consider the streamwise uniform mode (α = 0 and β ̸= 0). The contours of the growth
rate ωi with the corresponding neutral stability curve in the Ra-β plane are shown in figure 7.
For S = 0, the contour is exactly the same as that in the Ra-α plane (figure 7a). Similarly to
the two-dimensional mode (α ̸= 0 and β = 0), the addition of shear suppresses instability at high
wavenumbers (β > 10), but it augments the instability at low wavenumbers (β < 10) (figures 7b,c).
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In particular, the streamwise uniform mode shows much stronger destabilisation than the two-
dimensional one, resulting in Rac ∼ O(10) for S = 4 and S = 8. The low-wavenumber instability
quickly disappears as soon as the shear rate exceeds S ≃ 10.9 which gives stably stratified n0(y)
(figure 7d). However, contrary to the two-dimensional mode, the suspension is still linearly unstable
at β ≃ 1 ∼ 10, indicating that this instability is not due to the gravitational overturning mechanism.

Finally, oblique modes (i.e. α ̸= 0 and β ̸= 0) are studied. Figure 8 shows the contours of ωi in the
α-β plane at Ra = 2000. As expected, for S = 0, the growth rate does not show preference to any
specific wavevector directions (figure 8a). With the increase of shear rate (e.g. S = 4), ωi at the
high wavenumbers (α, β > 10) is quickly damped out while that at the low wavenumbers (α, β < 10)
increases a little (figure 8b). The further increase of the shear rate (S = 8) stabilises the instability
at the low wavenumbers (α, β < 10), similarly to the two-dimensional and streamwise uniform cases.
It is interesting to note that the growth rates for β > α are generally larger than those for α > β in
the presence of shear (figures 8b and c). In particular, the most unstable set of the two wavenumbers
α and β appears to be the streamwise uniform mode, indicating that long structures aligned with
the shear would appear in the early stages of pattern formation.
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Figure 9: Cross-spanwise view of the eigenfunction for α = 10 and β = 0 at Ra = 2000: (a) S = 0;
(b) S = 2; (c) S = 4. Here, the contours represent the perturbed cell number density and the vectors
indicate the streamwise and wall-normal velocities. The flow fields are normalized by -max|v̂|x=0,
so that the downwelling region is located along x = 0. Only the upper half is shown due to highly
concentrated nature of the eigenfunction near the upper wall.

- Eigenfunctions

Figure 9 visualises the eigenfunction of the most unstable two-dimensional mode for increasing shear
rate. For S = 0, the eigenfunction shows a pair of counter-rotating rolls localised near the top of
the domain at which n0(y) is highly concentrated (figure 9a). The cell number density is largest at
x = ±0.314 and y ≃ 1, and this is probably due to the rolls which pump up the cells to this region.
For this reason, slightly negative n′ seems to appear near x = ±0.314 and y ≃ 0.9, which is located
right below the region of the largest cell number density. The cell number density n′ is smallest at
x = 0 and y ≃ 1 probably because the downflow by the rolls takes the cells in this region to the
bottom. Therefore, relatively large n′ also appears at the region right below the location with the
smallest cell number density (x = 0 and y ≃ 0.9). When shear is introduced, the entire structure
of the eigenfunction is tilted to the shear direction (figure 9b). This is evidently due to convective
transport by the shear, considering the nature of the shear applied. With the increase of the shear
rate S, the pattern tilts more downstream (figure 9c). It is worth noting that the wall-normal extent
occupied by the rolls and the cell number density field appears to increase with the shear rate. This
is probably due to the increased thickness of the unstably stratified layer at the top in the basic
state: i.e. the decrease of κ (figure 5).

The most unstable eigenfunction for the spanwise uniform case is visualised in figure 11. In this
case, the eigenfunction does not show the tilting with the increase of S, as the convective transport
by the shear is perpendicular to the y-z plane. The major change by the shear in the eigenfunction
structure appears to be the increase of its wall-normal extent. Interestingly, with the increase of the
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Figure 10: Cross-streamwise view of the eigenfunction for α = 0 and β = 10 at Ra = 2000: (a)
S = 0; (b) S = 4; (c) S = 8. Here, the contour represents the perturbed cell number density
and the vectors indicate the spanwise and wall-normal velocities. The flow fields are normalized by
-max|v(z = 0)|. Only the upper half is shown due to highly concentrated nature of the eigenfunction
near the upper wall.



shear rate, the location showing the largest (smallest) perturbed cell number density is spontaneously
changed to the region where the downward (upward) velocity of the rolls is large (e.g. y ≃ 0.7 in
figure 11c).

Discussion

- Comparison with Rayleigh-Bénard convection in uniform shear flow

Bioconvection patterns have often been compared with those in Rayleigh-Bénard convection because
of the remarkable similarity between them. Here, we therefore also aim to compare the role of shear
in Rayleigh-Bénard convection with that in bioconvection. In Rayleigh-Bénard convection, the
presence of shear stabilises only the streamwise varying modes (α ̸= 0), leading to the formation
of rolls aligned with the shear [23]. Similar shear-aligned rolls are also expected in bioconvection
(figure 8), but bioconvective instability exhibits much richer dynamical behaviour than Rayleigh-
Bénard convection. First, in bioconvection, the structure of the unstable stratification is highly
dependent on the shear rate, as the shear can disturb the up-swimming of individual cells (figure 5).
In particular, we have shown that this feature can lead to destabilisation. However, this does not
appear in Rayleigh-Bénard convection, as the source of the unstable stratification is the heat flux
from the lower wall. Second, bioconvecton in a suspension of bottom-heavy swimmers is caused not
only by the gravitational overturning but also by the gyrotaxis of the given swimmer. Specifically,
the latter plays an important role in generating instability at high wavenumbers, and this is also
found to contribute to the formation of shear-aligned rolls. Lastly, in bioconvection, very strong
shear can completely inhibit the instability. However, in Rayleigh-Bénard convection, the shear is
not able to control the instability of the streamwise uniform structure because the linearsed equation
for the streamwise uniform mode is completely decoupled from the shear [23].

- Comparison with experimental observations

In spite of many interesting findings here, there has been limited experimental work to investigate
the role of shear in bioconvection. To the best of our knowledge, the only experimental work which
allows us to make a comparison is by [7]. In this study, the experimental set-up consists of a
horizontal pipe with circular cross section, filled with a suspension of C. augustae. To introduce a
shear in the suspension, the authors applied a flow through the pipe. The shear rate tested is in a
relatively narrow range because it was restricted to be smaller than the value leading to tumbling
of a deterministic cell (i.e. 1/B).

The flow configuration in the present study differs from that in [7], since it is designed to understand
the simplest case (i.e. uniform shear). For this reason, only qualitative comparison is made. Since
the test section of [7] is circular, it is appropriate to interpret their bioconvection pattern as quasi
two-dimensional. Therefore, we only compare the results for the two-dimensional mode (α ̸= 0 and
β = 0). We have shown that, for a given Rayleigh number (i.e. averaged cell concentration N),
the increase of shear rate suppresses the instability at high wavenumbers. This yields a decrease
of the wavenumber for the largest growth rate, implying that the wavelength of the most unstable
two-dimensional mode increases with the shear rate (figure 8). This is seen to be consistent with the
experimental observation, where the average spacing between elements of the pattern is shown to
increase with the shear rate. However, it should be pointed out that the wavelength computed in the
present study deals only with the initial stage of bioconvection whereas the one in the experiment
is measured from the fully developed bioconvection pattern. The structure of the eigenfunctions in
the present study shows that the shear tilts the pattern of instability, and this is also observed in the
experiment; this is not surprising because it is just a consequence of advection by the shear. Finally,



in [7], the pattern at a low cell concentration showed diminishingly small intensity when the through
flow was sufficiently strong. In the present study, we have shown that the shear significantly reduces
the growth rate at high wavenumbers while it is destabilising at low wavenumber. We note that the
increase in the growth rate by the destabilisation is considerably smaller than the decrease at high
wavenumbers. Therefore, the present results suggest that the shear may significantly decrease the
intensity of the bioconvection although the convection pattern could persist at shear rates smaller
than O(1/B). This also appears to be consistent with the experiment, but care needs to be taken
as the present analysis is limited to small perturbations.



• The potential impact (including the socio-economic impact and the wider
societal implications of the project so far) and the main dissemination
activities and exploitation of results (not exceeding 10 pages)

Potential impact

From a scientific viewpoint, suspension of swimming microorganisms is an important example of
active fluids, dynamics and rheological properties of which are remarkably different from any other
complex fluids. It often reveals non-trivial pattern formation (e.g. bioconvection as in this project)
driven by intrinsic mechanisms at very small Reynolds numbers, at which nonlinearity in the equation
of fluid motions plays little role. This is a very active issue throughout the entire fluid mechanics
community although most previous studies investigated stationary configurations. The present work
is the first theoretical study which investigates the role of shear in bioconvection patterns. Although
the present flow configuration is still very simple, the results have suggested that the physical
processes, through which the collective dynamics of microswimmers interacts with the surrounding
shear, are not trivial to understand and they actually are remarkably complicated. This finding
therefore opens a number of research issues to be studied in the future:

1. How do the physical mechanisms leading to the collective behaviour interact with different
types of shear flows such as pressure-driven channel flow, mixing layer, wake and so on?

2. How would the collective dynamics be changed if the direction of gravity relative to flow
direction is changed?

3. What if we increase the Reynolds number such that the nonlinear motions created by fluid
flow itself interact with the intrinsically driven flow pattern in the microorganism suspension?

4. How is nutrient uptake of microswimmers affected if their collective dynamics is changed by
surrounding shear flows?

The issues raised here will be pursued further to attain fundamental understanding of collective
dynamics in shear flows, and we believe that this will create a significant impact to scientific com-
munities.

Microorganisms are among the most important life-forms on Earth, not only because of their diversity
and cumulative biomass, but also because of their functions in ecosystems. Algal species studied
in the present project form the base of the marine food web and produce nearly half of the oxygen
produced on earth. They also have socio-economic impact. For example, once a harmful algal bloom
occurs, it negatively affects the ecological system in aqueous environment such as freshwater lake and
near coastal water. This can create significant economical damage to fishery industry and near-coast
recreational facilities. Gaining fundamental understanding of collective behaviour of microorganisms
in aqueous environment is very important in this respect. Moreover, this will eventually allow one
to develop reliable mathematical models which can predict propagation of algal blooms, thereby
reducing the damage caused. This research will therefore create significant socio-economical benefit.

The present project has significant potential importance in designing bioreactors with which biofuel
is harvested from cultured microorganisms. The membrane of microorganism, mainly composed of
lipid, is processed to oil, and thus the key issue in bioreactor design is to maximize biomass. To
culture microorganisms successfully in a bioreactor, nutrient and oxygen should be efficiently deliv-
ered to the cells, and this is often achieved through mechanical mixer which generates flow in the



Figure 11: An example of bioreactor

bioreactor. Figure 11 shows an example of a bioreactor. In this type of bioreactor, flow is generated
through the pipe lines. Notably, the size of the pipe is not very different from the flow configuration
studied in the present project. Although the present project considered the role of uniform shear to
gain fundamental understanding of its role, it can certainly be extended to the practical configura-
tions e.g. given in figure 11. In future, a number of important issues will be resolved for developing a
reliable mathematical model to predict collective behavior of microorganisms in a bioreactor. Based
on this model, a very efficient strategy for mixing will be subsequently developed combining with
optimal control theory.

Dissemination activities and exploitation of results

Dissemination activities have been performed by publishing papers, attending international and
domestic conferences, and giving seminars in a number of academic institutions.

- Peer reviewed journal publication

1. Y. Hwang & T. J. Pedley, ‘Bioconvection under uniform shear: linear stability analysis’, 2013,
To appear J. Fluid. Mech..

2. Y. Hwang, & T. J. Pedley, ‘Stability of stationary and downflowing gyrotatic microorganism sus-
pensions in a two-dimensional vertical channel ’, 2013, In preparation.

- Invited Seminar

1. Oct., 2013, Department of Applied Mathematics and Theoretical Physics (DAMTP), University
of Cambridge, Cambridge, UK.

2. July, 2013, Department of Mathematics, University of Manchester, Manchester, UK.



3. June, 2013, Department of Civil and Environmental Engineering, Imperial College, London, UK.

4. Feb., 2013, Department of Mathematics, University of York, UK.

5. Feb., 2013, Department of Mathematics, Imperial College, London, UK.

- Conference & Workshop

5. Nov. 2013, 66th Annual Meeting of American Physical Society, Pittsuburgh, US.

4. Sep. 2013, Work shop on Mathematical challenges in bubbles and biological fluid mechanics,
Birmingham, UK

3. July 2013, Euromech Colloquium on Trends in open shear flow instability, Paris, France.

2. May 2013, British Applied Mathematics Colloquium, Leeds, UK.

1. Nov. 2012, 65th Annual Meeting of American Physical Society, San Diego, US.

• The address of the project public website, if applicable as well as relevant
contact details

A brief summary of the project and the related publications are found in the following website:

Website: http://www3.imperial.ac.uk/people/y.hwang

Contact details: Yongyun Hwang, Civil and Environmental Engineering, Imperial College
London

E-mail: y.hwang@imperial.ac.uk

Phone: +44 (0)20 7594 3495
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6.2 Languages and literature (ancient and modern) 
6.3 Other humanities [philosophy (including the history of science and technology) arts, history of art, art 

criticism, painting, sculpture, musicology, dramatic art excluding artistic "research" of any kind, 
religion, theology, other fields and subjects pertaining to the humanities, methodological, historical and 
other S1T activities relating to the subjects in this group]  

 
 



 

2. FINAL REPORT ON THE DISTRIBUTION OF THE 
EUROPEAN UNION FINANCIAL CONTRIBUTION 

 
 

This report shall be submitted to the Commission within 30 days after receipt of the final 
payment of the European Union financial contribution. 
 
 

Report on the distribution of the European Union financial contribution 
between beneficiaries 
 

 

Name of beneficiary Final amount of EU contribution per 
beneficiary in Euros 

1.  

2.  

  

n  

  

Total    

 


