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Final publishable summary report 

Reflectarray antennas are comprised of an array of radiating elements, reflecting the energy that is impinged 

from a primary feed. These antennas are interesting hybrids between aperture antennas (reflectors) and 

conventional arrays. They are spatially-fed, which means that they do not require a lossy feeding network with 

dedicated transceivers, reducing the overall losses, the production cost and the manufacturing complexity, 

allowing also the introduction of electronic phase control. Reflectarrays have been studied extensively in the 

last years, mainly for fixed-beam. However, if dynamically control is implemented at the element level, the 

reflectarray allows steering the beam towards a predefined direction or even changing the shape of the beam. 

Reflectarrays offer a simple feeding mechanism combined with the independent control at the element level in 

order to provide very versatile capabilities. The Marie Curie IEF project RASTREO (multi-Reconfigurable 

Antenna SoluTions based on REflectarray technology, http://mnwave.epfl.ch/rastreo) has contributed to 

addressing new challenges in the dynamic reconfiguration, including not only spatial reconfiguration, but also 

polarization and frequency reconfiguration. It is worth mention that in the case of spatial reconfiguration, the 

use of graphene as a reconfiguration technique in reflectarrays has been proposed for the first time. Although 

the use of this new material was not included in the initial proposal, the experienced researcher and the former 

scientist in charge (Prof. Perruisseau-Carrier) together agreed to explore the interesting properties of graphene 

with the aim of implementing scanned-beam reflectarray antennas in Terahertz (in the second year the 

research was extended to the infrared band). In any case, this update cannot be considered as a deviation 

respect to the original gaols of the project, contrary, the obtained results have opened a very promising 

research line with interesting applications in different fields and allowing the proposed reconfiguration 

capabilities. For the case of polarization and frequency reconfiguration, other reconfiguration methods have 

been analyzed (solid state switches or liquid metal). In the following lines, a summary of the public final 

results obtained in the framework of RASTREO are presented.  

Beam bending in reflectarrays by using graphene at THz and mid-Infrared  

Graphene is a true 2-D material (monatomic layer of carbon atoms arranged in a honeycomb structure), which 

has attracted tremendous interest thanks to its unique electrical and mechanical properties.  Graphene’s 

complex conductivity can be efficiently controlled via a perpendicular bias electric field. As a result graphene 

is envisioned for a variety of applications at THz and optical frequencies, including the possibility of dynamic 

tuning via the electric field effect. This dynamic tuning was demonstrated at 1.3 THz by using graphene 

patches. The patch resonance occurred when its size was around λ0/24 (into a λ0/16 unit cell). This 

phenomenon is due to the well-known slow-wave propagation associated with graphene plasmonic modes. 

Fig. 1(a) shows the phase of reflection coefficient, at 1.3THz produced by a square graphene patch as a 

function of both, the patch size and the chemical potential which is varied by electronically gating the 

graphene. The maximum phase variation is obtained for patches of 10 m, yielding a range of around 300° in 

a large bandwidth, which is enough for producing a pencil-beam. Fig. 1(b) and (c) shows respectively the 

phase and amplitude of the proposed element when the chemical potential is varying from 0.0eV to 0.52eV. It 

is also observed that the phase shift experiences an almost constant phase variation with small errors. For 

instance, phase errors lower than 37° in the frequency band from 1.1 THz to 1.5 THz has been obtained. This 

is a 31% of bandwidth (namely, large bandwidth). The loss of the element varies between 0.5 dB and 6 dB on 

the whole range between 1.1 THz and 1.6 THz, which is another very promising performance at such 

frequencies. 

   
(a) (b) (c) 

Figure 1: Phase-shift introduced by graphene square patches (a) As a function of the size and the chemical potential, at 1.3 

THz. (b) Phase and (c) Amplitude of the reflection coefficient in free-space, as a function of the frequency, for a 10 m-side 

square patch made of graphene varying the chemical potential. 
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As aforementioned, surface plasmons can concentrate electromagnetic energy at the subwavelength 

scale. These electron oscillations appear in graphene nanoribbons at much lower frequencies than in 

their noble metals counterpart, providing subwavelength confinement from mid-infrared down to 

terahertz frequencies for a vast range of applications. In a new design, the control of a light beam at 

nanoscale level is proposed by using an array of reflective graphene nanoribbons. The array is 

between a gating superstrate and a grounded substrate. The difference respect the case of a square 

patch is that, in the late proposed concept the switching of the reflected beam is produced using a 

very simple biasing structure, providing a confined beam and low losses of energy. According to Fig. 

2(a), the working principle of the proposed array of graphene nanoribbons is as follows. A mid-

Infrared laser beam collimated into free space as a Gaussian beam is focused so that the waist of the 

Gaussian beam impinges with certain incidence angle on a 224-element array. By properly adjusting 

the physical width of each nanoribbon, a progressive phase-shift is introduced upon reflection along 

the array in the x-axis direction. This phase difference can be fixed in order to produce a constructive 

interference of all the reflected waves at each ribbon, as usual in microwave antenna arrays. This 

interference collimates a far-field beam towards certain direction. In this case, all the nanoribbons are 

electrically doped with a chemical potential µc1, equivalent to certain gating voltage. The physical 

width of the graphene nanoribbons cannot be modified. However, if the electrical doping is turned to 

a value µc2, capable of producing a constant phase of the reflection coefficient for all the ribbons of 

the array, a far-field beam is collimated towards the specular direction. Fig. 2(b) shows the lateral 

view of the unitary element in the array which can be physically modelled by an equivalent circuit 

(Fig. 2(c)). Using transmission line theory, the reflection coefficient of each element can be 

computed at a reference plane in both amplitude and phase. The substrate and the superstrate can be 

represented as a transmission line with their respective characteristic impedance Z0 and propagation 

constant , while the graphene nanorribbon can be modelled using a surface impedance Zg which 

depends on the geometry of the graphene strip and the surface conductivity obtained by the Kubo 

formula. The short-circuit represents the ground plane, while the line is loaded with the intrinsic 

impedance of free space, . Fig. 3 shows the resulted bent beams. 
 

  
Figure 2: Plasmonic graphene nanoribbons array. (a) Expanded view of the array. (b) 

Lateral view of one nanoribbon formed by a metallic reflector, a substrate (SiO2), an 

aperiodic array of patterned graphene, and a superstrate (ion-gel). (c) Equivalent 

circuit for one element of the proposed array. 

Fig. 3 Far-field radiation pattern 

produced by the array for two values 

of gating. (a) Boresight. (b) Specular. 
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6
 or public: confidential information to be marked clearly) 

 

Some of the following results are not published yet. For this reason, the researcher prefers to maintain the following sections in a confidential 

form until their publication.   

Simultaneous phase and polarization dynamic control in reflectarray elements   

Reflecting cells for reconfigurable-beam reflectarrays which allow controlling independently and at the same time the polarization of the antenna, 

regardless of the feed-horn polarization, were extensively studied in this project. This means that the antenna can be feed using a LP (V, H or 

both) or a CP (RHCP or LHCP) feed, while reflecting the field with any polarization. Two topologies for the element were selected and one of 

them optimized (including the biasing circuit), fabricated and tested in waveguide simulator (WGS). In both cases, 2-bit phase-shifter resolution 

is achieved, which is enough for scanning the beam and introducing the 90° phase difference required between orthogonal polarizations for 

producing CP. The proposed elements have been designed to operate at X-band. The elements are based on aperture-coupled topology which has 

been chosen to compensate the effects of the differential spatial phase delay. Fig. 4 shows the manufactured prototype, using a commercial SP4T 

switch from MACOM. The four outputs of the switch are connected to different microstrip line segments that produce the required phase-delay. 

In this way, each LP polarization can be controlled with a single device. To enable the two microstrip lines crossing over each other, an air-

bridge has been accurately designed to cancel any mismatch. Very good results in terms of phase of the reflection coefficient were obtained (Fig. 

4(c)), with maximum errors around 30º, which is an optimistic value for this kind of implementations.  

 

 

   
(a) (b) (c) 

Figure 4: Simultaneous and independent dynamic control of phase and polarization in reflectarray antennas. (a) Detailed view of the switching device implemented in microstrip 
technology. (b) WGS measures set using an orthomode. (c) Measured phase of the reflection coefficient for the four outputs of the SP4T switch.  
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4.1.3 Simultaneous phase and frequency dynamic control in reflectarray elements 

Derived from their application during almost two decades in chemistry, biology and medicine, microfluidics-based technology offers a wide 

range of micro-devices as valves, mixers, pumps, or even lab-on-chip systems. These devices and the associated fluid materials can be exploited 

for manipulating the electrical properties in antennas. The simultaneous and independent control of phase and frequency in reflectarray elements 

was proposed. The element allows to dynamically scanning the beam at the required frequency in a broadband. The concept is shown in Fig. 

5(a)-(d). The cell is based on the well-known aperture-coupled topology which allows controlling the phase of the reflection coefficient by means 

of varactors, PIN diodes or MEMS. On the other hand, the frequency is adjusted by optimizing the shape of a discontinuous patch made of 

conventional and liquid metal. The patch is formed by a copper section printed on the upper substrate (d3) and a discrete number of 34-m-thick 

cavities, situated 50-m inside the substrate. The cavities and their associated micro-channels can be fabricated using a combined process of laser 

ablation and lamination, which is a common process in microfluidics. These cavities can be dynamically filled or emptied with a non-toxic liquid 

alloy, commercially available as Galinstan, with electrical conductivity 3.29MS/m and melting point around -19°C. Depending on the number 
of cavities, the operation frequency can be adjusted, allowing a potential continuous tuning in the band from 25GHz to 35GHz.  Fig. 5(e) shows 

the matching at the input of the microstrip line for different volumes of liquid metal, while the phase or the reflected field is shown in Fig. 5(f) 

for 3 frequencies. 

 

 

 
 

 

(a) (b)                   (c)                   (d) (e) (f) 

Figure 5: Dynamic and independent control of phase and frequency in reflectarray antennas. (a) Expanded view of the proposed reflectarray element. (b) Configuration for upper (c) 

central and (d) lower frequencies (e) Matching of the propossed reflective cell for different volumes of the liquid metal. (f) Phase of the reflection coefficient for the three states, as a 

function of the microstrip line length, when a plane wave is impinging.    
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Design of a fixed-beam reflectarray antenna using dielectric resonators at 1 THz   

A research line in collaboration with Adelaide University (Prof. C. Fumeaux) was established. It consisted in the design of a reflectarray 

emulating a parabolic mirror at 1THz, using dielectric resonators. Fig. 6 shows the final design as well as the required phase at each element for 

radiating a near-field beam (The reflectarray has more than 8000 elements, but because of the confidentiality reasons the main dimensions are not 

included).  

 

 

  

(a) (b) (c) 

Figure 6: Reflectarray antenna as parabolic mirror. (a) General topology. (b) Required phase at each element. (c) Virtual far field.  

 

 

RASTREO project contributed to the future development of efficient multi-reconfigurable antennas, which means the possibility of dynamically 

adapt more than one parameter of the antenna (beam orientation, beam shape, polarization, frequency, etc), according to the demands of the 

system. On the other hand, the recent improvements in technology platforms, e.g. solid-state devices, micro electromechanical systems (MEMS), 

ferro-electric films, liquid crystal (LC), graphene and even liquid metal, for RF dynamic control, make space-fed reconfigurable antennas 

(reflectarrays but also transmitarrays) a very attractive technology for implementing electronic reconfiguration with new multifunction 

capabilities. 

 

There is no patent or IPR application related to the work carried out in the project. 
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