1. Laser development for seeding of the high power 1 micron laser
a. Octave-spanning CEP-stable femtosecond oscillator for OPCPA seeding

Octave-spanning femtosecond oscillator

Fig. 1: left: Measured spectrum of a standard ultra-broadband oscillator used for CEP-stabilisation. right: Spectral filtering at 1030 nm

System parameters		
Power	460	mW
Power cw max	880	mW
Bandwidth (-10dB)	370	nm
Pulse Duration	5.9	fs
Rep. Rate	75	MHz
Beatnote	$35-40 \mathrm{~dB}$	dB
Pump power	4.75	W

Tab. 1: Output parameters of a high pumped ultra-broadband Ti:Sapphire laser

Fig. 2: Measured pulse duration via fringe resolved autocorrelation

CEP-stabilized compact light source for OPCPA seeding

Fig. 3: The laser head contains the Ti:sapphire cavity, the pump laser, adjustable glasss wedges, photo diodes and electronics. It is attached to the CEP module that provides both a free-space and a fiber coupled output.

Fig. 4: Spectrum after the fiber amplifier used to seed the pump laser

Fig. 5: Spectrum provided to seed the OPCPA
b. High power and high energy pump laser

Fig. 6: High power and high energy pump laser (Amplitude Tangerine Series)

Figure 7(a) : Amplifier charateristics at 400 kHz

Figure 7(b) : Long term stability test at 60 W and 400 kHz
2. Optical Parametric Amplification Systems
a. High power CEP-stable OPCPA

(a)

TFP: Thin Film Polarizer; WP: Wave Plate; L: Lens; CM: Concave Mirror; BBO: β-Barium Borate Crystal
Figure 8: (a) Block diagram of the OPCPA setup. (b) Detail of the parametric amplification stages.

Figure 9: Retrieved temporal shape showing compression below 9 fs at 400 kHz .

Figure 1: Compressed pulses at 800 kHz .

b. High power UV/visible OPA

Tunable amplification results

Fig. 12. Spectral tunability of the TH (a) and SH-pumped NOPA (b).

Fig. 13. Output energy of the TH (a) and SH-pumped NOPA (b).

Broadband amplification results

Fig. 14. Ultra-broadband spectrum generated in the TH (a) and SH pumped NOPA (b) at magic angle.

NOPA compression

Fig. 15. SH-NOPA chirped mirrors compression setup.

Fig. 16. Transform limited (red dots) compared to measured pulse duration (green squares) after compression of the THNOPA with a fused silica prism compressor (a) and SH-pumped NOPA with a chirped mirrors compressor (b).
a)

b)

Fig. 17. a) Shortest autocorrelation traces (green) and Gaussian fits (red) of the TH-NOPA. b) FC-SPIDER temporal profile reconstruction of the shortest SH-NOPA compressed pulses at 875 nm for the on-purpose limited spectral bandwidth obtained in the tunable operation mode.

Fig. 18. FC-SPIDER temporal and spectral characterization of the ultrashort $6,0 \mathrm{fs}$ pulses at 840 nm .

UV wavelength extension

Fig. 19. Output energy of the 500 kHz NOPA prototype fitted with an optional second harmonic generator.
3. Detection Technology

