The EU Commission Joint Action Plan for the Pan-European DCA

An EU Commission funded project under the seventh framework project number 320013

Dedication

The PEDCA is dedicated to the memory of Dirk-Achim Tellbach "DA" 1961-2014.

Why Data Centres?

- All 500 million EU Citizens rely on data centres
- A key "infrastructure" for growth
- A Smart City needs Smart data centres
- EU Data centre market is worth around €18.85 Billion p.a.
- 38.6 million tonnes of CO₂ emitted in order to operate the EU's data centre industry
- But probably saves far more CO₂ by enabling ICT

The Vision

- Build upon the existing collaboration within the data centre industry via the Data Centre Alliance (DCA) extend the DCA facility for all European states
- Consider what would be the impact of all EU data centres successfully implementing design and operational best practices?

Some Potential?

What if the EU's data centres adopted these "best Practices"?

- A 3 point improvement in PUE? (say 2.0 to 1.7)
- A further 10% saving from consolidation, better utilisation of compute, turning on power saving features?
- Energy savings in region of 15GWh per year
- EU saves 1.1 Billion Euros per year
- 5.4 million tonnes of CO2
- Equivalent to annual consumption of 900,000 EU households

What are the barriers?

– Awareness?, Education? Skills? Coherence of message? Lack of governance or policy? Lack of research and trusted information?

Main Objectives

- Build a platform to assist with new technology adoption, skills enhancements and improved practices.
- Assist with identifying key requirements for improved data centres: reliability & security are big priorities
- Identify where R&D is best applied to new methods & technologies, skills & education particularly to address energy consumption.

What is Project PEDCA?

- Strategic EU investment of €1.7 Million Euros
- 18 month duration starting 1st July 2013, ending December 2014
- A result of a collaborative initiative between UK, Netherlands and Germany
- Partnership of Academia, Regional Government and Private Sector
- Coordinator UEL
- Technical lead DCA

The Research Consortium

Backdrop to the Project

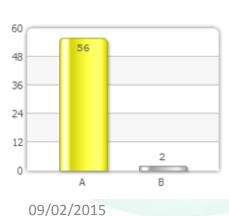
- Emerging Industry Lack of the skills and experience across the whole sector — acute problems in EU nations with developing data centre footprints
- Fragmented standards, many new methods and practices – need for wider collaboration and global harmonisation
- Lack of trusted information and scientific research

Guideline Principles

- Collaboration with industry & stakeholder participants
- Make PEDCA self-sustainable from Jan 2015
- Develop a "Joint" Action Plan (JAP)
- Develop a "business" plan
- Develop a "marketing" plan
- Develop the "success/impact criteria"

Research methodology - Scope

"The success of any project relies on clarity of scope and confirmed objectives to provide the project's participants with guidance and to guide against "scope creep".



Scoping - Output

- Confirmed and sharpened objectives
- Need to "bust silos"
- Much debate over "what is a data centre?"
- Something needed to be done about "skills"

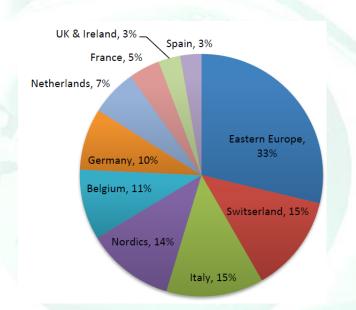
4.4 Q1 Overall PEDCA Aims and Objectives - Survey results

97% agree, 3% do not agree

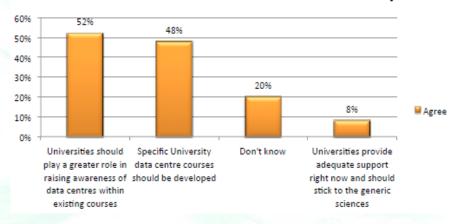
4.9 Skills Development - Survey results

This is designed to ensure that the skilling needs of the industry are identified, tracked and built into industry educational and training programmes.

93% agree, 7% agree it could be valuable, with modification of scope, 0% do not agree



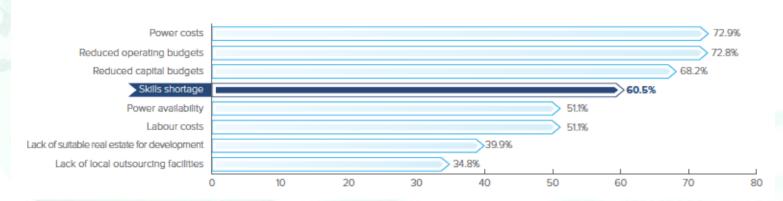
PEDCA 2014



Research – Regional Analysis

- Does Europe need PEDCA?
- "Big Survey": regional differences in size, growth rates, training & Education, salaries, employment, concerns and investment levels

Please rate your view on if academia meets the education needs of the data centre industry

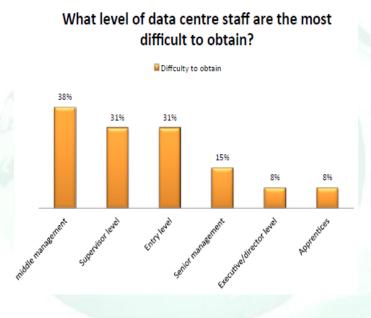


Research - Regional Analysis

- Staffing no background pattern
- Training different in each country
- Localised standards
- Strong indication for more academic involvement
- Strong indication for standardised training
- Selection of regional visit activities

Key Areas of Concern by Data Center Operators 2012/2013

Research - Participant Network


- Not just data centre folk reaching out to stakeholders
- Disseminating and conducting surveys
- Holding workshops
- Face to face interviews
- regional visits
- Categorisation of participant types

Research – T&R SWOT Analysis

- What does existing Training & Research look like?
- What's the technology background and roadmap?
- Where are their gaps?

T&R SWOT - Output

- Systematic Literature Review (SLR) found most R&D funded in USA
- Lack of awareness of EU projects
- Evolving Training Institutes
- Gaps in grass roots and top level
- Some sectors not yet covered
- Matrices missing
- Weak link with fast evolving technology and standards

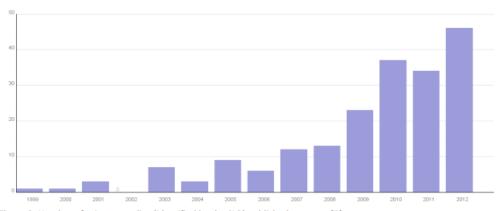


Figure 3. Number of primary studies (identified by the SLR) published per year [8]

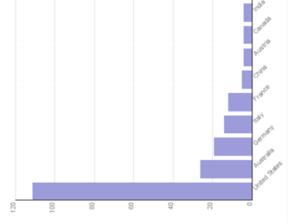


Figure 4. Number of primary studies (identified by the SLR) published per country [8]

Research - Technology Road-mapping

- Looking at how and what technology is in place
- Gaining an understanding of how technology is evolving
- Looking at the standards landscape and its adoption levels
- Looking at the drivers and problems that need solving

Technology Road map: output

- Rapid change in drivers
- Highlighted the changes in each tech area
- Fragmented standards adoption, many on the horizon
- Lack of support for innovation
- EU Code of conduct, strong views, not fully exploited

Research – The Requirements

- Carrying out an analysis from all the research
- Gaining participant views and comments via interviews, workshops and surveys
- Organising and categorising the "needs" into four pillars
- Developing a "plan to make a plan"

The Four Pillars of Requirements

Strategy

- Setting the Research Agenda
- Coordination
- Representation
- Basic R&D / Idea Generation
- Proof-of-Concept
- Independent Review
- Trusted
 Information

Business Innovation

- Early Stage Technology Development (ESTD)
- Development of Standards & Policies
- Commercialization
 Support
- IPR Framework

Skills, Training and Education

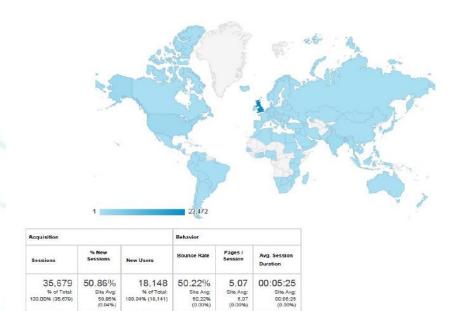
- Gap and Regional Analysis
- Skills Identification and Mapping (e.g. SFIA)
- Application of Standards & Policies (to training)
- Programme
 Development
 (defining learning outcomes, etc.)
- Programme
 Accreditation

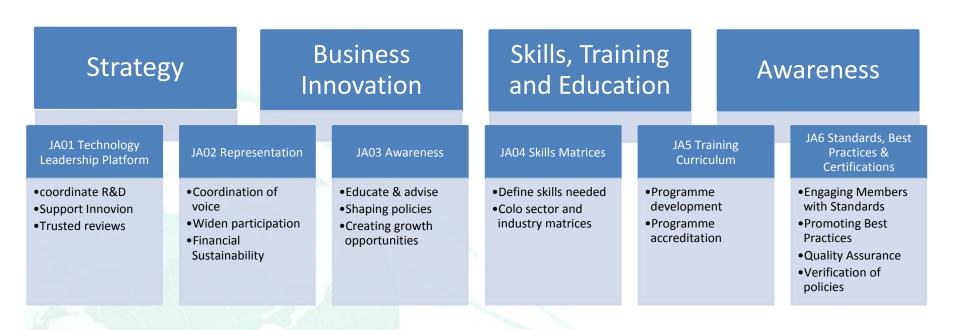
Awareness

- Awareness
 Programmes (e.g. policy makers and stakeholders, awareness events)
- Voice for the industry
- Quality Assurance and Processes
- Cultural Change

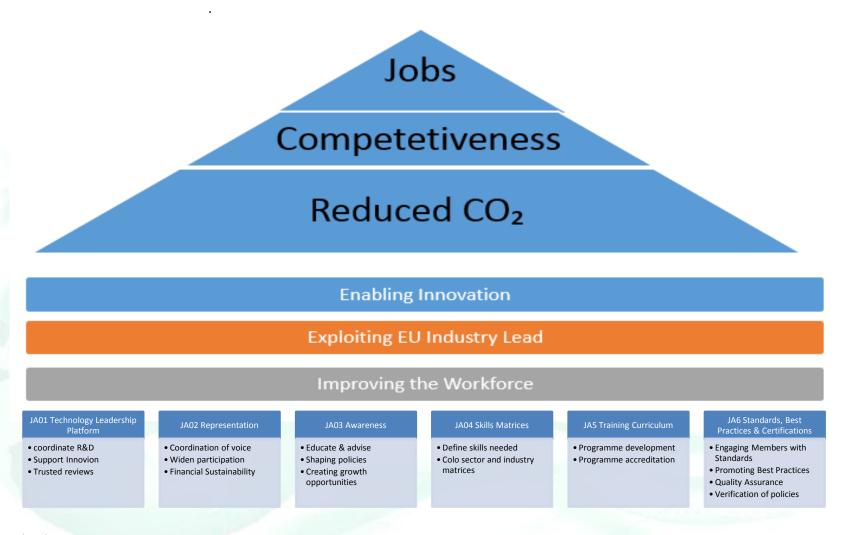
PEDCA Focus Panels

- London, Warsaw, Amsterdam and Frankfurt
- Held between July and December 2014
- Each was a whole day morning and afternoon sessions.
- Used professional "brainstorming" techniques
- Participants from industry stakeholders, governmental, scientific and academia.
- Asked to highlight "Pluses", "potentials" and "concerns"


PEDCA Focus Panels


PEDCA's reach

- More Participants
- 956 people contributed to PEDCA
- Better connectivity with stakeholders
- 34 Countries
- 42 Universities, Training and Educational Institutes
- 14 RDA's (Regional Development Agencies)
- 21 Branch and Trade Associations
- 8 Standards Development Organisation Committees
- 10 Governmental Bodies
- 3,282 Participant followers
- 35,679 Website visitors



Six Joint Actions

The impact of PEDCA

JA1 – Technology Leadership Platform

- Utilise the "network" for leadership
- Build on existing success e.g. Leeds
- Attract the stakeholders e.g. investors, "end users"
- Disseminate useful research results
- Coordinate new research
- Develop "trusted information" e.g. guidelines, reviews and helpful advice

JA1: Data Centre Technology Leadership Platform

The platform consists of: An online portal, a network and activities:

Research

Directory of research - links and abstracts in logical areas

Profiles of Universities and other bodies e.g Uni of Leeds etc

For Investors: industry information, Investment opportunities & events

Activities

Interactive Research Agenda

Review and R&D services available

industry review of bids & strategy

Resources

ASK An EXPERT - Interactive forum

Regular Newsletter, blogs

Trusted reviews - download area: eg publically available reviews of standards, KPI's, products, methods

Expected outputs of JA1

- Reduced risk of research duplication and scope crossover
- More targeted research and better value for tax payer
- Improved exploitation and use of research results
- Improved awareness and take up of "best practice", new methods and standards
- Improved connectivity to the academic and scientific communities (including outside DC sector)
- Improved investor participation in the sector

JA2 Representation & JA3 Awareness

- Develop industry cohesion
- Improve understanding of data centres in the right places
- Widening of dialogues with stakeholder groups
- Building the network and community

JA2 Representation & JA3 Awareness

- Ensure collective non-profit organisation aligned with international best practice for non-profits
- Build models to affiliate and collaborate with national representative groups and associations
- Increase the "end user" participation
- Dissemination enhancements

Outputs of JA2 & 3

- Widened participation strengthened message
- Improved dialogue with stakeholder groups
- Better informed governments
- Improved engagement with educational institutions
- Improved customer adoption rates & uptake of best practices

JA4 Skills Matrices & JA5 Training

- Develop publically available set of skills matrices
 e.g. like SFIA (short med long term by sector)
- Assist with professional development policies
- Assist with developing academic involvement
- Improve the uptake of training
- Interface with fast evolving technology
- DCA will provide more Professional Association services

JA4 Skills Matrices & JA5 Training

- Leverage established EU models to address compatibility between differing national education systems, eg BTEC
- Build criteria that recognises the expertise & experience of existing workforce
- Work with training providers to help endorse the value of training
- Establish entry level training built during PEDCA to assist new entrants to workforce

Other JA4/5 outputs

- Developed "entry level" Training materials
- Conducted 3 courses trained around 100 students videos online http://www.data-central.org/page/micrositeBmedia

Outcomes for JA4 & JA5

- Better uptake of training
- Improved industry reputation
- Establish "best practices"
- Assist with quantity and quality of new entrants
- Help sector organisations to better equip themselves for the future
- Provide Career and Professional development roadmaps

JA6 Standards, Best Practices & Certifications

- Improve standards development efforts
- Improve uptake and recognition of best practices e.g.
 EU Code of Conduct
- Improve governance of standards & policies

JA6 Standards, Best Practices & Certifications

- Raise awareness of SDO's and their use
- Develop use models, case studies, tools for cost benefit analysis of best practices
- Build on DCA's pilot Certifications programme, ensure independence, affordability and noncommercial – the road map is ISO:17021
- Leverage new & existing standards, KPI's & benchmarks

Other JA6 outputs

- Launched DCA Certifications
- Carried out proof of concept data centre certification
- Began Implementing EU Code of Conduct Actions
- 32 Endorser reports obtained

Expected outcomes of JA6

- Better exploitation of standards
- Increased value proposition to end users of EU data centres
- Help address barriers to technology adoption
- Greater impact of best practices
- Increased reputation of data centre sector

What's the impact

- Economic impact calculation "ultra" conservative:
 - 5% Industry CAGR
 - 1% annual impact of JA's
- Five areas of impact considered as measurable:
 - Carbon savings
 - Technical resiliency
 - Commercial resiliency/advantage
 - Overall improvement to EU
 - Industry coherence, number of members
- There are lots of "flaws" (external factors)

Size of EU Data centres

- EU Data centre market is worth €18.85 BN pa
- Employs approx. 138,000 people
- EU data centres account for 11.8GW approx. 3% of total EU electricity production

GDP

Metric Topic	GDP (€Billion)			
	Υ0	Y2	Y4	Y6
Cumulative Impact (Using 2014 as a Static Baseline)	€ 0.000	€ 0.303	€ 0.61	€ 0.92
Cumulative GDP Impact (Using and showing 2014 as a Static Baseline)	€ 18.850	€ 19.153	€ 19.46	€ 19.77
Cumulative Impact (Assuming Annual Industry Growth of 5% p.a)	€ 0.000	€ 0.33	€ 0.74	€ 1.24
Cumulative GDP Impact (using 2014 and showing as a static				
baseline and assuming Annual Industry Growth of 5% p.a.)	€ 18.850	€ 21.12	€ 23.64	€ 26.50

Energy

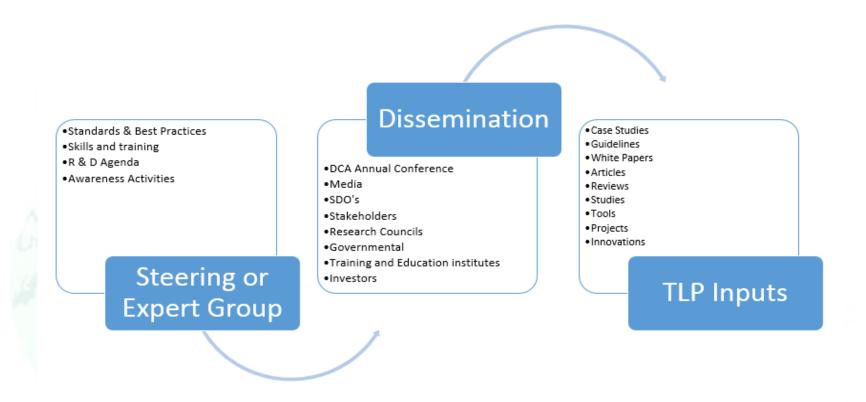
Metric Topic	Energy Savings impact (GW)			
	Υ0	Y2	Y4	Y6
Cumulative Energy Savings Impact (Using 2014 as a Static Baseline)	0	-0.0602	-0.1214	-0.1836
Cumulative Energy Savings Impact (Using and showing 2014 as a Static Baseline)	3.75	3.68976	3.62855	3.56636
Cumulative Energy Savings Impact (Assuming Annual Industry Growth of 5% p.a.)	0	-0.0664	-0.1476	-0.2461
Cumulative Energy Savings Impact (using 2014 and showing as a static baseline and assuming Annual Industry Growth of 5% p.a.)	3.75	4.06796	4.40869	4.77892

Green House Gases

Metric Topic	GHG (tonnes)			
	Υ0	Y2	Y4	Y6
Cumulative GHG Impact (Using 2014 as a Static Baseline)	0	-621.03	-1853	-3655.4
Cumulative GHG Impact (Using and showing 2014 as a Static Baseline)	38660	38039	36807	35004.6
Computative CHC Imment (
Cumulative GHG Impact (Assuming Annual Industry Growth of 5% p.a.)	0	-684.69	-2251.4	-4898.3
Cumulative GHG Impact (using 2014 and showing as a static baseline and assuming Annual Industry Growth of 5% p.a.)	38660	41938	44720.5	46906.1

Jobs

Metric Topic	Jobs			
	YO	Y2	Y4	Y6
Cumulative Jobs Impact (Using 2014 as a Static Baseline)	0	2232	4500	6805
Cumulative Jobs (Using and showing 2014 as a Static Baseline)	138960	141192	143460	145765
Cumulative Jobs Impact (Assuming Annual Industry Growth of 5%				
p.a.)	0	2461	5468	9119
Cumulative Impact (using 2014 and showing as a static baseline and	129060	155664	174204	105335
assuming Annual Industry Growth of 5% p.a.)	138960	155664	174304	195325


The Future

- JAP design guided entirely by participants
- Will follow the sustainability plan of the project
- Natural evolution of DCA: new constitution and improvements
- Open and subject to further change by participants

Implementation plans

Steering group reorganisation

Implementation Plans

- Construction of TLP:
 - Population of EU funded projects
 - Results of PEDCA
 - Access to Groups
 - Certification case studies & resources
 - EU Code resources
 - Energy Efficiency Case studies
 - Standards development work

Summary

- The PEDCA team has identified 6 Joint Actions for the DC sector in Europe arrived at with significant stakeholder engagement.
- The "JAP" together with details are publically available – over 500 pages and 85,000 words
- PEDCA will be implemented throughout 2015

