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1. Introduction

Unexpected failures cause downtime for many advanced technical systems, such as airplanes, trains,

baggage handling systems, and medical systems. To avoid such unexpected failures, maintenance

is done during system operation, since maintenance increases conditional system reliability (Lewis,

1987). The costs of these maintenance activities comprise 15-60% of the total production costs

in a manufacturer’s facility (Mobley, 2002). Reducing the operating costs of such advanced tech-

nical systems can, therefore, be achieved by lowering the maintenance costs. To facilitate this,

mathematical maintenance models and techniques are used to derive optimal maintenance policies.

The literature on maintenance optimization is rich and covers various areas such as system

replacement, inspections, repair, and maintenance scheduling (van Oosterom et al., 2014). These

areas of maintenance optimization underlie modeling techniques that describe system degradation.

A commonly used technique for modeling system degradation is the Delay Time Model (DTM).

This model distinguishes three system states: normal, defective, and failed. The system operates

properly in the normal state; operates in the defective state as well, but needs maintenance; or has

failed. The DTM is typically studied under inspection based maintenance policies, i.e., inspections

are done to reveal the system’s degradation. Elaborate literature overviews of the DTM up to

2012 are provided by Baker and Christer (1994), Christer (1999) and Wang (2012). The most

recent advancements, since 2012, include postponements of maintenance actions when the defects

are detected (van Oosterom et al., 2014), and the application of the DTM to systems that have

redundant components (Wang, 2013). Furthermore, multiple different forms of preventive main-

tenance activities, such as routine service, preventive system replacement, and manual inspection,

aided by condition-monitoring, are combined in two models, based on the DTM (Wang, 2013).
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In this research, we focus on a single-component DTM, i.e., the system studied consists of

a single component. These single-component DTMs are relevant for the DTM literature, because

these provide important building blocks for further developments of multi-component DTMs (Wang

et al., 2010). Our considered DTM is combined with an inspection based maintenance policy. Scarf

et al. (2009) studied a general class of inspection policies, consisting of an inspection interval

length T and a number of inspections before preventive system replacement M . This implies that

the system is preventively replaced at time MT , whatever its state may be. The variable M denotes

a general policy, capable of representing an age-based maintenance policy under M = 1, a pure

inspection policy under M = ∞, and hybrid policies under a finite M > 1. We will employ this

general inspection policy, and denote it by (M,T ).

The DTM literature considering inspection policies, commonly assume that the inspections are

perfect. However, due to (human) errors, inspections are usually not perfect in practice (Wickens,

1992). Therefore, imperfect inspections have been included in single-component DTMs by Okumura

et al. (1996), and Berrade et al. (2013). Both works consider two types of imperfect inspection

behavior, i.e., false positives and false negatives. A false positive corresponds to the judgment that

a system is in its defective state, when it is actually in a normal state. False negatives correspond

to the judgment that a system is in a normal state when, in fact, that system is in a defective state.

We denote the probabilities of false positives and false negatives by α and β, respectively. For an

overview, Table 1 is included.

Table 1: Probabilities of inspection behavior

System State

Normal Defective

Inspection outcome
Normal 1− α β

Defective α 1− β

The probabilities of false positives and false negatives, α and β, are assumed to be constant by

Okumura et al. (1996) and Berrade et al. (2013). However, such an approach might be inaccurate,

and therefore Wang (2010) explored the effects of non-constant probabilities of false negatives

in a multi-component setting. Yet, a non-constant probability of false positives has not been

explored in the DTM literature, nor in any of the other maintenance models, such as Markovian

based maintenance models and stochastic degradation models. Therefore, our work extends the

literature by proposing a non-constant probability of false positives under a single-component DTM.

Furthermore, we extend the literature by relating the probability of false negatives to the system’s

duration in the defective state, relative to its delay time, as opposed to Wang (2010), who only

considers the duration the defective state. Note that we consider a single-component system,

whereas Wang (2010) considers a multi-component setting. For a schematic literature overview of

single-component DTMs under imperfect inspections, see Table 2.

We borrow findings from different literature streams to base our non-constant probabilities
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Table 2: Imperfect inspections in single-component DTM literature

False Positives

Constant Non-constant

False Negatives
Constant

Okumura et al. (1996);

Berrade et al. (2013)

Non-constant This research

on. In the literature on nondestructive testing (NDT), the Probability of Detection (POD) is

studied. This POD is defined as the probability of finding a degradation when it is present (Berens,

1989). It reflects the probability of false negatives by β=1-POD (Nichols et al., 2008). As a

system degrades, the POD increases; i.e., the probability of false negatives decreases with system

deterioration (Forsyth and Fahr, 1998). Such a decrease in β implies a non-constant probability

of false negatives with respect to system degradation. We will employ this type of relationship

between system degradation and the probability of false negatives. The idea presented by Wang

(2010) also captures such a relationship between system degradation and the probability of false

negatives. In his work, system degradation is conceptualized by the duration that a system has

been defective. In this research, we will conceptualize system degradation as the duration that a

system has been defective relative to its delay time, which is a richer concept. For instance, weaker

materials will have a lower delay time. Hence, under the same duration in the defective state, the

weaker material (shorter delay time) will have a higher level of degradation, than the strong one.

With respect to the non-constant behavior of the false positive probability, we consider the field

of psychology. As the industry, nowadays, pays more attention to system reliability aspects, the

pressure on maintenance staffs increases. Such an increased pressure tends to motivate employees

to violate inspection guidelines (Latorella and Prabhu, 2000), and rely on self-developed decision

making instead of following inspection guidelines. Psychological literature labels this type of deci-

sion making, heuristic decision making. To avoid any confusion with the terminology of ’heuristic’

in operations research, we will refer to it as self-developed decision making. This self-developed

decision making is a way of decision making in which not all information is taken into account. Yet,

it may provide a convenient way to tackle a problem, compared to that of complete information

(Kahneman and Frederick, 2002). Multiple types of self-developed decision making are defined

throughout the literature. In this paper, we consider attribute substitution (Kahneman, 2003). For

this type of self-developed decision making, an alternative attribute, e.g., a system’s duration of

normal operation, may be used for the decision making, rather than the actual condition obtained

through inspections. To the authors’ best knowledge, such an attribute substitution, with respect

to false positives, in inspections has not been studied in maintenance modeling up to date.

Besides the imperfectness of inspections in maintenance, reliability aspects are becoming in-

creasingly important according to the industry’s and European Union’s agenda (European Union,

2009). Hence, companies explicitly include reliability measures in their maintenance analyses. As
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Aven and Castro (2009) noted, reliability aspects can be included in the cost expression, but such

an approach may be rather controversial, e.g., transforming human injuries into monetary terms.

Therefore, they propose to include the reliability aspect in the form of a constraint.

In this research, we take into account the imperfectness of inspections, as well as an explicit

reliability constraint. Hence, we propose a constrained single-component model, considering the

non-constant behaviors of errors in inspections, thereby differing from the constant models of

imperfect inspections in Okumura et al. (1996) and Berrade et al. (2013). Our analysis is directly

transferable to a setting without a reliability constraint. Based on the POD literature, we model

the changing probability of false negatives as being dependent on system degradation, i.e., the

relative duration of defective state with respect to the delay time. In line with the theory of self-

developed decision making in psychology, we model the changing probability of false positives as

being dependent on the system has been operating in the normal state. Our objective is to minimize

the average cost rate over an infinite time horizon, by optimizing the maintenance policy (M,T ).

The research’s contributions are twofold: (1) we present an exact evaluation of a maintenance

policy (M,T ) for a single-component DTM including non-constant probabilities of false positives

and false negatives; and (2) we propose a method for comparing a constrained inspection based

model with non-constant probabilities of imperfect inspections, to a constrained inspection based

model that has constant probabilities of imperfect inspections.

The remainder of this paper is organized as follows. In Section 2, we present the model. In

Section 3, we give an exact evaluation of our policy, and we discuss the optimization procedure.

In Section 4, we present a method for comparing a model with non-constant probabilities of false

positives and false negatives, to a model with constant probabilities. In Section 5, we present the

computational results, that compare both models (non-constant and constant). Section 6 concludes

with some remarks and potential directions for future research.

2. Model Description

Let us consider a single-component system operating over an infinite time horizon. The system has

three states: normal, defective and failed. In the normal operating state, the system is working

properly, without any detectable defects. In the defective state, the system requires maintenance,

but is still able to operate. The failed state of the system is self-announcing, and the system

stops delivering its function immediately. To prevent the system from reaching its failed state, it

is inspected periodically each T > 0 time units, is preventively maintained upon detection of the

defective state, or is preventively replaced after M ∈ N inspections (at time MT ). In other words,

a (M,T ) maintenance policy is followed. We assume that inspections are the only means to detect

the normal and defective state. We do not need to reveal the failed state by inspections, as this

state is self-announcing.

We denote the duration of the normal state, referred to as the time to defect, by the continuous

random variable X > 0. This time to defect corresponds to the time between maintenance or

replacement, and the arrival time of the defect. The random time the system takes from defect
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arrival to failure, without taking any maintenance or preventive replacement actions, is referred

to as the delay time and denoted by the continuous random variable H > 0. The sum of both

random variables is the system’s time to failure. The cumulative distribution function (cdf) and

the probability density function (pdf), corresponding to both state durations, are defined by FX(.)

and fX(.) for the time to defect, and by FH(.) and fH(.) for the delay time, respectively. Both cdfs

FX(.) and FH(.) are continuous functions.

The cost for doing an inspection is denoted by c0. We assume perfect maintenance, implying

that upon maintenance the system is renewed; i.e., the system is restored to the ’as-good-as-new’

condition. Therefore, preventive maintenance is equivalent to preventive replacement. Conse-

quently cost cp are incurred for both preventive maintenance and preventive replacement. When

the system unexpectedly fails in between inspections, corrective maintenance is immediately done

with cost cc, and the inspection schedule restarts; i.e., the first inspection is performed T time units

after system failure. We assume that the failure cost are included in the corrective renewal cost

cc. Furthermore, we assume that 0 < c0 < cp < c0 + cp < cc, and the time for inspections and

maintenance actions is negligible.

In our model, the inspections can be imperfect; i.e., an inspection error can occur, and the

inspection outcome differs from the system’s true state. We take two classes of imperfect inspections

into account: (1) false positives; and (2) false negatives. For an overview, see Table 1. These two

probabilities are assumed to be non-constant. Hence, we use two functions α(.) and β(.).

For the non-constant probability of false positives, we assume that (some) engineers do not use

the measurement outcome in the judgment, but replace this with a substitute attribute (Kahneman,

2003). We consider the time t that the system has been operating in its normal state as the

substitute attribute. This time is counted from the last moment of system renewal, which may

originate from a perfect preventive maintenance action, or from preventive system replacement.

We assume that, if the time t of the inspection, approaches a threshold value a, the engineers

(using the time t as a substitute attribute) will become more tempted to engage in a false positive.

The variable a might relate to a temporal parameter at which the maintenance engineers believe

the system typically becomes defective, e.g., the mean time to defect. If the time t of the inspection

exceeds the threshold value a, we assume that the engineers using the attribute substitution, all

send the system for preventive maintenance. The probability of α(t) is then increasing for t < a,

and remains constant for t ≥ a. For an illustration of α(t), see Figure 1.

When the defect appears at the realization x of the time to defect, we assume the system to start

its degradation until system failure. If the realized delay time is h; i.e., the failure occurs at h time

units after the defect arrival, the failure progress can be denoted by the relative duration (t− x)/h

in the defective state, for an inspection occurring at any time t, where x ≤ t ≤MT . Based on the

POD literature, we assume that the inspection engineers have difficulty in determining whether

degradation exists for low values of the failure progress. The more the system degrades, the easier

the detection of the degradation becomes; i.e., the probability of false negatives β((t − x)/h) is

nonincreasing in (t− x)/h. For a more detailed discussion, see Palmberg et al. (1987) and Berens

(1989). An illustration for β((t− x)/h) is presented in Figure 1.

5



We explicitly include a reliability constraint in our model, following the approach proposed

by Aven and Castro (2009). The reliability constraint is commonly defined in industry by the

maximum average number of failures per time unit over an infinite time horizon, which we denote

by Rmax. R(M,T ) corresponds to the average number of failures per time unit under policy (M,T ),

over an infinite time horizon.

Our aim is to minimize the average cost rate under a reliability constraint by optimizing the

maintenance policy decision variables M and T . This yields the following formulation of our

optimization model:

min
M,T

g(M,T )

s.t.

R(M,T ) ≤ Rmax
T > 0, M ∈ N.

(1)

2.1 Notation

X : Continuous non-negative random variable representing the system’s time to defect

H : Continuous non-negative random variable representing the system’s delay time

FX(.) : Cumulative distribution function for the random variable X

FH(.) : Cumulative distribution function for the random variable H

fX(.) : Probability density function for the random variable X

fH(.) : Probability density function for the random variable H

M : Maximum number of inspections before preventive system replacement

T : Fixed time of the inspection interval length

c0 : Cost per inspection

cp : Cost for preventive maintenance

cc : Cost for corrective maintenance

α(.) : Non-constant probability of a false positive inspection

β(.) : Non-constant probability of a false negative inspection

3. Model Analysis

This section presents the analysis of the optimization model from Equation 1. We will first derive

expressions for the cost rate g(M,T ) and the reliability R(M,T ) in Section 3.1. The solution

procedure for solving the optimization model is discussed in Section 3.2.

3.1 Evaluation of the cost and reliability function

From renewal theory (Ross, 1983) we know that the average cost rate over an infinite time horizon,

over which the system operates, equals the average cost rate g(M,T ) over one renewal cycle. By
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the same reasoning, we know that the average number of failures per time unit over an infinite time

horizon (under policy (M,T )), equals to the average number of failures per time unit R(M,T ) in

a renewal cycle. Hence, we will derive expressions for g(M,T ) and R(M,T ).

Since g(M,T ) and R(M,T ) are defined over renewal cycles, we will elaborate on the definition

of a renewal cycle. For our problem setting, we define a renewal cycle as the time between two

successive renewal points. Renewal points are constituted by the time points at which corrective

maintenance, preventive maintenance, or preventive system replacement (at MT ) is done. Then,

we know from renewal theory that:

g(M,T ) =
C(M,T )

L(M,T )
, (2)

where C(M,T ) represents the expected renewal cycle cost (under the (M,T ) policy), and

L(M,T ) represents the expected renewal cycle length under (M,T ). The reliability R(M,T ) is

derived similarly, and according to renewal theory:

R(M,T ) =
F (M,T )

L(M,T )
, (3)

where F (M,T ) denotes the expected number of failures in a renewal cycle (under the policy

(M,T )). The derivation procedure for the terms C(M,T ), F (M,T ) and L(M,T ) is based on various

event paths that may occur, and end the cycle. Instead of considering all event paths separately,

we consider types of event paths, which may define multiple event paths. We will address each of

these types of event paths, and derive the occurrence probability expressions, which finally yields

the expressions for g(M,T ) and R(M,T ).

Event Path Type 1 (E1). The system survives without any defect occurrence until time MT ,

at which the cycle ends. This implies that its time to defect has to exceed MT , and that no false

positives (thus only true positives) occur on any of the inspections before M . Because the inspec-

tions are done every T time units, true positives occur on inspections 1, . . . ,M − 1, corresponding

to the times T, . . . , (M − 1)T . Hence, the probability of true positives is evaluated at these time

epochs. The probability of true positives can be written directly in terms of the probability of false

positives. Since the probability of false positives is non-constant, a product series is included from

inspections 1 to M − 1. The probability expression for the event path of Type 1 equals

π1 =

∫ ∞
MT

M−1∏
n=1

(1− α (nT )) fX(x)dx.

Event Path Type 2 (E2). In this type of event paths, a false positive occurs on inspection

j ∈ {1, . . . ,M −1}, thereby ending the cycle. This implies that the time to defect exceeds time jT ,

and before inspection j no false positives have occurred. This yields the occurrence probability of

a type 2 event path, characterized by inspection j:

π2,j =

∫ ∞
jT

j−1∏
n=1

(1− α (nT ))α (jT ) fX(x)dx.
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Event Path Type 3 (E3). The system becomes defective in an interval [(i−1)T, iT ), characterized

by inspection i ∈ {1, . . . ,M}, and fails in this very interval, i.e., a false negative cannot occur. This

implies that its delay time lies in the interval [0, iT − x). Before defect arrival, no false positives

occur. Then, the occurrence probability of an event paths of type 3 are characterized by inspection

i is given by:

π3,i =

∫ iT

(i−1)T

i−1∏
n=1

(1− α (nT ))

∫ iT−x

0
fH(h)dhfX(x)dx.

Event Path Type 4 (E4). The system becomes defective in an interval [(i−1)T, iT ) characterized

by inspection i ∈ {1, . . . ,M − 1}. In contrast to the third type of event paths, the system does

not fail in this interval, but fails in an interval [jT, (j + 1)T ), j ∈ {i, . . . ,M − 1}. This leaves

false negatives to occur on inspections i up to inspection j, and due to the non-constant false

negative probability, we include a product series. Since the false negatives can only occur upon

time instances of inspections, we consider kT in the product series, where k = i, . . . , j. No false

positives occur before inspection i. Note that the event paths of type 4 are characterized by the

inspections i and j, and therefore we obtain the probability expression:

π4,i,j =

∫ iT

(i−1)T

i−1∏
n=1

(1− α (nT ))

∫ (j+1)T−x

jT−x

j∏
k=i

β

(
kT − x
h

)
fH(h)dhfX(x)dx.

Event Path Type 5 (E5). The system becomes defective in an interval [(i − 1)T, iT ), where

i ∈ {1, . . . ,M − 1}. No false positives occur before defect arrival. The system’s defect is revealed

upon inspection j ∈ {i, . . . ,M − 1}, denoting that the system’s delay time has to exceed jT − x,

and ending the cycle. Note that this detection of the defect (a true negative) at inspection j occurs

at time jT . This means that for inspections i up to j− 1 false negatives occur with a non-constant

probability. The probability expression for an event path of type 5 corresponds to:

π5,i,j =

∫ iT

(i−1)T

i−1∏
n=1

(1− α (nT ))

∫ ∞
jT−x

j−1∏
k=i

β

(
kT − x
h

)(
1− β

(
jT − x
h

))
fH(h)dhfX(x)dx.

Event Type 6 (E6). The system becomes defective in an interval [(i − 1)T, iT ), where i ∈
{1, . . . ,M}, and remains defective until the system is renewed at time MT . Before the defect

arrives, no false positives occur. From the defect arrival at time x to MT , the system remains

defective. This implies that inspections i up to M − 1 undergo false negatives. This yields the

probability expression for the final type of event paths, characterized by inspection i:

π6,i =

∫ iT

(i−1)T

i−1∏
n=1

(1− α (nT ))

∫ ∞
MT−x

M−1∏
k=i

β

(
kT − x
h

)
fH(h)dhfX(x)dx.

From the six different types of event paths, we derive the expression for the expected renewal

cycle costs C(M,T ). For types E3 and E4 corrective maintenance costs cc are incurred, since

these types end in system failure. Furthermore, by the definitions of E3 and E4, in total i and j

inspections are done, respectively. Consequently the costs of E3 correspond to ic0 + cc, and for E4
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are defined by jc0 + cc. Since all other types of event paths, E1, E2, E5, E6, end in preventive

maintenance, costs cp are incurred. Similar to types E3 and E4, the number of inspections and

therefore the inspection costs can be determined. By considering the inspection variables i and

j, all possible event paths can be captured by the six types E1-E6. To derive the expression for

C(M,T ), we have to include all possible event paths. This implies that we sum the types of event

paths over i and j appropriately, such that we cover all possible event paths that end a cycle. Then,

we obtain Equation 4.

C(M,T ) = (Mc0 + cp)π1 +
M−1∑
j=1

(jc0 + cp)π2,j +
M∑
i=1

(ic0 + cc)π3,i +
M−1∑
i=1

M−1∑
j=i

(jc0 + cc)π4,i,j

+
M−1∑
i=1

M−1∑
j=i

(jc0 + cp)π5,i,j +
M∑
i=1

(Mc0 + cp)π6,i.

(4)

We derive the expression for the expected renewal cycle length L(M,T ) in a similar way to

C(M,T ). For E3 and E4, the cycle ends in system failure and therefore takes x + h time units.

However, these are variables of integrals. Hence, we write the term x + h inside both integrals.

The other types of event paths are multiplied by the time epoch of the inspection ending the cycle.

These inspection instances are directly transferable from Equation 4. By the same reasoning we

sum appropriately over i and j, and obtain Equation 5.

L(M,T ) = MTπ1 +

M−1∑
j=1

jTπ2,j +

M∑
i=1

∫ iT

(i−1)T

i−1∏
n=1

(1− α (nT ))

∫ iT−x

0
(x+ h)fH(h)dhfX(x)dx

+

M−1∑
i=1

M−1∑
j=i

∫ iT

(i−1)T

i−1∏
n=1

(1− α (nT ))

∫ (j+1)T−x

jT−x

j∏
k=i

β

(
kT − x
h

)
(x+ h)fH(h)dhfX(x)dx

+
M−1∑
i=1

M−1∑
j=i

jTπ5,i,j +
M∑
i=1

MTπ6,i

(5)

The expected number of failures in a renewal cycle F (M,T ) corresponds to the probability of

corrective maintenance, by definition. Since corrective maintenance occurs upon system failure, we

only consider E3 and E4. Under the similar reasoning as the ones from the derivations of C(M,T )

and L(M,T ), we sum appropriately over i and j. This way we obtain the expected number of

failures in a renewal cycle F (M,T ):

F (M,T ) =

M∑
i=1

π3,i +

M−1∑
i=1

M−1∑
j=i

π4,i,j

3.2 Optimization procedure

The optimization problem from Equation 1 has a non-linear objective function and constraint.

To reduce the problem complexity of this non linear constrained optimization problem with two
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decision variables M and T , we enumerate M and solve for the optimal inspection interval length T ∗

by using Sequential Quadratic Programming (SQP). The optimal inspection instance of preventive

system replacement M∗ can be found by selecting the value of M with the lowest average cost rate.

4. Comparing non-constant with constant probabilities

In this section we will present a method for comparing a model with non-constant probabilities,

to a model with constant probabilities. In Section 4.1, we define expressions used to calculate the

mean probabilities of false positives and false negatives. These will be used to make the comparison

between both type of models (non-constant and constant) in Section 4.2.

4.1 Average false positive and false negative probabilities

To compare the model that has non-constant probabilities of false positives and false negatives with

the model that has constant probabilities, we derive expressions for the average probabilities of false

positives and false negatives, under a policy (M,T ) in this section. We will not directly consider

the type of event paths from Section 3, as these focus on the event paths’ occurrence probability,

instead of the probability of false positives or false negatives occurring. Hence, in this section we

will introduce specific types of event paths for the probability of false positives and false negatives.

To determine the average probability of false positives µα, we condition to the occurrence of

false positives; i.e., the system’s time to defect has to exceed time T of the first inspection. Under

this condition we consider two types of event paths for the false positives.

False Positive Event Path, Type 1 (FP1). The first type false positive event paths corresponds

to the average probability of false positives, when the system becomes defective in the interval

[(i− 1)T, iT ), where i ∈ {2, . . . ,M − 1}. Note that i = 1 is excluded from analysis by the condition

that the time to defect has to exceed T . For this type of false positive event paths, i−1 inspections

are done upon which a false positive may occur. We take the average over all these probabilities.

θ1,i =
1

i− 1

∫ iT

(i−1)T

i−1∑
n=1

α(nT )fX(x)dx =
FX(iT )− FX((i− 1)T )

i− 1

i−1∑
n=1

α(nT ).

False Positive Event Path, Type 2 (FP2). For the second type of false positive event paths,

we consider the system’s time to defect exceeding (M − 1)T . Hence, we need to take M − 1

false positive probabilities into account for the average, as a false positive upon inspection M , the

last inspection, cannot occur (the system is renewed preventively, independent on the inspection

outcome). The average false positive occurrence probability, then equals

θ2 = (1− FX((M − 1)T ))
1

M − 1

M−1∑
n=1

α(nT ).

Summing both types of false positive event paths, and conditioning to the time to defect ex-

ceeding T , yields
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µα = (1− FX(T ))−1
(
M−1∑
i=2

θ1,i + θ2

)
. (6)

The average probability of false negatives µβ is derived similarly to the expression for µα. The

average probability of false negatives is conditioned on the premise that false negatives can occur.

This implies that when a defect occurs in an interval [(i − 1)T, iT ) where i ∈ {1, . . . ,M − 1}, its

delay time has to exceed iT −x. Furthermore, since a defect can occur in any interval [(i−1)T, iT )

where i ∈ {1, . . . ,M − 1}, we sum over all i for the condition. Similar to the false positives, we

consider two events types for false negatives (under the condition).

False Negative Event Type 1 (FN1). This false negative event type denotes the average proba-

bility of false negatives when the system becomes defective in [(i−1)T, iT ), where i ∈ {1, . . . ,M−1},
and where the system fails in interval [(jT, (j+ 1)T ), with j ∈ {i, . . . ,M − 1}. We take the average

false negative probability over all inspections that can occur, yielding the probability expression

for FN1:

φ1,i,j =

∫ iT

(i−1)T

∫ (j+1)T−x

jT−x

1

j − (i− 1)

j∑
k=i

β

(
kT − x
h

)
fH(h)dhfX(x)dx.

False Negative Event Type 2 (FN2). The second false negative event type corresponds to the

average probability when the system becomes defective in [(i−1)T, iT ) where i ∈ {1, . . . ,M−1}, but

it does not fail; i.e., the system’s delay time exceeds MT − x. We only consider i ∈ {1, . . . ,M − 1}
because a defect occurring in [(M − 1)T,MT ) leads to a potential false negative upon inspection

M . However, such a false negative cannot occur, as the outcome of the M th inspection is irrelevant.

Therefore, we exclude this case. Then the average probability of false negatives for FN2 becomes

φ2,i =

∫ iT

(i−1)T

∫ ∞
MT−x

1

(M − 1)− (i− 1)

M−1∑
k=i

β

(
kT − x
h

)
fH(h)dhfX(x)dx.

Analogous to the expression for µα, here we also sum over all appropriate intervals characterized

by inspections i and j, and we include the condition to obtain

µβ =

(
M−1∑
i=1

∫ iT

(i−1)T
(1− FH (iT − x)) fX(x)dx

)−1M−1∑
i=1

M−1∑
j=i

φ1,i,j +
M−1∑
i=1

φ2,i

 . (7)

4.2 Comparison method

In this section, we present a method to compare a DTM with non-constant probabilities of false

positives and false negatives, to a DTM with constant probabilities. We consider the DTM with

constant probabilities for false positives and false negatives, to be an approximation of the model

with non-constant probabilities. Note that our non-constant probabilities model can be easily

altered to yield a constant probabilities model. For more details on a constant probabilities model,

see Berrade et al. (2013).
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For a proper comparison, the constant probabilities have to be set accordingly. For this purpose,

we use the average probability of false positives µα, and the average probability of false negatives

µβ. Here, we assume that α0, cα, a, β0, cβ, γ, and η are known. From Equations 6 and 7, we

observe that µα and µβ are both dependent on an inspection policy (M,T ). For optimization, the

optimal inspection policy is again dependent the probabilities of false positives and false negatives,

µα and µβ, respectively (see Section 3). Hence, for the model with constant probabilities, we

propose to consider convergence in the policy (M,T ), and consequently in the value of µα and

µβ. To this end, we will denote the optimal convergent policy by (M̂, T̂ ). Here, we assume that

convergence to a single policy (M̂, T̂ ) exists. Furthermore, note that this convergent policy has to

satisfy the reliability constraint R(M̂, T̂ ) ≤ Rmax. We obtain such a convergent policy iteratively.

Therefore, we introduce the notation for the optimal policy (M̂i, T̂i) of the ith iteration, which has

corresponding average probabilities of false positives µiα, and false negatives µiβ. Remark that each

(M̂i, T̂i) also has to satisfy the reliability constraint, except for i = 0, since i = 0 is the initial policy.

We start by setting i = 0, and setting an initial inspection policy (M0, T0). From here we

calculate µ0α and µ0β, and start our iterative procedure to obtain the optimal convergent policy

(M̂, T̂ ) (if it exists). The iterative procedure sets i := i + 1 and calculates the optimal inspection

policy (M̂i, T̂i) under the averages µi−1α and µi−1β . Then, based on (M̂i, T̂i), the average probabilities

µiα and µiβ are calculated. The iterative procedure terminates when the absolute difference between

the optimal inspection interval lengths of iterations i and i−1 is smaller than the threshold ε = 0.01.

Furthermore, we require for termination that M̂i = M̂i−1. In case the policy does not converge to

a single policy, we propose to consider the inspection policy which yields lowest costs, and compare

this policy to the non-constant probability results.

Since the non-constant probabilities reflect the actual inspection behavior, we evaluate the

actual cost rate C(M̂, T̂ ) and actual reliability R(M̂, T̂ ) under the convergent (M̂, T̂ ) policy. Note

that for this evaluation, we take the non-constant probabilities, under the (M̂, T̂ ) policy, into

account.

As we are considering constrained models, we will set the reliability R(M̂, T̂ ) as the reliability

objective for the non-constant probabilities model, i.e., Rmax := R(M̂, T̂ ). This ensures a one

dimensional comparison (only costs). We propose to solve the optimization model with the modified

constraint, yielding the optimal values for the decision variables M∗ and T ∗ under the non-constant

probabilities. The corresponding cost rate is denoted by C(M∗, T ∗) and can be compared to the

cost rate C(M̂, T̂ ) by

∆C =
C(M̂, T̂ )− C(M∗, T ∗)

C(M∗, T ∗)
(100%).

To summarize, we propose the following method for comparing a constrained non-constant

probabilities model to a constrained constant probabilities model. If we observe, in step 3, that the

policy does not converge to a single policy (M̂, T̂ ), we select the policy that yields lowest costs.

1. Set i := 0, and set (M0, T0).
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2. Calculate µ0α and µ0β

3. Determine the optimal convergent (M̂, T̂ ) policy by:

(a) Set i := i+ 1

(b) Calculate the optimal (M̂i, T̂i) under µi−1α and µi−1β

(c) Calculate µiα and µiβ under (M̂i, T̂i)

(d) If M̂i = M̂i−1, and |T̂i − T̂i−1| ≤ ε, set µα := µiα and µβ := µiβ, and go to 3. Else, go to

(a)

4. Calculate C(M̂, T̂ ) and R(M̂, T̂ )

5. Set Rmax := R(M̂, T̂ ) for the non-constant probabilities model

6. Calculate M∗, T ∗ and C(M∗, T ∗)

7. Compare C(M̂, T̂ ) with C(M∗, T ∗) by calculating ∆C.

5. Computational study

In this section we present our testbed, based on data from the Dutch rail industry. The system’s

properties are set such to reflect actual systems in use. We will focus on four main factors, and we

generate a testbed consisting of 81 instances, by considering three choices for each factor.

5.1 Testbed

Since we cannot capture all non-constant behavior of the false positive and false negative probabil-

ities by a single variable for each, we include constant probabilities α0 and β0, respectively. These

constant probabilities enable us to include the effects of other variables, yet in a constant way.

First, let us consider the probability of false positives. We relate this probability in a piece-

wise manner to the perceived defect progress t/a, where t ≤ x. Recall that we consider some

of maintenance engineers using the substitute attribute t/a instead of the measurement outcome,

to determine whether to send the system to maintenance. For inspections occurring prior to a

threshold value a, we assume that the probability of false positives increases linearly in time t.

This behavior is based on the assumption that the engineers become more tempted in engaging in

a false positive when the time approaches a. For the inspections occurring after the threshold time

a, we assume that the system is always send to maintenance by the engineers using this attribute

substitution. Since there are also engineers not using the perceived defect progress, the probability

of false positives is linearly increasing until threshold a, and from this threshold remains constant

at α0 + cα. The variable cα directly relates to the relative size of engineers using the attribute

substitution. Then,

13



α (t) = α0 + cα

{
t
a if t ≤ a
1 else

.

Regarding the probability of false negatives, we follow Probability of Detection (POD) literature,

as discussed in Section 2. It is widely accepted that the relationship between the POD and system

degradation is best modeled by a log odds distribution (Berens, 1989; Georgiou, 2006). Since β=1-

POD (Nichols et al., 2008), there exists an explicit relationship (in log odds terms) between system

degradation and the probability of false negatives. As we consider the failure progress (t− x)/h to

be an indicator of system degradation, we propose to model the explicit relationship (in terms of log

odds) between the probability of false negatives and the failure progress (t−x)/h. Since we cannot

capture the complete non-constant probability of false positives by only considering the failure

progress, we include a constant probability β0. Literature relating the false negative probability

to system degradation, all assume that, under no degradation, the probability of a false negative

equals 1, cf. Forsyth and Fahr (1998); Nichols et al. (2008). Based on the explicit relationship

between the probability of false negatives and (t− x)/h), the inclusion of β0, and a false negative

probability of 1 under no degradation, we propose the following function for the probability of false

negatives β((t− x)/h):

β

(
t− x
h

)
= β0 +

1− β0
1 + eγ+η ln(

t−x
h )

, if x ≤ t ≤ x+ h

Figure 1 illustrates the proposed functions for the probability of false positives related to t and

for the probability of false negatives related to the failure progress (t− x)/h.

Figure 1: Illustration of non-constant probabilities α and β

We explore the effects of four factors on the cost differences between optimal policies of constant

and non-constant probabilities of false positives and false negatives. These factors include: the reli-

ability objective Rmax, the inspection cost parameter c0, the bandwidth of non-constant probability

of false positives (and defining the slope) cα, and the shape parameter η for false negatives. Note

that decreases in γ yield a similar result as increases in η, as the ln() term is negative. All factor

choices are presented in Table 4.
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Rmax c0 cα η

10−4; 10−6; 10−8 50; 100; 200 0.25; 0.50; 0.75 1.5; 2.0; 2.5

Table 4: Factor choices

All other model parameters are fixed for our numerical study, and are listed in Table 5. The

distributions used for the time to defect and delay time are Weibull distributions, with shape

parameter δ. and scale parameter θ..

δX θX δH θH cp cc M0 T0 α0 a = E(X) β0 γ

2.5 1234 2.5 203 1,000 2,000 12 60 0.05 1094.88 0.05 5

Table 5: Fixed parameter values

6. Conclusion

HERE IT COMES
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Appendix

µα = α0+
cα

1− FX(T )



M−1∑
i=1

FX(iT )− FX((i− 1)T )

i− 1

i−1∑
q=1

qT

a
+

1− FX((M − 1)T )

M − 1

M−1∑
q=1

qT

a
if MT ≤ a

ba/T c∑
i=2

FX(iT )− FX((i− 1)T )

i− 1

ba/T c∑
q=1

qT

a
+ if MT > a

M−1∑
da/T e

FX(iT )− FX((i− 1)T

i− 1

ba/T c∑
q=1

qT

a
+ i−

⌈ a
T

⌉+

1− FX((M − 1)T )

M − 1

ba/T c∑
q=1

qT

a
+M −

⌈ a
T

⌉
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µβ = β0 +
1− β0∑M−1

i=1

∫ iT
(i−1)T (1− FH (iT − x)) fX(x)dxM−1∑

i=1

M−1∑
j=i

∫ iT

(i−1)T

∫ (j+1)T−x

jT−x

1

j − (i− 1)

j∑
q=i

1

1 + eγ+η ln(
qT−x

h )
fH(h)dhfX(x)dx

+
M−1∑
i=1

∫ iT

(i−1)T

∫ ∞
MT−x

1

M − i

M−1∑
q=i

1

1 + eγ+η ln(
qT−x

h )
fH(h)dhfX(x)dx

 .
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