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Abstract Condition-based maintenance (CBM) is becoming increasingly important
due to the development of advanced sensor and information technology, which facil-
itates the remote collection of condition data. We propose a new CBM policy for
multi-component systems with continuous stochastic deteriorations. To reduce the
high setup cost of maintenance, a joint maintenance interval is introduced. With this
interval and the control limits of components as decision variables, we develop a model
for the minimization of the average long-run maintenance cost rate of the systems.
Moreover, a numerical study of a production system consisting of a large number
of non-identical components is presented, including a sensitivity analysis. Finally,
our policy is compared to a failure-based policy and an age-based policy, in order to
evaluate the cost-saving potential.
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Q. Zhu et al.

1 Introduction

Condition-based maintenance (CBM) is a method that recommends maintenance deci-
sions based on the condition of a component/system (Peng et al. 2010; Jardine et al.
2006). CBM is becoming increasingly important, because (i) the development of
advanced sensor and information technology makes the remote acquisition of condi-
tion monitoring data (e.g., temperature of engine, wearing of a brake) less costly; and
(ii) condition data can improve diagnostics and prognostics of failures, which helps
to reduce maintenance related costs further (Peng et al. 2010; Jardine et al. 2006).
Hence, considerable attention from researchers has been drawn to study CBM (Peng
etal. 2010). Compared with single-component systems, the maintenance optimization
for multi-component systems in a CBM framework is much more complicated because
of economic, structural, or stochastic dependencies among the components (Cho and
Parlar 1991; Dekker et al. 1997; Nicolai and Dekker 2007). In this paper, we focus on
economic dependency and propose a new CBM policy for multi-component systems
with stochastic and continuous deteriorations. To reduce the setup cost of maintenance
for multi-component systems, we propose a joint maintenance interval to synchronize
the maintenance activities for all degrading components in a system. Maintenance
strategies with static joint maintenance intervals are often applied in the industries of
advance capital goods (e.g., aviation, oil-gas refinery, renewable energy and chemical
process) due to the convenience of static intervals for the operations planning and coor-
dination of maintenance resources (e.g., service engineers, maintenance equipments,
spare parts) (Dekker et al. 1997).

In a CBM framework, after several key steps, i.e., data acquisition, data process-
ing, diagnostics and prognostic, maintenance policies will be optimized to minimize
the operational costs or maximize the availability of systems (Jardine et al. 2006).
The main difference between the conventional maintenance models and CBM mod-
els is the utilization of condition measurements (Peng et al. 2010). Failures usually
occur when the degradation level of a system reaches its failure threshold level,
so that the condition monitoring data and stochastic models of the degradation
processes are often necessary to estimate remaining useful lifetimes (RUL) or reli-
ability functions. Si et al. (2011) distinguished two types of probability models of
RUL estimation: directly observed CBM models [e.g., regression-based models Lu
and Meeker 1993, Wiener process Gebraeel et al. 2005, Gamma processes (van
Noortwijk 2009), Markovian-based models (Kharoufeh et al. 2010)] and indirectly
observed CBM models [e.g., stochastic filtering-based models (Wang and Christer
2000), covariation-based hazard model (Vlok et al. 2002), hidden Markov model (Lin
and Makis 2003)]. In this paper, we consider systems with continuously observable
degradation processes, which is a typical feature of systems in the industry of advance
capital goods.

For single-component systems, based on the general random coefficient model (Lu
and Meeker 1993), Wang (2000) proposed a CBM model to determine the optimal
control limit and the inspection interval in terms of costs, downtime or reliability.
Gebraeel et al. (2005) extended the general degradation model to estimate the RUL
distribution from sensor signals, using a Wiener process and Bayesian updating. Using
this technique, a single-unit replacement problem is formulated as a Markov deci-
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sion process to develop a structured replacement policy (Elwany et al. 2011). For
monotonic stochastic deteriorations, a Gamma process can be used for condition-
based maintenance optimization (van Noortwijk 2009). The CBM models in this
case were developed to have a single-level control limit (Dieulle et al. 2003; Park
1998) or a multi-level control limit (Grall et al. 2002) under the scenarios of peri-
odic inspection (Park 1998), aperiodic inspection (Dieulle et al. 2003; Grall et al.
2002) or continuous monitoring (Liao et al. 2006). If the degradation process could
be modeled as discrete states, Markovian-based models were applied. The optimal
replacement policies were derived from observable Markov processes (Kharoufeh
et al. 2010) or the evolution of the hidden states (Jiang et al. 2013). Moreover,
Proportional Hazards Models are also often used to relate the system’s condition
variables to the hazard function of a system (Vlok et al. 2002), so that the mainte-
nance policies can be optimized with respect to the optimal risk value of the hazard
function.

Although many CBM models have been proposed for single-component systems,
they cannot be applied directly for multi-component systems, because one has to deal
with the economic dependency among the components. In our model, we consider the
economic dependence incurred by the high setup cost of maintenance activities, such
as sending maintenance personnel and equipment to a remote site. In the literature
within this category, many maintenance models are developed based on failure time
data (known as “age/time-based models”) instead of condition monitoring data. For
example, Radner and Jorgenson (1963) introduced an (n, N) policy with a proof of
optimality. They distinguished two types of components, 0 and 1, where n is the age
threshold for opportunistic replacements of component 0 when component 1 fails
and N is the preventive replacement threshold of component 0 when component 1
is good. Some exact methods (Haurie and L’ecuyer 1982; Ozekici 1988) (e.g., via
Markovian framework) for finding the optimal solution are intractable for systems
with large amounts of components, due to the exponentially increasing state spaces.
Hence, various heuristics were proposed to reduce the computational complexity (van
der Schouten and Vanneste 1993; van Dijkhuizen and van Harten 1997). To reduce
the high setup cost, Wildeman et al. (1997) and Dekker et al. (1997) developed a
maintenance clustering method to coordinate maintenance tasks at the system level,
considering the penalty cost of deviating with the maintenance schedule from the
optimal maintenance interval of individual components. By assuming the expected
deterioration cost function based on a Weibull process, they proved the structure of
their clustering policy is optimal, which reduces the complexity of the large-scale
optimization problem from O (2") to 0(n?).

Contrary to age-based maintenance models, only a few condition-based mainte-
nance models have been proposed for multi-component systems, which are sum-
marized in Table 1. Wijnmalen and Hontelez (1997) used a heuristic algorithm for
computing upper and lower control limits for component repair in systems, which is
formulated under a Markov decision framework. Castanier et al. (2005) introduced
a parametric maintenance decision framework to coordinate inspection/replacement
of a two-component system and minimize the long-run maintenance cost. However,
solutions become intractable when extending this model to multi-component systems.
Alternatively, Barata et al. (2002) proposed a maintenance policy for continuously
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monitored deteriorating systems to minimize the expected maintenance cost over a
given mission duration using Monte Carlo simulation. Marseguerra et al. (2002) for-
mulated an optimization model with two objectives (availability and net profit) based
on a Markov degradation model and solved it by embedding Monte Carlo simulation in
genetic algorithms. Neither model included joint maintenance setup costs at the system
level. Considering the joint setup costs, Bouvard et al. (2011) converted a condition-
based maintenance problem into an age-based maintenance clustering problem, which
yielded a schedule with a dynamic optimal maintenance interval. Moreover, Tian et al.
proposed two maintenance policies for multi-component systems using Proportional
Hazard Model (Tian and Liao 2011) and Artificial Neural Network (Tian et al. 2011).

In comparison with Table 1, our contribution is that we develop a new mathemat-
ical model to optimize the condition-based maintenance policy for systems with a
large number of identical/non-identical components. Our analysis is exact in an infi-
nite time horizon and our degradation path is directly observable continuously. To
avoid high setup costs, our model coordinates the maintenance tasks at the system
level by introducing a static joint maintenance interval. The components are jointly
maintained at the next upcoming maintenance time point if their physical conditions
exceed the specified control limits, which can be easily implemented in the indus-
tries of advance capital goods. Under this structure, we develop a nested enumeration
approach to minimize the average long-run cost rate by specifying the control lim-
its of degrading components and the static joint maintenance interval. This model
is capable of dealing with systems consisting of a large number of identical/non-
identical components, because the setup cost of maintenance visits and the variable
cost of maintenance visits can be evaluated in separate terms in the objective function:
(i) the setup cost is related to the joint maintenance interval, which can be opti-
mized at the outer loop of the optimization algorithm (ii) the variable cost, which
is dependent on the types of maintenance activities (preventive or corrective) and
the amount of components involved, can be evaluated separately for each com-
ponent using renewal theory. Due to this decomposition, for a given maintenance
interval, we can first optimize the control limits of components and then specify
the optimal joint maintenance interval at the system level. For different degradation
processes, the structure of the model and the algorithm of optimization will not be
changed, although the probability expressions will be different for different degra-
dation models. Notice that our model is not only adaptable for components with
different degradation processes (e.g., random coefficient models, Wiener processes
and Gamma processes), but also applicable to systems composed of components
with different types of maintenance policies (e.g., age-based maintenance or periodic
inspections).

The outline of this paper is as follows. The description of the system and the assump-
tions are given in Sect. 2. The details of the mathematical model are explained in Sect. 3.
In Sect. 4, a numerical study of a semiconductor production system is performed. In
Sect. 6, our optimal policy is compared with the optimal solutions of a failure-based
policy and an age-based policy, in order to evaluate the cost-saving potential. More-
over, in Sect. 5, a sensitivity analysis is performed. Finally, the conclusions are stated
in Sect. 7.
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2 System description

Consider a system consisting of kK components. The set / = {1,2..., k} denotes the
set of components. When maintenance actions are taken, a maintenance crew and
equipment have to be sent to the field and the operation of the system is interrupted.
Consequently, a high fixed setup cost S is charged on the system for maintenance
actions on its components. The setup cost S refers to a fixed cost that is incurred for
a maintenance visit regardless of what maintenance actions are performed. For a pro-
duction line, it includes the cost of sending a maintenance team to the site, stopping the
production, resetting the production environment, etc. Hence, it is often economically
beneficial to perform maintenance actions of multiple components simultaneously. If
we decide to take a maintenance visit for a single component, we need to pay such a
fixed cost S. However, if we decide to take a maintenance visit to conduct the mainte-
nance activities for several ( f) components at one joint maintenance interval, we only
need to pay one fixed cost S. In this case, we save f — 1 setup costs for the system,
compared with taking maintenance visits separately for each component at different
time moments. This is the economic dependency that we are dealing with.

Due to the convenience of implementation, maintenance policies with a fixed inter-
val are commonly adopted in practice, which is also referred as block replacement
policy in literature. For example, in the industry of semiconductor, a periodic main-
tenance visit will be scheduled at fixed time points. We consider such a policy with
a static maintenance interval t (a decision variable). Namely, it is possible to set
up maintenance actions only at time points nt, n € IN. In practice, the maintenance
interval (in terms of weeks) is small compared with the long life cycles (from 10 to
40 years) of complex systems. Hence, an infinite time horizon is assumed in this paper.

At the component level, we can continuously monitor the degradation of a certain
physical parameter (e.g., the temperature of an engine, the wearing of a braking sys-
tem, the cracks of a stringer). For each component i € I, X;(¢) is the degradation
path over time ¢ € [0, co) (see Fig. 1). In this paper, we assume a soft failure, which
means that a component continues functioning with a lower performance when its
degradation exceeds its soft failure threshold H; (i.e., X;(¢) > H;). Such soft failures
usually happen to components with mechanical/thermal-stress degradation (Callister
and Rethwisch 2003). For example, (i) the cutting tools are not able to deliver satisfac-

TiHi
Degradation Soft
v
Xi(t) Failure
Period
Hi . L]
f_,,_*,_*,,_J*.**_,,_**_***_qﬁH
| ] ]
] | (]
[ '
] ] ]
[ o '
'l 'l 'l 'l [ [] | [ ]
! ) ] ) ) ] { } Time
r 22 3z m-1) r nzr i+l T . t
Maintenance interval
| < A e Cycle > | < Maintenance Cycle —_— |

Fig. 1 Condition-based maintenance of single components with corrective maintenance only
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Fig. 2 Condition-based maintenance of single components with preventive and corrective maintenance: a
a PM action is taken at the next maintenance point if H; > X;(t) > C;; b a CM action is taken at the next
maintenance point if X;(¢) > H;

tory performance after a certain percentage of the metal material is worn, which can
result in a lower throughput of production line; (ii) an overpowered laser beam gen-
erated by a degraded laser unit may lead to not-precise cutting and high scrap rate in
production. Both of them can be considered as soft failures. In this paper, when X (¢)
exceeds H; and a soft failure is observed between two maintenance points (n — 1)t and
nt, acorrective maintenance (CM) action (with a cost Ccy,;) on the failed component
is taken at the maintenance point nt. The period from the time point when the soft
failure occurs till the maintenance point nt is the soft failure period (see Fig. 1). Such
a period can cause quality loss in production or lower performance in operation with a
cost rate C), ;. For instance, in a semiconductor production system, if the laser power
output exceeds a certain limit, the silicon wafers will not be cut precisely, which will
cause a higher scrap rate. Hence, this quality loss/low performance cost is equal to the
length of soft failure period multiplies C ;.

In order to avoid a high corrective maintenance cost Ccm,; and quality loss costs
when X; (#) exceeds H;, it is economically beneficial to take maintenance actions pro-
actively, which is known as preventive maintenance (PM), with a lower cost Cppy,;
(Cpm.,i < Ccm.i)- Thus, for each component, we introduce a control limit C; to trigger
PM actions at the next closest maintenance point, before its degradation exceeds H;
(C; < H,;), as shown in Fig. 2. When the stochastic degradation increases fast and
exceeds both C; and H; at the next closest maintenance point nt, a CM action will
be taken (see Fig. 2b). Nevertheless, if the stochastic degradation increases slow and
the degradation level is between C; and H; at the next closest maintenance point nt,
a PM action with a lower cost will be taken (see Fig. 2a). Notice that both t and
C;,i € I, are the decision variables of the optimization model. After a maintenance
action is taken, the condition of the component is restored to the initial degradation
level (also known as “repair-as-new”) and the component continues its operation till
the next maintenance action is taken. This renewal cycle will repeat itself throughout
the infinite time horizon. The period between two consecutive maintenance actions for
a component is defined as a maintenance cycle (see Fig. 1), which is also called as a
renewal cycle. The beginning of each cycle is a so-called renewal point. According to
renewal theory, the average cost rate over an infinite time horizon is equal to the average
cost rate over one maintenance (renewal) cycle, Z; (z, C;). The expected maintenance
cost per cycle and the expected maintenance cycle length are derived in Sect. 3.2.
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We assume components are independent with each other in this paper. Several real
life applications satisfy this assumption. For example, in a lithography machine that
has lots of components and modules (Zhu et al. 2013), the degradations of the modules
(e.g., laser units, micro-mirrors, etc) are independent. They are independent because
there is no joint environmental factor, since the operation of the machine requires a
clean-room or vacuum environment. The degradations of the lighting systems in a
building are independent, because the degradation of a light bulb will not affect the
degradation of another light bulb. In a multi-stage production system, the mechanical
components degrade over time (e.g., the cutting tools, the transmitting chains, the
rotating/moving components). Most of the components are independent, because the
degradation of the mechanical components in one stage will not affect the degradation
of the mechanical components in another stage.

To solve the maintenance problem for systems with a large number of components,
we propose a nested enumeration approach, because the setup cost of maintenance
visits and the variable cost of maintenance visits can be evaluated in separate terms
in the objective function. We first decompose the optimization of the system into
the optimization problems at individual component level to find the optimal control
limit of each component C for a given 7 by minimizing the average cost rate of
each component, Z; (t, C;). Afterwards, we can find the optimal t by minimizing the
average maintenance cost rate of the system Zgys¢(7). We assume that the system is
composed of a large number of components, so that the probability of no component
failure within one maintenance interval is negligible. Hence, a setup of maintenance
actions is always needed at each static maintenance point and the average setup cost
rate can be modeled as g Furthermore, since the degradation processes of components
are assumed to be independent, the variable cost rate of maintenance visits equals the
summation of the variable cost rates of all the individual components, which can be
evaluated using renewal theory. Consequently, the average cost rate on the system
level for a given t is

S
Zya(D) =~ + 2 Z{(D) ()

iel

where Z7(7) = Z;(t, C}), which is the minimum average cost rate excluding setup
cost for component i with an optimal control limit C} for a given 7. Notice that
there are many assumptions in our model: independent component lifetimes, static
maintenance interval, soft failures, instantaneous replacements, high setup cost, etc.
But these assumptions are reasonable assumptions for a portion of the capital goods
applications, e.g., semiconductor production lines.

2.1 Notation

i index of components in the system

n index of maintenance intervals over the planning horizon
Xi(1) degradation of component i on a physical condition

T maintenance interval at the system level (decision variable)
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Ci control limit on the degradation level of component i (decision variable)
H; soft failure threshold on the degradation level of component i

Zi average cost rate of component i (without setup costs)

Zsyst average cost rate of the system

Cpm.i cost per PM action taken on component i

Cem,i cost per CM action taken on component i

Cp.i soft failure cost rate on component i

S cost per setup action taken at the system level

2.2 Assumptions

(1) Maintenance actions are set up at fixed maintenance points nt, n € IN.

(2) The time horizon is infinite.

(3) Maintenance actions restore the conditions of components back to their initial
degradation levels. (also known as “repair-as-new”).

(4) Maintenance activities are instantaneous.

(5) The components in the system are independent of each other.

(6) The system is composed of a large number of components, which implies that at
least one maintenance action will be taken in each maintenance interval.

(7) The system continues its operation with a lower performance when the degradation
of components exceeds the failure thresholds (also known as “soft failure”).

3 Model formulation and analysis

Before optimizing the maintenance policy on the system level [see Eq. (1)], the degra-
dation process of components within a single maintenance cycle is introduced in
Sect. 3.1. Afterwards, the optimization model is formulated both at the component
and system level in Sect. 3.2.

3.1 Degradation model

As mentioned in the literature in Sect. 1, there are several approaches for modeling
the stochastic degradation paths of components (e.g., Random Coefficient Model,
Gamma process, Brownian Motion or Markov Process). In this paper, we use the
Random Coefficient Model (Lu and Meeker 1993), because it is relatively flexible and
convenient for describing the degradation paths derived from physics of failures, such
as law of physics and material science. According to the Random Coefficient Model,
X;(f; ®;, ©;), the degradation level of component i at time f €[0,00) in a single
maintenance cycle, is a random variable, given a set of constant parameters ®; =
{¢i1,...,¢i 0}, Q € N; and a set of random parameters, ®; = {6;1,...,6; v}, V €
IN, following certain probability distributions. If the degradation process is monotone,
the probability that the degradation at time 7 exceeds a threshold x is equal to the
probability that the passage time T, over the threshold x is less than time 7
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Pr{T, <1} =Pr{X(7; ®;, ©;) > x}, Viel. )

Example 1 In order to clarify the model, a simple example is given. Consider a com-
ponent i in the system with a degradation path X (¢; ®;, ©;) = ¢; .1 + Gi,1t¢i~2 where
®; = {¢i,1, ¢i2} and O; = {6; 1}. Eq. (2) can be written in terms of Fy,, (the cumu-
lative density functions of random variables 6; 1, 6; 1 > 0): '

Pr{T, <1} =Pr{pi1+6;1%2 > x}

_ _ X — ¢i
_PrIQ,,l > W]
_ X — di

<&

Example 2 As a simple example of a degradation model with two independent ran-
dom parameters 61 and 6>, suppose a degradation path for component i takes a form
X (t; ©;) = 6;1t + 6, 2; where (i) 6;,1 € [0, oo) follows a Weibull distribution with a
shape parameter f; | and a scale parameter «; 1, (ii) 6; 2 € [0, co) follows a Weibull
distribution with a shape parameter f; > and a scale parameter «; 7, (iii) ¢ € [0, 00).
Equation (2) can be written in terms of fy, , and fj, , (the probability density functions
of random variables 6; 1 and 6; »):

Pr{T, <1} =1-Pr{X(; 0;) < x}

M:% v=x—uf

=1 _/ f@,',l(u) / f@i.z(l}) dv ) du
u=0 v=0

= —_ —_— — 1, —_— (9 u'
u=0 \ %1 \¢]

<&

For component i, the cumulative density functions of passage time T¢; and Tg;
(when the degradation level exceeds C; and H;) can be derived based on Eq. (2) given
the degradation path function X;(f; ®;, ®;) and the probability distributions of ®;.
Recalling the proposed policy explained in Sect. 2 (see Fig. 2), maintenance actions
are taken at fixed time points. Hence, the probability that the control limit C; is reached
between time point (n — 1) and nt can be expressed as

Pr{X; ((n — Dt; ®;, 0;) < C; < X;(nt; ®;,0,)} =Pr{(n — 1)t < T¢; < nt},
VvnelN, iel. 4

The probability that soft failure threshold H; is reached before time point nt can be
expressed as

Pr{X;(nt; ®;,0;) > H;} =Pr{Ty, <nt}, VnelN, iel %)
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where C; < H; and T¢, < Ty, since the degradation path is assumed to be monotonic.
After C; is reached between (n — 1)t and nt, there are two possibilities for the
maintenance action at nt as mentioned in Sect. 2: preventive maintenance (PM) if
C; < X;(nt) < H; and corrective maintenance (CM) if X;(nt) > H;. Thus, the
probability that PM occurs at time nt after the degradation level of component i has
reached its control limit C; between time (n — 1) and nt, can be derived based on
Egs. (2), (4) and (5) as

Pr{PM at nt} = Pr{Ty, > nt, (n — 1)t < T¢, < nt}. (6)
Similarly, for CM,
Pr{CM atnt} = Pr{Ty, <nt, (n — 1)t < T, < nt}. 7

Example 1 (continued) According to Eqgs. (3) and (4), the probability of reaching
the control limit C; between (n — 1)7 and nt can be obtained as

C: — &b
Pr{(n — )t < T, < nt} = Fy, (z_d’zl)

(n — D)2
Ci — i i
_ng’l (W) s Vn € IN, 1el. (8)

For component i, the probability that either PM or CM occurs at time point nt after
the degradation reaches C; between (n — 1)t and nt can be derived from Egs. (6) and

OF

Hi —¢in  Ci—dia g o Ci— i
(no)¥i2 " ((n— D)%z ~ i1 (nt)9i2

Ci—¢i _ Ci—¢i, e Hi—¢in Ci—¢i
Fou («n—l)z)‘*’w) Fou ((nr)"’m) T~ G

Hi—¢i1) _ Ci—¢ia e Hi—¢in Ci—¢i
Fou ((nr)d’fl) Fou ((m)¢,-,2) T oosz = Gamnoe-

©))

Pr{PM atnt} = Pr [0,-,1 <

Similarly, for CM,

H; — ¢i1 Ci — i > 61 Ci—dia

(no)¥i2 " ((n— D)%z ~ b
e Hi—¢i Ci—di1

0 if w2~ (-2

- Ci—di1 _ Hi—¢i1 o Hi—¢in Ci—¢in
Fou («n—an) Fou ((,,t)@-,z) T omsis = Gonoma:

(10)

Pr{CM at nt} = Pr [6’{,1 >

Regardless of the distribution of 6; 1, the sum of the probabilities of PM and CM in
the interval of nt is equal to the probability of reaching C; between (n — 1)t and nt,
as derived in Eq. (8). &
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3.2 Evaluation and optimization

As mentioned in Sect. 2, we propose a nested approach to find the optimal mainte-
nance policy (i.e., the control limits C; of each degrading component and the joint
maintenance interval t) by minimizing the average long-run cost rate of the system.

3.2.1 Evaluation and optimization for each component

We first evaluate the average long-run variable cost rate for component i € [ incurred
by preventive maintenance, corrective maintenance and soft failure. The variable cost
of one maintenance visit is dependent on the type of maintenance activities (preventive
or corrective) and the amount of components involved. Suppose that we add all the
variable costs for all the maintenance visits over an infinite time horizon together. The
summation of the variable costs over an infinite time horizon is dependent on the differ-
ent frequencies of replacements of the components and the different proportions of the
types of maintenance activities (preventive or corrective) over a long term for differ-
ent components. Notice that we assume the degradation processes of the components
are independent. Therefore, the frequencies of replacements for different components
are independent under a given 7 and the given control limits. These frequencies can
be evaluated by the lengths of renewal cycles, using renewal theory separately. The
proportions of the types of maintenance activities (preventive or corrective) can be
calculated by deriving the probability of soft failures for a renewal cycle. Notice that
the probabilities of soft failures of a renewal cycle for different components are inde-
pendent since the degradation processes of the components are independent. Then the
proportions of the types of maintenance activities for different components can be
evaluated separately using renewal theory also. Due to these reasons, the variable cost
can be evaluated separately for different components, given the values of 7 and control
limits. According to renewal theory, the average long-run cost Z;(t, C;) is equal to
the expected maintenance cost per cycle E[K; (z, C;)] divided by the expected cycle
length E[L;(z, C;)]. The expected maintenance cost per cycle E[K; (t, C;)] is given
as

E[K;(z, C;)] = z [Pr{PM at n7}Cpwm,; + Pr{CM at nt}Cewm,
nelN
+E[D;i(z,C)]Cp,i, (1)

where Pr{PM atnt} and Pr{CM at nt} can be obtained from Egs. (6) and (7), Cpm,; and
Ccwm,; are the costs of preventive maintenance and corrective maintenance of compo-
nenti respectively, excluding the setup cost. The soft failure costin Eq. (11) is evaluated
by the product of the expected soft failure period IE[D;(t, C;)] and the penalty cost
rate C), ;, as described in Sect. 2. The expected soft failure period E[D; (t, C;)] can
be derived as

D=3 [

nelN (n—Dz

nt

(/ (nr—y)fTHiTCl_(y|x)dy) fTCl_(x)dx, Viel,
(12)
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where ch,. (x) is the probability density function of passage time T¢, and fTH,- e, (y|x)
is the conditional probability density function of passage time Ty, given that T¢, = x.
Moreover, the expected cycle length E[L; (z, C;)] is given as

E[Li(z,C)] = anPr{(n — Dt <T¢ <nt), Viel. (13)
nelN

Example 1 (continued) Assuming that the degradation rate 6; | follows a Weibull
distribution with scale parameter ¢;; and shape parameter §;, the distribution of passage
time T¢, can be derived as

Ci — i1\ s C—o 1\P
fTC' (_x) = ¢i,2ﬂi (l_‘ﬁl,l) x_(¢t,2ﬁz+1) exp [_ (#) } , Yi e l.
' o o;x?i2
(14)

According to Eq. (12), the expected soft failure period can be derived as

nt Hi—¢  \1/92 77
E[D;(z, Ci)]zz |:/( |:nt—(c_—¢l) x:| I, (x)dxi|, Viel.

nelN n—1)t
(15)
<

Notice that when the degradation model is a random coefficient model with two
random parameters as Example 2, the derivation of Eqs. (11) and (13) would be the
same as in Example 1, whereas the distributions of the passage times should be replaced
with Eq. (4). Therefore, the formulation of the optimization model is independent of
the form of random coefficient models. Hence, the optimum value of C; can be found
by solving

E[K;(t, C})]
E[Li(r,C)]
st. 0<C; <H; Viel.

min Z;(z,C;) =
Ci

Notice that the maintenance interval t is treated as a given parameter instead of a
decision variable in this suboptimization problem, so that the optimal control limit
C7(t) can be obtained for each component for a given .

3.2.2 Evaluation and optimization of the system

For each 7 value, component i has its corresponding control limit C; () and optimal
average long-run cost rate excluding setup cost Z*(t). Hence, the average long-run
cost rate of the system Zgysi(7) can be minimized by enumerating 7. Zgyst(7) includes
not only the sum of the minimum average cost rates of all components > ; ., Z*(7),

but also the average setup cost rate % Hence, the optimization model is
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. S
min Zow(0) = =+ > Z} (1)
iel
st. 0 <1< M;

where M- is the upper bound of the maintenance interval 7. In practice, there can be a
limit on 7 suggested by manufacturers or industry regulations. The detailed explanation
of the algorithm is elaborated in Appendix C.

4 Numerical study

To demonstrate the use of our model, we provide a general numerical study of a
complex engineering system. To visualize the problem better, one can consider a
lithography machine in semiconductor industry. The machines are complex engineer-
ing systems processing the pure-silicon-made wafers to be semiconductor integrated
circuits, also known as micro-chips. There are many components that are subject to
degradation in lithography machines, e.g., the laser unit, micro-mirrors, etc. This is a
suitable example, since it consists of a large number of independent degrading com-
ponents that have soft failures. And also the production line normally has a static
maintenance interval, with negligible replacement times.

Suppose such a production system has 60 individual components (i € I =
{1,...,60}). For each component, micro-sensors can be installed to continuously
monitor the degradation. The degradation X;(¢; ¢; 1, ¢i 2, 6;.1) can be described by
the Random Coefficient Model (Lu and Meeker 1993):

Xi(t; i1, bi2,60i1) = pin + 61 %172, Viel

where ¢ is the operation time and 6; | is the positive random parameter. The constant
parameter ¢; » is an acceleration factor and the constant parameter ¢; 1 is the initial
degradation level. In other word, when the degradation X; (¢) reaches a threshold H
at a passage time T, the production system will generate products with low quality.
Hence, this threshold H is considered as the soft failure threshold. The degradations
of components are stochastically independent. We assume that the distribution of 6; |
follows a Weibull distribution with two parameters: scale parameter «; and shape
parameter S;, which can be obtained by condition data fitting (Lu and Meeker 1993).
Therefore, we can use the mathematical expressions of Example 1 in Sect. 3.1 [Egs.
(8)—(10) and (15)] to formulate the degradation path of the component.

The parameter setting is shown in Table 2. Notice that these 60 components are
from three different component types, so that their parameters in Table 2 are not iden-
tical. Moreover, on the system level, a very expensive setup cost S is charged, which
includes the traveling cost of maintenance crews and resources, the cost of produc-
tion disturbance and downtime, the resetting cost of manufacturing environment, etc.
To solve this maintenance optimization problem, we use the approach proposed in
Sect. 3.2.

By the nested enumeration algorithm (see Appendix C), the optimal maintenance
policy given in Table 3 is found. The optimal policy is to set the maintenance interval
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Table 2 The parameter setting

Parameter Explanation Type x Type y Type z
iefl,...,20} ie{2l,...,40} ie{4l,...,60}

Cpwm,i PM cost [1000 €] Cpm,i =7 Cpm,i = 15 Cpm,; = 10

Cowm,i CM cost [1000 €] Ccem,i = 30 Cem,i =70 Cem,i =50

Cpi Soft failure cost rate [1000 €] Cpi=T72 Cpi=T172 Cpi=712

S Setup cost, S = 50 [1000 €] - - -

o Scale parameter of Weibull o =2.12 o =2.52 aj =1.02
distribution

Bi Shape parameter of Weibull Bi =179 Bi =15 Bi =6.9
distribution

H; Soft failure threshold H; =10 H; =20 H; =15

i1 Initial degradation level di1=1 Pi1=2 ¢i1=3

®in Constant parameter for different ¢in =0.33 ¢i2 =041 ¢i2 =0.51
rotational mechanisms

Gi Expected passage time [the first G; =116.12 G; = 141.11 G; =143.43

moment of Eq. (14)] of H; [days]

Table3 The optimal maintenance policy of the numerical example in Table 2 (index: x fori € {1, ..., 20};
yfori € {21,...,40}; zfori € {41,...,60})

Optimal policy Values Explanation

Zsyst(t*) 7424 The minimum average cost rate of
the system [Euro/day]

T* 36.1 The optimal maintenance interval of
the system [day]

{Cr@®), Cy™), CEeh) (8.11, 17.12, 12.72} The optimal control limits of each
component

{Zx(r*), Zy(t%), Zz(t*)} {94.3,126.2, 81.2} The minimum average variable cost

rate of each component [Euro/day]

at 36.1 days and the control limits on the physical condition of the three types of
components are 8.11 (out of 10), 17.12 (out of 20) and 12.72 (out of 15) respectively.
The resulting average maintenance cost rate of this production system is 7424 €/day.
The computation performance is given in Appendix D, which shows the computational
benefit of our algorithm compared with the algorithms that don’t use decomposition.

We also did a simulation study for this numerical example to verify the assumption
that at every maintenance interval there’s at least one component that needs replace-
ment. We simulated 100 maintenance intervals and for all these maintenance intervals
the assumption holds.

In Fig. 3, we depict the average cost rate of the system, Zgys(7), as a function of
the maintenance interval 7, which includes the sum of two elements: the setup cost
rate S/7 and the variable maintenance cost rate of all components »;; Z (7). When
7 increases, S/t decreases due to the less frequent setups of maintenance actions on
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120+

Average cost rate of the overall system Zsyst(t)
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Fig. 3 Average cost rate [1000 €/day] at the system level over t [days]

1 T T T T T T T T

=15 days
09r —.—.-q=20 days
osk — — — =05 days |

Average Cost Rate [K euro / day]

Control limit ¢ <C <H

Fig. 4 Average cost rate [1000 €/day] on component 1 over C for various t value

one hand; on the other hand, >, el Z;k(l’) increases due to the higher probability that
CM occurs in a maintenance interval and higher expected soft failure costs.

To obtain further insight, the optimal solution of a single component is analyzed.
Taking component 1 as an example, we investigate the changes of the average variable
maintenance cost rate Z1(t, C1) under given t values over the control limit C; as
shown in Fig. 4. For 7 = 15, 20 and 25, the optimal control limit Ci"(t) 1s 9.28, 8.92,
and 8.83 respectively and the minimum average cost rate Z;(t, Cy) is 75.0, 82.2 and
91.9 €/day respectively. We can observe a higher Z(z, C{) and a lower C7 at larger
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T values. This is because the probability that CM occurs in a maintenance interval
increases and the expected soft failure cost becomes higher. Consequently, the average
variable cost rate of maintenance for each component increases, even though lower
control limits are set on the degradation levels. (The plot of Z; under a larger t value
is included in Appendix B)

5 Sensitivity analysis

A sensitivity analysis is performed based on varying the four parameters Cpy, i, Cp i, S
and B; in Table 2 by 50 % and the rest of the parameter setting remains unchanged.
We choose each parameter equal to 50, 100 and 150 % of its original value, and
a full factorial test bed is set up by considering all combinations. To simplify the
notation, we define the factors of the test bed as a = (Cpm,1, CpMm.2, - - - » CPM.60)>
b=(Cp1,Cpp2,....Cpe0), c = Sandd = (B1, B2, ..., Beo). Also we define a
test bed of instances A with elements (a;, by, ¢k, d),Vj, 1, k,m € {1,2, 3}, where
a1 =50% x a,ay; = 100% x a, and a3 = 150 % x a; and similarly for b;, ¢x and
dp,. This test bed consists of 81 instances. The output of each instance consists of the
minimum average cost rate of the system, the optimal joint maintenance interval and
control limits of components, which is denoted by (/Z\sys[(?k), T, 6:, 6;*, 5;‘) The
different component types are denoted as x, y and z in the index of control limits. In
Table 4, the relative ratios between the optimal policies in the test bed and the optimal
policy under the original parameter setting in Sect. 4 are given.

The results in Table 4 match our intuition. They show that the joint optimal main-
tenance interval T* increases when C p.i decreases or when B; and § increase. These
findings are sensible because: (i) it is economically beneficial to have a longer main-
tenance interval or less frequent maintenance setups when soft failure costs C), ; are
less expensive, or when the setup cost S is more expensive; (ii) a larger 8; leads to a
lower variance in the distribution of degradation rate, and it is economically beneficial
to have a higher T* at the system level and a lower 61* at the component level in this
case. Moreover, we also observe that the optimal control limits 61* decrease when T*
increases. When maintenance intervals are larger at the system level, more corrective
maintenance and soft failures will occur at individual component level. To reduce
these high costs, it is sensible to keep control limits lower.

In Table 5, we categorize the instances of Table 4 containing a specific level of a
factor into a subset. For example, a subset of instances containing a; is defined as
Agy = {(a1, bj,c;,di)lj, 1, k € {1,2,3}}. Table 5 shows the mean, minimum and
maximum levels of 2syst T/ Zsysi(t™) and T* /t* for these 12 subsets. In general, we
observe that the mean value of Zgyg T/ Zgys(T*) increases when cost parameters,
ie., Cpm,i, Cp,i and S, are higher. Amor,l\g them, the variation of Cpy; leads to the
largest variation on the mean value of Zsyst(’t\") /Zsyst(t*). This suggests that the
total average cost rate is sensitive to the changes of preventive maintenance cost. If
the company wants to reduce the total average cost rate, creating a better preventive
maintenance procedure will be effective. Also notice that Cpy; has a relatively low
difference between the minimum and maximum of Zyst T/ Zgys (t*), compared
with C,,;, S and §;, which shows the dominance of parameter Cpy ;. Regarding the
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Table 4 Results of the test bed (the percentages is the relative ratio dividing the new optimal solutions by
the original optimal solutions in Table 3)

A

Zsyst (t%)" 57 C¥° C§ CF

(Zsyst(?*) * 6; 6: s

(%)

Zoyst @) T CF* G CF
(%)

(2syst(?*) T* é\;f 6;( 6?)

(ar, by, c1,dy)
(ar, by, c1,da)
(ay, by, c1,d3)
(ar, by, cz,dy)
(a1,b1,¢2,d2)
(ar, by, 2, d3)
(a1, by, c3.dp)
(a1, by, c3.d2)
(ar, by, c3,d3)
(ar, by, c1,dy)
(ay, by, c1,da)
(ay, b2, c1,d3)
(a1, b2, c2,d1)
(a1, b2, ¢2,d2)
(ar, by, 2, d3)
(ar, by, c3.dy)
(a1, by, c3,dp)
(ar, by, c3,d3)
(ar, b3, c1,dy)
(ar, b3, c1,da)
(ay, b3, c1,d3)
(a1, b3, ¢2,d1)
(a1,b3, ¢2,d2)
(a1, b3, ¢z, d3)
(a1, b3, ¢3,d1)
(a1, b3, ¢3,d2)
(a1, b3, ¢3,d3)
(az, by, c1,dy)
(az, by, c1,d2)
(a2, by, c1,d3)
(a2, b1, ¢2,d1)
(a2, b1, ¢2,d2)
(a2, by, 2, d3)
(a2, by, c3.dy)
(a2, by, ¢3,dp)
(az, by, c3,d3)
(az, b2, c1,dy)

(48,36, 113, 117, 119)
(50, 95, 101, 101, 101)
(49, 110, 97, 96, 96)
(63,50, 110, 113, 114)
(57,97, 101, 101, 101)
(54,112, 97, 96, 96)
(75,58, 109, 111, 112)
(64, 101, 99, 99, 99)
(60, 114, 96, 95, 95)
(48,37,113, 117, 119)
(48, 67, 107, 109, 110)
(49, 110, 97, 97, 96)
(63,48, 111, 114, 116)
(57,95, 101, 101, 101)
(55, 111, 97, 96, 96)
(78,60, 108, 110, 111)
(64,97, 101, 101, 101)
(61, 113,97, 96, 95)
(48, 38,113, 117, 118)
(48, 63, 107, 109, 111)
(49, 109, 97, 97, 97)
(64,48, 111, 114, 115)
(58,93, 101, 101, 102)
(55, 110, 97, 96, 96)
(77,50, 110, 113, 115)
(65,95, 101, 101, 101)
(61, 112,97, 96, 96)
(78,26, 115, 120, 122)
(92, 101, 99, 99, 99)
(91, 112,97, 96, 95)
(97,38, 113, 117, 118)
(99, 101, 99, 99, 99)
(97, 115, 96, 95, 95)
(112,48, 111, 114, 116)
(105, 103, 99, 99, 99)
(102, 116, 96, 95, 94)
(78,30, 115, 119, 120)

(a2, by, c2,d3)
(a2, b2, c3,dy)
(a2, b2, c3,d2)
(a2, by, c3,d3)
(a2, b3, ¢y, d1)
(a2, b3, ¢y, d2)
(a2, b3, ¢1,d3)
(a2, b3, ¢z, d1)
(a2, b3, ¢2, da)
(a2, b3, ¢z, d3)
(a2, b3, c3,dy)
(a2, b3, ¢3,d2)
(a2, b3, ¢3,d3)
(a3, b1, c1,dp)
(a3, b1, c1,d2)
(a3, b1, c1,d3)
(a3, b1, c2.d1)
(a3, by, c2,da)
(a3, by, c2,d3)
(a3, by, c3,dy)
(a3, by, c3,d2)
(a3, b1, c3,d3)
(a3, b2, c1,d1)
(a3, b2, c1, d2)
(a3, b2, c1,d3)
(a3, b2, c2,d1)
(a3, b2, c2, dp)
(a3, by, c2,d3)
(a3, by, c3,dy)
(a3, by, c3,da)
(a3, b2, ¢3,d3)
(a3, b3, ¢1,d1)
(a3, b3, c1,d2)
(a3, b3, ¢1,d3)
(a3, b3, 2. d1)
(a3, b3, c2, da)
(a3, b3, c2,d3)

(97,113, 96, 96, 95)
(113,48, 111, 114, 115)
(106, 101, 99, 99, 99)
(103, 114, 96, 95, 95)
(80, 38,113, 117, 118)
(93,95, 101, 101, 101)
91, 111, 97, 96, 96)
(97,37, 113, 117, 118)
(96, 68, 106, 108, 109)
(97,112, 97, 96, 96)
(113,48, 111, 114, 115)
(107,99, 100, 100, 100)
(103, 113, 96, 96, 95)
(102, 18, 118, 122, 124)
(133,103, 99, 99, 99)
(128,74, 105, 106, 107)
(127,33, 114, 117, 119)
(140, 106, 98, 98, 98)
(136,77, 105, 106, 107)
(145,36, 113, 117, 118)
(146, 106, 98, 98, 98)
(145,94, 101, 101, 101)
(99,20, 117, 121, 124)
(135, 100, 99, 99, 99)
(134, 114, 96, 95, 95)
(127,33, 114, 118, 120)
(141, 101, 99, 99, 99)
(139, 115, 96, 95, 95)
(145,37, 113, 117, 119)
(147, 103, 99, 99, 99)
(145,115, 96, 95, 95)
(99,22, 117, 121, 124)
(119,37, 113, 117, 119)
(134,112, 97, 96, 95)
(127,33, 114, 118, 120)
(142, 100, 99, 99, 99)
(140, 114, 96, 96, 95)
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Table 4 continued

A 2sysl(?‘() T g g @ A 2sysl(?‘() T g g @
Zsyst(t%)” % C¥° C;f  CE Zsyst(t%)” % C¥° C;f  CE
(%) (%)
(ap, by, c1,d2) (85,38, 113,117, 118) (az, b3, c3,d1) (145, 38,113,117, 119)

(az, by, c1,d3)
(az, by, cp,dy)
(az, by, c2,d)

(91, 112, 97, 96, 96)
(97, 36, 113,118, 119)
(100, 100, 100, 100, 100)

(a3, b3,¢3,d2)
(a3, b3, c3,d3)

(148, 99, 100, 100, 100)
(145, 115, 96, 95, 95)

Table 5 Summary of sensitivity analysis

A Zoyst (%)) Zsyst (T¥) T/t
Mean (%) Min (%) Max (%) Mean (%) Min (%) Max (%)

Ag, 58 48 78 83 37 115
Aay 98 78 113 81 26 117
Aay 134 99 148 76 19 116
Ap, 97 49 147 81 19 117
Ap, 97 48 148 81 21 116
Ap, 99 48 148 78 21 115
Ay 85 48 135 72 19 114
Ac,y 98 55 142 82 33 115
Ay 107 61 148 87 37 117
Ag, 95 49 145 39 19 61
A, 98 48 148 92 38 106
Ady 97 49 145 110 75 117

mean of T*/t*, the variation of B; leads to the largest variation. This implies that
the decision on 7 is sensitive to the changes of the distribution shape for degradation
rates. If the degradation rate has less variation and has a bell shape approximately, the
maintenance interval becomes larger. If the company wants to reduce the frequency
of maintenance setups, making the variance of degradation rates smaller is one of the
options. On the other hand, the difference between the minimum and maximum of
T%/t* in the case of B; is much lower than Cpy ;, Cp,i and S, since the impact of
parameter f; is larger than the other factors.

6 Performance evaluation

To evaluate the cost reduction potential of our model, we compare our optimal solution
in Table 3 with the optimal solutions of other two maintenance policies: (i) failure-
based policy: a condition-based maintenance policy without control limits C; for PM
actions, i.e., there are only CM actions for components; and (ii) age-based policy:
similar to our condition-based policy, the decision variables are PM control limits
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Table 6 The optimal solutions of Policy (i): failure-based policy and Policy (ii): age-based policy (index:
xfori e{l,...,20};yfori € {21,...,40};zfori € {41,...,60})

Values Explanation
Policy (i)
Zsysl(?*) 36,817 The minimum average cost rate of the
system [Euro/day]
T* 5.98 The optimal maintenance interval of the
system [day]
{Zx T), Zy @, Z, ("E*)} {432.1, 553.8, 438.3} The minimum average maintenance cost
rate of each component [Euro/day]
Policy (ii)
Zsyst(?*) 12,431 The minimum average cost rate of the
system [Euro/day]
T* 25.50 The optimal maintenance interval of the
system [day]
{A;(%’*), ALE), Ag(?*)} (51.0,76.5,76.5) The optimal PM threshold on the age of
each component [day]
{ZX T, Z,, &), Z, @)} (172.4,217.3, 133.8} The minimum average maintenance cost

rate of each component [Euro/day]

A; on the age (instead of the physical condition) of each component and the optimal
maintenance interval T of the system, which is a modification of Berg and Epstein’s
policy (Berg and Epstein 1976). The detailed description and model formulation of
these two policies are given in Appendix A. In the design of our experiments, the only
difference between the case with an age-based policy and the case with a condition-
based policy is that, for the age-based policy we only know the failure time distribution,
whereas for the condition-based policy we know the degradation level over time. In
other words, we are trying to evaluate the value of advanced information for the
optimization of maintenance policies. Therefore, the changing factor for the two cases
in our experiment design is the fact that the age-based policy does not have the advanced
information, whereas the condition-based policy has the advanced information. In
order to have a fair comparison, we need to keep the other factors fixed according to
the one-factor-at-a-time method (Daniel 1973). Hence, the failure time distribution for
the age-based policy is the same failure time distribution generated by the degradation
processes in condition-based maintenance.

The motivations of such comparisons are: (i) to show the economic benefits of
implementing condition-based maintenance and remote monitoring to decision makers
in industry, via the comparisons with current policies, i.e., failure-based policy and
age-based policy; (ii) to fill the literature gap on the comparison of condition-based
maintenance and age-based maintenance. This comparison is scientifically interesting
in the context of systems with a large amount of components.

Based on the same parameter setting in Table 2, the optimal solutions of these two
policies are shown in Table 6. We denote these two policies as Policy (i) and (ii).

Comparing those two policies in Table 6 with our policy in Table 3, our policy shows
a considerable cost-saving potential. Policy (i) suggests a joint maintenance interval of
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T* = 5.98 days and the average cost rate Zsys[(?*) is 36,817 €/day. The maintenance
interval of Policy (i) is much smaller than our policy, because a shorter maintenance
interval helps to decrease the expected soft failure costs when no PM actions are
taken. However, the setup cost rate becomes higher when t is smaller, which further
increases the cost rate at the system level. Policy (ii) suggests a joint maintenance
interval 7% of 25.50 days and PM thresholds on age A*(7*) of {51.0,76.5,76.5}
days. The average cost rate Zsyst (7*) is 12,431 €/day. A shorter maintenance interval
increases the setup cost rate, which leads to a higher cost rate at the system level.
Policy (ii) performs worse than our condition-based maintenance policy, because the
maintenance optimization is solely based on the failure time distribution, instead of
the continuously monitored condition. In this numerical example, our policy with
Zsyst(t*) = 7424 outperforms not only Policy (i) with Zsyst('f*) = 36,817, but also
Policy (ii) with Zgys (T*) = 12,431.

Notice that a condition-based maintenance policy without using any optimization
technique might have a worse performance compared with an age-based maintenance
policy after optimization. In other words, if there’s no optimization model to appro-
priately utilize the advanced information from condition monitoring, the performance
of an arbitrary condition-based maintenance policy may be worse than an optimal
age-based maintenance policy. For example, if we set 7 and {Cy, C,, C,} to be 80
and {8.2, 15.5, 11.4}, the total average cost is 18,840, which is higher than the total
average cost of the optimal age-based policy 12,431.

To show the cost-saving potential under different parameter settings, we used the
same test bed design as in Sect. 5. For each instance, the minimum average cost
rate Z;"yst of Policy (i) and (ii) is compared with the minimum average cost rate
of our proposed model Z  under the same parameter setting. Notice that we use
the percentage of extra cost incurred using Policy (i) or (ii) instead of our proposed
policy

Z'syst (T — Zsyst (™)
Zsyst (T*)

A =

’

as the performance indicator. The percentage of extra cost A and the optimal joint
maintenance interval of two policies T* are presented in Table 7.

As shown in Table 7, the first insight is that all percentages of extra costs are
positive. The average of the percentages is 448 % compared with Policy (i) and 43 %
compared with Policy (ii). Hence, we conclude that the cost-saving potential of our
proposed policy is considerable under various parameter settings. In the test bed, we
have 3 levels for each factor. For the summarized results in Table 8, for each level of a
certain factor, we categorize the instances containing a specific level of a certain factor
into a subset. For example, a subset of instances containing a; is defined as A, =
{(ai.bj,c1.d)IVj. 1.k € {1,2,3}}, Ag; C A. Table 8 shows the means, minimums
and maximums of extra cost percentages (Amean, Amin and Amax respectively) of these
12 subsets. Generally speaking, Policy (ii) with preventive maintenance outperforms
Policy (i) without preventive maintenance, which is intuitively sensible. Also notice
that if §; is larger or the variance of the life time distribution is lower, the mean of A
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Table 7 Results of the test bed of cost-saving potential

A

Policy (i)

(&, 7%

Policy (ii)

{4, 7%}

A

Policy (i)
{&, 7

Policy (ii)
{a, 7%

(ar, by, c1,dy)
(ar, by, c1,da)
(ay, by, c1,d3)
(ar, by, 2, dy)
(a1, b1, ¢2,d2)
(ar, by, 2, d3)
(a1, by, c3.dp)
(a1, by, c3.d2)
(ar, by, c3,d3)
(ar, by, c1,dy)
(ay, by, c1,da)
(ay, by, c1,d3)
(a1, b2, c2,d1)
(a1, b2, ¢2,d2)
(ar, by, c2,d3)
(a1, by, c3,dy)
(a1, by, c3,dp)
(a1, by, ¢3,d3)
(ar, b3, c1,dy)
(ay, b3, c1,da)
(ay, b3, c1,d3)
(a1, b3, ¢2,d1)
(a1,b3, ¢2,d2)
(ar, b3, ¢z, d3)
(a1, b3, ¢3,d1)
(a1, b3, ¢3,d2)
(a1, b3, ¢3,d3)
(az, by, c1,dy)
(a2, by, c1,d2)
(a2, by, c1,d3)
(a2, by, c2,dy)
(a2, b1, ¢2,d2)
(a2, by, 2, d3)
(a2, by, c3,dy)
(a2, by, ¢3.dp)
(az, by, c3,d3)
(a2, b2, c1,dy)
(az, by, c1,d2)

(528 %, 6.72}
(667 %, 5.80}
{738 %, 5.65)
(441 %, 9.44)
652 %, 8.32}
731 %, 8.10}
395 %, 11.6}
626 %, 10.2}
708 %, 9.95)
616 %, 4.66)
{809 %, 3.97}
(840 %, 3.84}
{531 %, 6.56}
{766 %, 5.65}
(859 %, 5.48)
(470 %, 8.02)
(751 %, 6.95)
{
{

851 %, 6.73}
684 %, 3.78)
(885 %, 3.20}
{916 %, 3.09}
{601 %, 5.31}
851 %, 4.54}
956 %, 4.41)
551 %, 6.50)
843 %, 5.60}
957 %, 5.41}
288 %, 6.72}
{320 %, 5.80}
(349 %, 5.65}
(253 %, 9.4}
336 %, 8.32}
369 %, 8.10}
230 %, 11.6)
341 %, 10.2)
377 %, 9.95)
346 %, 4.66}
(414 %, 3.97)

{
{
{
{
{
{

—_— e e e

{116 %, 47.6}
{32 %, 27.7)
{17 %, 48.3}
{76 %, 48.3}
(24 %, 44.2)
(16 %, 48.5)
(57 %, 48.9}
(22 %, 44.4)
{16 %, 48.7)
(127 %, 44.1}
{35 %, 43.5)
{17 %, 48.1}
(84 %, 44.6}
{24 %, 43.8}
{16 %, 48.3}
{59 %, 45.1}
(22 %, 44.0}
{16 %, 48.4)
{134 %, 42.2}
{35 %, 43.2}
{20 %, 30.6}
{89 %, 42.6}
(24 %, 43.4)
(16 %, 48.1}
(67 %, 43.0}
(22 %, 43.6)
{16 %, 48.2)
{98 %, 36.7}
{27 %, 45.9}
{16 %, 49.7}
{69 %, 37.0}
(25 %, 46.1}
{15 %, 49.8}
(53 %, 37.3}
(24 %, 46.3)
{15 %, 50.0}
{106 %, 35.2}
{39 %, 45.3}

(az, b, cp.d3)
(az, b, c3,dy)
(a2, by, c3,d2)
(az, by, c3,d3)
(a2, b3, c1,d1)
(a2, b3, c1,d2)
(a2, b3, c1,d3)
(a2, b3, c2.d1)
(az, b3, ¢z, da)
(az, b3, ¢z, d3)
(az, b3, c3,d1)
(a2, b3, c3,d2)
(a2, b3, ¢3,d3)
(a3, by, cy,dy)
(a3, by, ¢y, dp)
(a3, by, c1.d3)
(a3, by, c2,dy)
(a3, by, c2,d2)
(a3, by, cp,d3)
(a3, by, c3,dy)
(a3, by, c3,d2)
(a3,b1, ¢3,d3)
(a3, b2, c1,d1)
(a3, by, c1,da)
(a3, by, c1,d3)
(a3, by, c2.d1)
(a3, by, c2.d2)
(a3, by, cp. d3)
(a3, by, c3,d1)
(a3, by, c3,d2)
(a3, by, c3,d3)
(a3, b3, c1,d1)
(a3, b3, c1,dp)
(a3, b3, c1,d3)
(a3, b3, 2, dy)
(a3, b3, cp, da)
(a3, b3, cp, d3)
(a3, b3, c3,d1)

(442 %, 5.48)
(294 %, 8.02}
{417 %, 6.95}
{461 %, 6.73}
374 %, 3.78}
407 %, 3.20)
445 %, 3.09}
362 %, 5.31)
475 %, 4.54)
497 %, 4.41)
(342 %, 6.50}
{474 %, 5.60}
(524 %, 5.41)
{205 %, 6.72}
{190 %, 5.80}
(220 %, 5.65)
{
{

169 %, 9.44}

208 %, 8.32}

{234 %, 8.10}
(155 %, 11.6}
(217 %, 10.2}
{236 %, 9.95}
252 %, 4.66}
224 %, 3.97}
245 %, 3.84}
216 %, 6.56}
255 %, 5.65}
278 %, 5.48}
}

}

—— e e

{206 %, 8.02
(272 %, 6.95
{298 %, 6.73}
285 %, 3.78}
299 %, 3.20}
273 %, 3.09}
252 %, 5.31)
289 %, 4.54)
317 %, 4.41}
(244 %, 6.50}

s s

{16 %, 49.5)
{57 %, 35.7}
{24 %, 45.6}
{15 %, 49.6}
{104 %, 34.3)
(27 %, 44.8)
{16 %, 49.1}
{78 %, 34.5)
(31 %, 45.0)
{16 %, 49.2)
{60 %, 34.7)
(24 %, 45.1}
{15 %, 49.3}
{117 %, 39.3}
(25 %, 47.5)
{19 %, 50.9}
{76 %, 39.6}
(24 %, 47.7)
{16 %, 51.0}
{60 %, 39.8}
{23 %, 47.8}
{13 %, 51.1}
{128 %, 37.2}
(26 %, 46.6}
{15 %, 50.4)
(83 %, 37.4)
(25 %, 46.7)
{15 %, 50.5)
{66 %, 37.6}
{24 %, 46.9}
{14 %, 50.5}
{133 %, 36.0}
(44 %, 46.0)
{15 %, 50.0}
(88 %, 36.2)
(25 %, 46.1)
{15 %, 50.1}
{70 %, 36.3)
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Table 7 continued

A Policy (i) Policy (ii) A Policy (i) Policy (ii)
(a7 (A7) (a7 (A7)

(az by, cr.d3) {404 %,3.84) {16 %,49.4}  (a3,b3,c3.dy)  (313%,5.60} {24 %, 46.2}
(@, by, co.d)  {314%,6.56)  {T4%,29.8}  (a3.b3,c3.d3) (343 %,5.41} {15 %,50.2}
(a2, by, ca.dy) {396 %,5.98) {67 %, 25.5)

Table 8 Summary of cost saving

Policy (i) Policy (ii)

Amean (%) Amm (%) A[1’123.)( (%) Amean (%) Amm (%) Amax (%)

Aq; 712 395 958 45 16 135
Agy 382 230 525 41 16 106
Ags 249 156 344 45 14 134
Ap, 378 156 738 41 14 118
Apy 455 206 860 44 15 128
Ap, 510 244 958 46 15 135
Aey 453 190 916 56 15 135
Acy 449 170 956 41 15 90
Acy 441 156 958 34 14 70
Ag, 356 156 684 87 53 135
Ady 473 190 885 28 22 45
Agy 514 221 958 16 14 21

in comparison with Policy (ii) is significantly lower, which makes our policy much
less attractive.

Also shown in Table 7, for both policies, the optimal maintenance interval T*
decreases and cost-saving potential A increases when C), ; increases. This implies
that it is economically beneficial to have shorter maintenance intervals and more
frequent maintenance setups to avoid increasing soft failure costs. On the contrary, it
is more sensible to have longer maintenance intervals and less frequent maintenance
setups when the setup cost S is more expensive. A larger B; implies a lower variance
in the distribution of degradation rate. In Policy (i), A larger B; leads to lower T*.
This is because the expected maintenance cycle length decreases in a higher 8; and
the decreasing rate becomes faster in a higher 7 (see Appendix A). Hence, the average
costrate at the component level grows increasingly fast over 7. To have a lower average
cost rate at the system level, a lower 7* is more economically beneficial. Also notice
that there is no control limit or PM actions in Policy (i). The optimal cost rate Z;‘yst
and T* remain unchanged in Policy (i) on one hand; on the other hand, as explained
in Sect. 5, the optimal cost rate of our proposed policy Z;"yst increases with a higher
Cpm.i- Hence, A decreases when Cpyp; increases.
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Notice that the CBM policy does not outperform the age-based policy if the setting
of the decision variables in a CBM policy is not optimal. For example, in Fig. 3, when
the 7 value in a CBM policy deviates from t* and is set at 80 days, even if the control
limits are set at the optimal levels, the average total cost rate will still increase to
18,840 €/day, which is higher than the optimal age-based policy.

7 Conclusions

In this paper, we proposed a new condition-based maintenance model for multi-
component systems with continuous stochastic deteriorations. In order to reduce the
high setup cost of maintenance for multi-component systems, we used a joint mainte-
nance interval T to coordinate the maintenance tasks. In addition, we introduced the
control limits C; on the degradation levels of components to trigger the preventive
maintenance actions. The optimal maintenance control limits of components and the
optimal joint maintenance interval were determined by minimizing the average long-
run cost rate related to maintenance and failures. A nested enumeration approach was
proposed to solve this large-scale optimization problem. We first decomposed the
optimization of the system into the optimization at the individual component level to
obtain the optimal C; for a given t. Afterwards, we enumerated 7 to find the minimum
average maintenance cost rates of the system. The numerical example for a produc-
tion system demonstrated that our model and the nested enumeration approach can be
applied on complex systems with a large number of non-identical components. Com-
paring with a failure-based policy and age-based policy, our maintenance policy has
a considerable cost-saving potential. Moreover, a sensitivity analysis of full factorial
design was conducted to investigate the influence of different parameter settings on
the optimal solutions.

Our model can be utilized to solve the maintenance scheduling problems of various
engineering systems with a large number of non-identical components (e.g., production
lines), because (i) it is convenient in practice to implement such a static maintenance
interval for planning; (ii) different physics of failures and degradations models can be
adopted by the formulation of our optimization model; (iii) our model can be integrated
with different maintenance policies (e.g., age-based maintenance, periodic inspection)
due to the static maintenance interval.

The limitation of our model includes (i) the degradation processes of components
are assumed to be independent; (ii) the effect of hard failures has not been taken
into account; (iii) at every static maintenance interval we assume there is at least one
component that needs to be maintained. For future research, the maintenance interval
can be dynamic, rather than static, in order to further reduce the average long-run cost
rate. Another possible extension of the model is to consider the system structures or
the dependency of components in the systems. Moreover, the effect of hard failures
on the maintenance policies of complex systems can also be investigated, since many
components in a system are subject to multiple failure processes (e.g., random shocks,
wear-out, and crack growth).

Another limitation of this work is that the maintenance activities are assumed to
be instantaneous. But notice that this limitation can be easily eliminated by including
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a generally distributed repair duration R to the model. The optimization model at the
end of Sect. 3 becomes

S
in Z = - Z*
min Zsysi(7) T + ?EI i (D)
s.it. O0<7t < M;.

And the expected cycle length IE[L; (7, C;)] becomes

E[Li(x,C)] = Z n(t + E[R)Pr{(n — 1)t < T¢, <nt), Viel.
nelN

All the other expressions will remain the same as the proposed optimization model.

Appendix A: Description of two comparison policies
Failure-based policy

When the degradation of one component X; () in the system reaches H;, a CM action
is taken. For each component i € I, the failure-based policy implies that there is no
PM action taken, so that no control limit C; is set on the degradation before H; is
reached (see Fig. 1). Or equivalently, C; = H;. The optimization algorithm of our
model in Sect. 3.2 remains unchanged in essence. Equations (6), (7), (11), (13) and
(12) are derived as follows,

Pr{PM atnt} =0
Pr{CM atnt} =Pr{(n — 1)T < Ty, < nt}

E[Ki(D] = Z [Pr{PM at n7}Cpm,; + Pr{CM at n7}Cewm,; + E[Di(F)] Cp.i]
nelN

=CcMm,i + (Z E [Di(f)]) Cp.is
nelN

nt

E[D;(®)] = / (nT —x) fr, (v)dx,

(n—1)7

E[Li(5)] = D ntPr{(n — )i < Ty, < n}.
nelN

Age-based policy
Unlike the failure-based policy, PM actions are taken at joint maintenance time point

nt,n € IN according to a threshold A; on the age of component i. It is almost the same
as our proposed policy in Sect. 2, except the ages of components are observed, instead
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of the condition. Notice the assumptions in Sect. 2.2 are also valid. Since PM actions
are taken at a joint maintenance time point to save setup costs, the decision variable A;
should be a multiple of 7, i.e., A; = k; 7. Hence, if there is no failure before A;, a PM
action will be performed at A; which is also a joint maintenance point. Otherwise, if
there is a failure, a CM action will be performed at the next closest joint maintenance
point, similarly to the maintenance policy proposed in this paper. The optimization
algorithm of this age-based policy is also similar to the one proposed in Sect. 3.2,
except Eqgs. (11)—(13) are derived as follows,

o0

ki
E[Ki(z, A)] = /  Jry, () dx Cpwi +/0 Jry, (x)dx Cem,i

kit

+E[Di(7, A)] Cp.is

00 ki
E[Li(, )] = /k Kt fry (0 dx 4+

i n=1

/ nt fry, (x)dx,
(

n—1)7

nt

ki
E[Di(%, A)] = Z/( (n% — x) fr,, (¥) dx,
n=1

n—1)7

and fr, (x) is the probability density function of the failure time [C; = H; in Eq.
(14)]. Notice that the distribution of the failure time is the same as the distribution of
the passage time of H;, because a soft failure occurs when the degradation process
crosses the threshold H;.

Appendix B: The average cost rate of single component over two decision
variables C; and t

To show how the objective function varies with two decision variables C; and 7, we

plot the the average cost rate of component 1, which is a function of both C; and 7,
in Fig. 5 as an example.
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Fig. 5 Average cost rate on component 1 over t and Cy (left 3D plot; right contour plot)
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Appendix C: Optimization algorithm

The procedure of the nested enumeration algorithm can be summarized in Algorithm 1.

Algorithm 1 Nested optimization algorithm.
Initialize
for all € (0, M;] do
foralli € I do
for all Ci S [¢i,l’ H,'] do

E[K; (7,C;
2.0~ 2428
end for
C;k(r) =argmin{Z;(t,C;)}, i€l
end for
Zoyst(©) = 3 + i ZF(@)
end for

Find t* = argmin{Zsys (1)}
Results: optimal maintenance policy {t*, C(t*)}, Vi € 1

Notice different grid sizes can be used for optimizing C; and t , which will also
affect the computational duration. In this paper, we use the grid size H;/500 and
M- /500 for C; and t respectively. The upper bound M, is a very large value (at least
larger than max;c7{G;}.). In this paper, we choose M, = 300 days.

To determine the grid sizes for C; and t on H; and M., we suggest the decision
makers first to select a large grid size, e.g., H; /100 and M, /100, in order to have a
brief overview of the objective function. Then if the company is sensitive to the cost
difference between different sub-optimal solutions incurred by the grid sizes, a smaller
grid size can be set for searching the optimal C; and 7. Notice that while changing
the grid sizes, we should also observe the changes of the objective function. If the
objective function is not sensitive to the changes of the grid sizes, we can stop further
decreasing the grid sizes.

Appendix D: Computation performance

Instead of optimizing C; (7) and t simultaneously, we used a nested approach. Namely,
we (i) optimize C;(t) for each component under a given t and then (ii) optimize t
for the system. The motivation of such a decomposition is to reduce the computation
time of large-scale problems. When the amount of components in a system is large,
the solution space of decision variables increases dramatically, also known as “curse-
of-dimensionality”.

For example, a system consisting of two components (i € {1, 2}) is considered in
our optimization model. For each component, we have to optimize the C; () € (0, H).
Suppose we discretise the degradation range (0, H) into 10 grids with a grid size H/10.
The size of the solution space (Cy, C») ata given t value is 102. In the case of this two-
component system, it is plausible to optimize T and C; simultaneously. However, if a
system consists of 50 components, then the size of its solution space will be 10°° under
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each given t, which is nearly impossible to solve within a short period. Therefore, it is
not efficient to optimize t and C; simultaneously. To solve such a large-scale problem
within a reasonable computation time, we propose a nested approach to decompose
the problem at system level into component level (see Sect. 3.2). This approach will
reduce the solution space to 10 x 50 under a given 7. Regarding the numerical example
in Sect. 4, the code is built in MATLAB with the runtime of 4.6 x 10% seconds (by a
computer with a 2.5 GHz processor and 4 G RAM).
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