An Opportunistic Maintenance Policy for Components Under

Condition Monitoring in Complex Systems

Qiushi Zhu, Hao Peng *, and Geert-Jan van Houtum
Department of Industrial Engineering, Findhoven University of Technology

P.O.Box 513, 5600 MB, Eindhoven, The Netherlands

August 15, 2014

Abstract

Due to the advanced sensor technologies nowadays, we can continuously monitor the degradation of
critical components in complex systems to prevent the unexpected failures by employing condition-based
maintenance (CBM) policies. How to coordinate different maintenance actions in the system becomes a
challenging problem. The system stops when corrective maintenance and periodic maintenance actions
are taken, which can be considered as free opportunities for monitored components to do opportunistic
maintenance. In this research, we propose a new optimization model to determine the optimal control
limits on the degradation of monitored components, in order to decide the timing of taking opportunistic
maintenance. Moreover, a case study on lithography machines in semiconductor industry is provided
and the cost-saving potential is evaluated. Finally, a sensitivity analysis is performed to investigate the

optimal policy and the cost-saving potential under various parameter settings.
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1. Introduction

Nowadays, the development of advanced sensor and ICT technology makes the remote acquisition of condi-
tion monitoring data (e.g., temperature of engine, wearing of a brake) less costly. Based on the condition
of a component/system, one can improve the diagnostics and prognostics of failures in order to reduce the
maintenance related costs (e.g., downtime cost, set-up cost), which is the main idea behind condition-based
maintenance (CBM) [19, 33]. Considerable attention from researchers has been attracted to study CBM
[33]. In the industry of advance capital goods (e.g., aviation, oil-gas refinery, energy plant, automotive), it is
usually not feasible to implement CBM for all components in a complex engineering system. Instead, there
are only a few very critical components in the system that are under condition monitoring continuously.
The rest of the components in the system can be subject to corrective maintenance or periodic preventive
maintenance. Hence, it is a challenging problem to coordinate these different maintenance policies for a

complex engineering system.
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The existing studies about CBM for multi-component systems often focus on proposing models to coor-
dinate the maintenance activities among the components under CBM policy. Relatively speaking, little
research about CBM has been done to coordinate the maintenance activities of a mixture of different main-
tenance policies. In this research, we propose a new optimization model to determine the control limits of
opportunistic maintenance for a monitored component. It considers the opportunities to maintain this mon-
itored component together with other components subject to corrective maintenance or periodic preventive
maintenance. By implementing such joint maintenance actions, the downtime cost and the setup cost of

maintenance for this monitored component will be reduced significantly.

In the literature, the CBM optimization models for single-component systems were introduced to opti-
mize the control limit and/or inspection intervals, based on the stochastic degradation processes estimated
from the condition monitoring data [19, 33, 47]. Wang [48] proposed a CBM model to determine the optimal
control limit and the inspection interval in terms of costs, downtime or reliability, using the general random
coefficient model [25]. Gebraeel et al. [14, 15] extended the general degradation model to estimate the RUL
distribution from sensor signals, by a Wiener process and Bayesian updating. Using this technique, a single-
unit replacement problem is formulated as a Markov decision process to develop a structured replacement
policy [13]. Based on the Gamma process, the CBM models in this case were developed to have a single-level
control limit [11, 31, 32] or a multi-level control limit [16] under the scenarios of periodic inspection [31],
aperiodic inspection [11, 16] or continuous monitoring [23] [32]. If the degradation process can be modeled as
discrete states, Markovian-based models were applied. The optimal replacement policies were derived from
observable Markov processes [20, 26] or the evolution of the hidden states [5, 24]. Moreover, Proportional
Hazards Models are also often used to relate the system’s condition variables to the hazard function of a
system, so that the maintenance policies can be optimized with respect to the optimal risk value of the
hazard function [18, 46]. More CBM literature can be found in review papers within the area of prognostics
[19, 33, 47]

Unlike the CBM models for single-component systems, the optimization models for multi-component sys-
tems take into account the economic, structural and/or stochastic dependencies among the components
[7, 10, 29, 38]. In our model, we consider the economic dependence. There are many age/time-based models
proposed for multi-component systems considering the economic dependence. Radner and Jorgenson [34]
introduced an (n, N) policy, which distinguished two types of components, 0 and 1. n is the age threshold
for opportunistic replacements of component 0 when component 1 fails and NV is the preventive replacement
threshold of component 0 when component 1 is good. Vergin [45] showed that the (n, N) policy is near-
optimal with respect to a wide range of cost parameters. Some exact methods [17, 30] (e.g., via Markovian
framework) for finding the optimal solution are intractable for systems with large amounts of components,
due to the exponentially increasing state spaces. Hence, various heuristics were proposed to reduce the
computational complexity [42, 43]. Wildeman et al. [51] developed a maintenance clustering method to
coordinate maintenance tasks at the system level considering the penalty cost of deviating from the optimal
maintenance schedule of individual components, often called group maintenance. The proof of optimality
is based on assuming the expected deterioration cost function based on a Weibull process, which reduced
the complexity of the large-scale optimization problem from O(2") to O(n?). As the extension of age-based
and block replacement policy, two models including opportunistic maintenance are proposed, by assuming

specific marginal cost functions and distribution of the time between maintenance opportunities. With such



a policy, one can decide to take either the current opportunity or the next opportunity after X time units
away [8, 9]. Moreover, Taghipour and Banjevic [37] proposed a model that takes both scheduled and non-
scheduled maintenance opportunities to perform inspection on soft-failure components. As the objective
function, the expected maintenance cost per cycle is formulated by recursive equations and evaluated by a
simulation algorithm. More literature can be found in Wang’s review paper [47] on group maintenance and

opportunistic maintenance for multi-component systems.

Compared with the abundant literature of age/time-based maintenance models for multi-component systems,
there are much less condition-based maintenance (CBM) models proposed. Bouvard et al. [4] converted a
condition-based maintenance problem into a similar age-based maintenance clustering problem [51], which
yielded an optimal schedule with a dynamic maintenance interval. Wijnmalen and Hontelez [50] used a
heuristic algorithm for computing control limits for components in systems under different discounted sce-
narios, which is formulated within a Markov decision framework. Castanier et al. [6] introduced a model to
coordinate inspection/replacement of a two-component system via a Markov renewal process and minimize
the long-run maintenance cost. However, it becomes intractable for extending to systems consisting of a large
amount of components. To solve large-scale problems for systems with many components, Zhu et al. [52]
proposed a maintenance policy to optimize the control limit of each component and the joint maintenance
interval of the system, w.r.t the minimum average cost rate of the system. Moreover, there is also some
research based on Monte Carlo simulation and Genetic Algorithms [2, 27] to solve larger scale problems. Al-
ternatively, Tian et al proposed two maintenance policies for multi-component systems using Proportional
Hazard Model [40] and Artificial Neural Network [39]. Wang proposed a simulation-based Bayesian control
chart to optimize the CBM policy with two decision variables: a monitoring interval and a control limit on
probabilities [49]. To compare the age/time-based and the condition-based maintenance policy, Koochaki et
al. [21] evaluated the cost effectiveness of a three-component series system in the context of opportunistic

maintenance.

Regarding the contribution of this paper, we propose a new opportunistic maintenance policy for a monitored
component to minimize the downtime cost and setup cost of maintenance. This opportunistic maintenance
policy can be utilized in the context of a mixture of different maintenance policies (e.g., a large portion of the
components in the system are subject to corrective maintenance policies or/and periodic preventive mainte-
nance policies). The coordination of the CBM policy with other different maintenance polices has rarely been
discussed in the literature. However, for a complex engineering system in practice, different maintenance
policies are employed for different components due to the diverse characteristics of components. For example,
some electronic parts (e.g., circuit board, current adapter) can be under the corrective maintenance policy,
since their failure times follow exponential distributions. On the other hand, some parts in the system can
be under the periodic preventive maintenance policy due to the fact that the conditions of the components
are too difficult to be measured. Under such circumstances, if we can combine the CBM activities of this
monitored component with other components that are under corrective maintenance policy and periodic pre-
ventive maintenance policy, the downtime cost and setup cost of maintenance for this monitored component
will be reduced/eliminated. Thus, we introduce a control limit for the monitored component, so that when
the degradation level of this component exceeds the control limit we will take the appeared opportunities
from other maintenance policies and jointly maintain this monitored component with other components.

The average long-run cost rate of maintenance for this component is evaluated and minimized by optimizing



the control limit of opportunistic maintenance. Notice that our model is adaptable for components with
different degradation processes (e.g., random coefficient models, and Gamma processes). It fits well to the
complex engineering systems that contain a large amount of electronic parts, such as lithography machines
[41].

The outline of this paper is as follows. The description of the system and the assumptions are given in
Section 2. The details of the mathematical model are explained in Section 3. In Section 4, a numerical
case of lithography machines in semiconductor industry is studied. In this section, our optimal policy is
also compared with an optimal non-opportunistic policy. Moreover, in Section 5, a sensitivity analysis is

performed. Finally, the conclusions are given in Section 6.

2. System Description

Consider a complex engineering system consisting of multiple components. One critical component is mon-
itored continuously and maintained according to a condition-based maintenance policy. We call such a
component a "CBM component”. The degradation state of the CBM component X (¢) can be monitored
continuously over time ¢, ¢t € [0,00). When the degradation state X (¢) exceeds a predetermined warning
limit H, the system operates under a unsatisfied condition. Hence, a maintenance action will be triggered
immediately to restore the degradation level of the CBM component to its initial level. Such a system down
due to the maintenance of the CBM component is called ?CBMD?” (see Figure 1). In this model, the warning
limit H is a given parameter from the experts, who have the knowledge on the physics of failures.

Apart from this CBM component, all other components in the system are subject to either a corrective

maintenance or a periodic maintenance policy:

e (Corrective maintenance policy: For the components that are under a corrective maintenance policy,
the maintenance or replacement will be conducted immediately after the failure of the component.
This will lead to unscheduled downs (USD) of the system (see Figure 1). We assume that the inter
arrival time of the failures follow an exponential distribution with a parameter A\. Notice that these
USDs in the homogeneous Poisson process are generated by these corrective maintenance components.
According to the Palm-Khintchine theorem [35], even if the failure times of some components do not
follow exponential distributions, the combination of a large amount of non-Poisson renewal processes
will still have Poisson properties. Hence, this assumption about corrective maintenance is realistic if a

sufficiently large amount of components in the system is under a corrective maintenance policy.

e Periodic maintenance policy: In the industries of advance capital goods (e.g., aviation, oil-gas refin-
ery, energy, automotive), periodic maintenance actions (e.g., inspection, cleaning, lubrication) for the
system are taken every fixed interval 7 [41]. This is a common practice in industry, due to the con-
venience of planning and coordination of maintenance resources (e.g., service engineers, maintenance
equipments, spare parts). 7 is a given parameter in our model, which can be determined at an earlier
stage. For example, the automotive industry often recommends annual inspections on cars (7 = 1

year), which leads to scheduled downs (SD) of the system (see Figure 1).
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Figure 1: The maintenance policy of one CBM component, given the reliability information of the system

When a system down occurs (e.g., USD, SD, or CBMD), the system operation will be interrupted and it
will cause a high downtime cost for the system. Also, a setup cost of maintenance will be incurred, such as
sending maintenance crews to the field. To save the downtime costs and setup costs for the multi-component
system, it can be beneficial to combine the maintenance activities of multiple components opportunistically,
which is also known as opportunistic maintenance. In this model, we use the system downs caused by correc-
tive maintenance (at USD) and periodic maintenance (at SD) as opportunities to do preventive maintenance
actions for this CBM component before X (t) reaches the warning limit H (see Figure 2). Consequently, the
setup cost and downtime cost of this CBM component will be reduced by taking advantage of the opportu-
nities. As a drawback of this opportunistic maintenance, the useful lifetime of this CBM component will be

shortened. In this paper, we distinguish three types of maintenance actions on this CBM component:

1. Condition-based Preventive Maintenance at a CBMD (CPM): when the system stops due to a CBMD,
namely, at the time point ¢ = inf{t : X (¢) > H} (see Figure 2), a condition-based preventive mainte-
nance (CPM) action is taken with a cost Ceppm, which includes maintenance setup cost and downtime

cost.

2. Opportunistic Preventive Maintenance at an USD (OPM-at-USD): when the system stops due to a

USD, it provides an opportunity for the CBM component to be maintained together with the compo-
nent under the corrective maintenance policy at this USD. If the degradation X () exceeds a control
limit C (X (t) > C, see Figure 2), an opportunistic preventive maintenance (OPM) action will be taken
with a cost Copm,usa- Notice that Copm usd < Cepm, because the maintenance setup cost and downtime
cost of the CBM component can be eliminated or reduced, if we take the opportunity at USD to jointly
maintain this CBM part. This opportunity will not be taken by the CBM component if X (t) < C



3. Opportunistic Preventive Maintenance at a SD (OPM-at-SD): when the system stops at time ¢ due to

a SD, it provides an opportunity for the CBM component to be maintained together with the com-
ponent under the periodic maintenance policy at this SD. If the degradation X (¢) exceeds a control
limit C (X (t) > C, see Figure 2), an opportunistic preventive maintenance (OPM) action will be taken
with a cost Copm,sqd. Notice that Copmsa < Copm, because the maintenance setup cost and downtime
cost of the CBM component will be eliminated or reduced, if we take the opportunity at SD to jointly
maintain this CBM part. This opportunity will not be taken by the CBM component if X (t) < C
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Figure 2: The degradation of the CBM component with three maintenance actions

The periodic maintenance at time points nr, n € IN with maintenance interval 7 (in terms of days or weeks)
is small compared with the long life cycles (from 10 to 20 years) of complex engineering systems. Hence,
an infinite time horizon is assumed. Moreover, we assume that the CBM component is restored as good as
new by any maintenance action (CPM, OPM-at-USD or OPM-at-SD), as shown in Figure 2. The intervals
between two consecutive maintenance actions is defined as maintenance cycles. Hence, the maintenance
cycle length of the CBM component depends on the ending point of the previous maintenance cycle and the

maintenance action in current maintenance cycle (see Figure 2):

1. if a condition-based preventive maintenance action is taken on the CBM component, the maintenance

cycle length is equal to the passage time that X (¢) exceeds H (i.e., Ty);

2. if an opportunistic preventive maintenance action is taken at a USD, the maintenance cycle ends at
the time point that the first USD of other components occurs after the degradation exceeds C (i.e.,
Tc + Tusp, where Tygp is exponentially distributed with a rate \) due to the memoryless property

of the Poisson process.

3. if an opportunistic preventive maintenance action is taken at a SD, the maintenance cycle ends at the

time point that the first SD occurs after the degradation exceeds C.

Notice that if we assume periodic maintenance rescheduled at the end of each maintenance cycle of the
CBM component (see Figure 3), the renewal theory can be applied to evaluate the average long-run cost
rate of the CBM component. Consequently, the end points of maintenance cycles are the renewal points.

However, the schedule of periodic maintenance for other components usually planned in advance, which can
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Figure 3: The degradation of the CBM component with three maintenance actions

not be changed due to the maintenance of the CBM component (see Figure 2). In other word, the renewal
theory is exact only in the case that the previous maintenance cycle ends with an OPM-at-SD. Hence, the
renewal theory is not an exact method to evaluate the average long-run cost rate of the CBM component,
but an approximation. In this paper, we first assume the schedule of periodic maintenance restarts at every
maintenance point of the CBM component (see Figure 3), so that renewal theory can be used to evaluate
the average long-run cost rate approximately. This implies that we assume all maintenance cycle start at
time points nT,n € IN. Based on this approximate evaluation, an optimization model of the opportunistic
maintenance policy is proposed to minimize the average long-run cost rate by specifying the control limit C'.
The simulated evaluation (see Figure 2) of the average long-run cost rate is performed in the case study in

Section 4.

2.1 Notation:

X(t) : degradation of the CBM component over time ¢

7 : the interval of periodic maintenance

A : the arrival rate of corrective maintenance (a Poisson process)

C' : control limit on the degradation level (decision variable)

H : CPM threshold on the degradation level

Z(C) : average cost rate of the CBM component

Copm,usd : OPM cost of the CBM component at unscheduled system downs
Copm,sd : OPM cost of the CBM component at scheduled system downs
Cepm : CPM cost of the CBM component

2.2 Assumptions

1) The degradation of the CBM component is independent of corrective maintenance and periodic mainte-
nance.
2) The time horizon is infinite

3) Maintenance actions restore the conditions of components back to their initial degradation levels. (also



known as "repair-as-new”).

3. Approximate Evaluation

The probabilities of the three maintenance actions on the CBM component in a maintenance cycle mentioned
Section 2 are derived in Subsection 3.1. Using the analytical results obtained in Subsection 3.1, we evaluate
the average long-run cost rate of the CBM component in Subsection 3.2, by deriving the expected cost in a
maintenance cycle and the expected cycle length. The optimization model is formulated at the end of this

section.

3.1 Degradation Model

Let X (£) denotes the degradation of the CBM component at time ¢ € [0, 00) in one maintenance cycle. Notice
that the degradation process can be described by many different kinds of stochastic processes, e.g., Random
Coefficient Model, Gamma process, Brownian Motion or Markov Process. If the degradation process is
monotonic, the probability that the degradation at time ¢ exceeds a threshold x is equal to the probability
that the passage time T}, of the threshold Y is less than time t:

Pr{T, <t} = Pr{X{#) > x}, (1)

which is also equal to Fr, (t), the cumulative density function (c.d.f.) of the passage time T}. Hence, the
c.d.f. and p.d.f. (probability density function) of the passage Tc and Ty can be derived based on the
degradation process X (#), given C' and H respectively. Since we assume the degradation X (f) is monotonic,
X () will first cross the control limit C' before reaching H (i.e., Tc < Ty). The CBM component is eligible
for opportunistic preventive maintenance, only if C' < X (f) < H. In other words, if there are opportunities
between T¢ and Ty for the CBM component to do joint maintenance with other components, we will take
the first opportunity to maintain the CBM component preventively, together with other components. If no
opportunity appeared between T¢ and Ty, we have to maintain the CBM component by CPM, once X (f)

crosses the warning limit H (i.e., at the time point T ).

We consider T occurs in a certain interval between two the periodic maintenance actions (n — 1)7 <
Te < n7,n € IN, namely, when X (f) reaches C' at the time point u € [((n —1)7,n7). The p.d.f of T¢ is
f1e (1) du. Notice the passage time Ty depends on the Te. Given that T = u, the conditional p.d.f of Tx
is fr, 1. (v|u), where v € [u,00). The probabilities of the maintenance actions are analyzed under the two

scenarios:

Scenario 1: (n—1)71 <Tc <nt and Ty < nt

Given (n — 1)1 < To < nr, if X(t) passes H at the time point v before nt, i.e., Ty = v and v € [u,n7),
there will be no opportunity due to by periodic maintenance. Hence, it is only possible to take the first
opportunity due to corrective maintenance. This will happen if To + Tysp < Ty, with a probability
Pri{Tysp <v—u} =1-— e~ Mv=4)  Notice that this probability is the conditional probability given that
Te = u and Ty = v. Hence, OPM-at-USD happens in this scenario with a probability:

/ =nt / = T(l _ e_>\(1)—u))fTH|TC(U|u) dv fro.(u) du

=(n—-1)7 Juv=u



On the other hand, if no opportunity is taken (i.e., Tc + Tysp > Trx), a CPM will be taken once X (f)
reaches H, with a probability:

[ e folu) do fr () du

u=(n—1)7 Juv=u

Scenario 2: (n— 1)1 <Tc <n7t and Ty > nr

Given (n — 1)1 < Tg < nr, if X(f) passes H at the time point v after nr, i.e., Ty = v and v € [nT,00),
there will never be a CPM. Instead, the first opportunity caused by either periodic maintenance or corrective
maintenance of other components will be taken immediately after X (f) exceeds C. Hence, if Toc+Tysp < nt,
an OPM-at-USD will be taken on the CBM component. Notice that this probability depends on T¢ = u
and n7 with a conditional probability Pr{Tysp < nt —u} =1 — e~ *(»"=%) Hence, OPM-at-USD happens

in this scenario with a probability:

/ ) o) / T frwire(vlu) dv fro (u) du

=(n—-1)7 =nT

On the other hand, if To +Tysp > n7), an OPM-at-SD will be taken at n7. This happens with a probability

/ e—)\(nT—u)/ Jruire (Wlu) dv fre(u) du
u

=(n—-1)7 v=nT

To summarize, the choice maintenance actions (CPM, OPM-at-SD and OPM-at-USD) depends on which
one among Ty, nT and T¢ + Tysp happens first (see in Section 2). The probabilities of those three types

of maintenance actions within a periodic maintenance interval (n — 1)7 and nr are

P?“{CPM in [(n — 1), m’)} = Pr{(n —1)7 <Te < Ty < min (n7, Te + TUSD)}
PT{OPM at SD in [(n—1)T, m')} = Pr{(n—1)71 <Tc <nt <min (Ty, Tc +Tusp)}
PT{OPM at USD in [(n — ), m’)} = Pr{(n — 1)1 <Te <Te+Tysp < min (T, m’)}

or

PT{C’PM in [(n— 1), m)} _ / /M” N fro o (o) do fry (u) du
=(n—1)7

v=u

P?“{OPM at SD in [(n—1)T, nr)} _ /u nr e~ AnT—u) /v:oo o ol v ()

=(n—1)7 v=nT

P’)"{OPM at USD in [(n — 1), TLT)} = /u v / T(l — e 7)) e () v fr (u) du

=(n—1)7

o e [ o) do )
u=(n—1 v=nT

(2)
Here we define P, = > 77, Pr{OPM—at—USD in [(n—1)7,n7) }, Py=%" Pr{OPM—at—SD in [(n—

1), m')} and Py =) >, Pr{C’PM in [(n—1)7,n7) } The sum of those three probabilities (P, P, and
Ps) is also equal to one. Notice the aggregation of (n — 1)7 < Te < nr (n € N, 7 € R) implies T € [0, 00)
and Zn 1 : (:LLT 17 ch( ) du=1



3.2 Evaluation and Optimization

According to Equation 2, the expected cycle cost It [K (C)} can be derived:
E[K(C)] -3 [Pl Pi+ P, P, + P Pg,]
n=1

= i /u:m {/v_nT (Pl(l — e_’\(v_")) + (PS)e_)\(U_u)) Jrpme (v]w) dv

n—1Ju=(n—-1)7 v=u

+ (P1 (1 — e*A(”Tfu)) + (Pz)e*)‘(”*“)) /

V=NT

V=00

frp e (v|u) d”} fro(u) du

and similarly the expected cycle length E[L(C)} is (also see Appendix A)

E[L(C)} - i /uu::TnT {u " /vv;m <§\ (1 N eA(vu)>> frp|re (v|u) dv
+ ;\/Ui::) (1 — e_’\("T—“)) Jrp e (V) dv} fro (u) du 3)

According to the renewal theory, the expected total maintenance cost rate of the CBM component Z(C) is
equal to E[K(C’)} /E {L(C’)] Hence, the optimization model is formulated as

e E|K(C)]
e B E[L(C)]
s.t. 0<C<D

The objective function is non-linear and different when degradation pathes are modeled by different degra-
dation models. Hence, several non-linear optimization method may be used (e.g., local search, newton’s
method, interior point methods, first order condition method)[3], depending on different degradation mod-

els.

4. Case Study

As a demonstration of our model, we provide a case of lithography machines in semiconductor industry.
The machines are complex engineering systems processing the pure-silicon-made wafers to semiconductor
integrated circuits, also known as micro-chips. The laser unit in the machine is considered as one of the
most important components, whose degradation is continuously monitored. The measurement of its physical
condition is the output power in Watts. When the degradation of output power exceeds a certain limit,
bad chips are produced and a maintenance action is needed. Considering the laser unit as the CBM com-
ponent, the degradation of output power over time is obtained from the historical data of 71 laser units.
For each laser unit (j = {1,2,...,n}, where n = 71), the degradation level zj ; is measured at minute k,
k = {1,2,...,m}, where m € IN is the time of the last degradation measurement. The time of the last

degradation measurement m is the same for all laser units.
As mentioned in the literature review in Section 1, there are several approaches to model the stochastic
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Figure 4: A laser unit in a lithography machine[1]

degradation paths of a component (e.g., Random Coefficient Model, Gamma process, Wiener process or
Markov Process, etc). To validate our model for various degradation paths, we model X (f) by two ap-
proaches: i) Random Coefficient Model[25], because it is relatively flexible and convenient for describing the
degradation pathes derived from physics of failures, such as laws of physics and material science; ii) Gamma

process [44], due to its popularity in the literature.

Fitting Option 1 - Random Coefficient Model: X (t;®,0) is a random variable given a set of constant
parameters ® = {¢1,....,00},Q € IN; and a set of random parameters, © = {61,....,0v},V € N, follow-
ing certain probability distributions. In order to clarify the model, we start with a simple degradation path
X (t;®,0) = ¢y +01t%2, where ® = {¢1, d2} and © = {61}. Equation (1) can be written in terms of Fp, (the

cumulative density function of random variable 61, 61 > 0) as:

Pr{T, <t} = Pri¢:+6,i”? > x}
= Pr{el 2 Xi:—qb;bl}

_ 1—F01(Xt;2¢1>

(4)

For example, if the degradation rate 61 follows a Weibull distribution with a scale parameter o and a shape

parameter 3, then the probability density function of the passage time T\, is

_ B+1 _ B
fr () = 220 () - (X207, e o)

Notice that ¢1 =0 and ¢2 = 1 in the case of this laser unit and the degradation path reduces to X(f) =40

1t
Hence, only the parameters a and B need to be estimated. &
Fitting Option 2 - Gamma process: if X(t) is a Gamma process with its initial degradation level xq

att = 0. The random increments throughout the process are independently and identically distributed (i.i.d)

according to a Gamma process with a scale parameter n and a shape parameter ~v. Hence, the cumulative

11



Table 1: The parameter setting

Parameter Explanation
Copm,sd = 26.5 Opportunistic presentive maintenance due to scheduled downs [thousand Euro]
Copm,usd = 28.8 : | Opportunistic presentive maintenance due to unscheduled downs [thousand Euro]
Cepm = 44.5 Condition-based preventive maintenance [thousand Euro]
T=091 The interval of scheduled downs [day]
a = 0.159 Scale parameter of Weibull distribution
B =3.73 Shape parameter of Weibull distribution
{¢1,¢2} = {0,1} | Constant parameters
A=28.86%10"3 Poisson arrival rate of unscheduled downs [per day]
H =88 Failure threshold [Watt]
v =0.221 Shape parameter of Gamma distribution
n =185 Scale parameter of Gamma distribution

density function of the passage time T, is

L(yt, n(x = 20))

Fr (t) = - 6
NURE ©)
where T'(vt) = [;° y ' tevdy and T'(vE,n(x — z0)) = fno(oximo) yVile=vdy. &

Besides the degradation parameters (i.e., «, 3,7 and n) estimated from the data, the rest of the input
parameters in Tablel are given by the company of lithography machines [41]. The parameter estimation
of the degradation path follows the standard methods in the literature. As for Random Coefficient Model,
the estimation of the degradation rate for laser unit j is ©; = >"7" | k x @y ;/> ;- k* [28]. Subsequently,
we estimate the parameters @ and B of the Weibull dlstrlbutlon from the estimated slopes G)j by Maximum
Likelihood Estimation [12]. Regarding Gamma process, the time increments At is one minute, because the
degradation level is measured every minute. Suppose the 71 laser units deteriorate according to a Gamma
process with the same parameters. The degradation increment, Azy ; = xpy1,; — Tk, for any At is ii.d.
and following a Gamma distribution I'(yAt, ). By maximum likelihood estimation, the estimated 4 and 7

are the solutions of the following equations [36, 44]

m—1 n
mAt
(m—1)nln ('Ay —— > + At Z In(Azg ;) — Y(FAL)] =
ket D1 DAk k=1 j=1
and
. (m — 1)nAt

m:—11 Z;L:1 Azg,
where U(yAt) = IV (§AL) /T (HAL).

Given the input parameters in Table 1, the optimal maintenance policy of the laser unit can be derived, by
using Random Coefficient Model (see Fitting Option 1 in Subsection 3.1) and Gamma process (see Fitting
Option 2 in Subsection 3.1) to model its degradation path.

The optimal control limit C* in terms of a percentage of H can be found by minimizing the average cost
rate Z(C*) via approximation (see Subsection 3.2 ). As a comparison, we simulate the average cost rate A
(see Appendix B) given C* as the control limit. Figure 5 illustrates the changes of the average cost rate over

the control limit C' (relative to H). The results are calculated from both approximation and simulation are
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shown in Figure 4, with Random Coefficient Model in (A) and Gamma process in (B)..

1a0 150
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Cantral limit C divided by threshold H [percentage] Contral limit C divided by threshold H [percentage]
Figure 5: Average cost rate [euro per day] over various % . (A) by Random Coefficient Model and (B) by Gamma process

The numerical results are also given in Table 5 by Random Coefficient Model, the optimal maintenance policy
via approximation has a control limit that is 85.23% of the threshold (C*/H = 85.23%) and a minimum cost
rate of 45.11 euro per day (see Figure 5-A). In the case of Gamma Process, the optimal maintenance policy
via approximation has a control limit that is 87.5% of H with a minimum cost rate around 41.01 euro per
day (see Figure 5-B). As mentioned previously, we also evaluate the average cost rate using simulation, at a
given control limit obtained from the approximation model (see Figure 5). Due to a long time horizon and a
large number of iterations in our simulation, the confidence interval is very small as shown in Figure 5 (More
details in Appendix B). Table 2 shows not only the optimal policy in both cases of RCM and GP, but also
the gap between simulation and approximation results. Generally speaking, the gaps are very small, which

means our approximation is accurate in both cases of RCM and GP. Notice that the values of {Pl, P, P3}

and E {L(C)} in approximation and simulation are almost the same in the case of RCM, which shows more
accuracy compared with the case of GP. In this case study, our approximation based on RCM with a 0.1%

gap is more accurate than GP with a 1% gap.

Finally, we compare our opportunistic maintenance policy with the policy excluding the maintenance oppor-
tunities of scheduled/unscheduled system downs, which is currently used by the company. Such a policy is
also known as non-opportunistic policy, which can be considered as a special case of our model, i.e., C = H.
Under this policy, the average cost rates Z of the CBM component are 64.3 Euro per day in the case of
Random Coefficient Model and 60.1 Euro per day in the case of Gamma process. Hence, the cost savings
%jc*) for this numerical case are 30% in the case of Random Coefficient Model and 32% in the case of

Gamma process.
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Table 2: The optimal maintenance policies under the parameter setting in Table 1 (Py, P> and Ps are the probabilities of
taking OPM-at-USD, OPM-at-SD and CPM actions as defined in Section 3.1 respectively)
in the case of Random Coefficient Model

Approximation Result Simulation Result Gap
Z(C*) = 45.11 [euro per day] Z(C*) = 45.12 [euro per day]
C*/H = 85.23% C*/H = 85.23% % <0.1%
{Pl,Pg, P3} = {0.3078,0.6417, 0.0506} {P1,P2,P3} = {0.3078,0.6417, 0.0506}
E[L(C)] = 624.4 [day] ]E[L(C)] = 624.2 [day]

in the case of Gamma process

Approximation Result Simulation Result Gap
Z(C*) = 41.01 [euro per day] Z(C*) = 40.63 [euro per day]
C* = 87.50% C* = 87.50% % <1%
{Pl, P, Pg} = {0.3096,0.6512, 0.0392} {Pl,PQ, Pg} = {0.3142,0.6456, 0.0402}
E[L(C)] = 682.1 [day] E[L(C)] = 689.2 [day]

5. Numerical experiments

To validate our model under various parameter settings, we set up several numerical experiments based on
full factorial test beds. Section 5.1 shows the accuracy of our approximation. In Section 5.2, we also evaluate

the cost reduction potential of our proposed policy in comparison with a non-opportunistic policy.

5.1 Accuracy of the approximation

Test Bed 1

The accuracy of our approximation is assessed based on the gap between simulation result Z and approxi-
mation result Z. We select four factors: the decision variable C' and three parameters 7, A and o !. Three
different value of control limits C' = {30%, 50%, 70%} of the threshold H is chosen and each of the three
parameters is multiplied by a set of coefficients of {50%,100%, 150%}. Hence, a full factorial test bed is set
up and a state space of instances is defined (Cj, oy, A, T) € A, V34,1, k, m = {1,2, 3}, which leads to |A| = 81
instances in the test bed. The detail of the test bed design is in Appendix C.

The evaluation of the gap is shown in Table 3. The first insight is that the gaps are small, which implies that
our approximation is sufficiently accurate at various values of decision variable C. (the mean gap values are
2.0% and 1.7% in the case of RCM and GP respectively). In the test bed, we have 3 levels for each factor
in (Cj,01, Mg, ™) € A V5,1 k,m = {1,2,3}. For each level of a certain factor, we categorize the instances
containing a specific level of a certain factor into a subset. For example, a subset of instances containing
o1 is defined as A, = {(C’l, o1, Mg, )|l K, m € {1, 2, 3}}, where A,, C A. Table 4 summarizes the means,
minimums and maximums of the gap values of these 12 subsets in Table 3, with the degradation modeled
by Random Coefficient Model (RCM) and by Gamma Process (GP) respectively. As shown in Table 4, we
observed that the difference between minimum and maximum gap values are reasonably small, which implies

the accuracy of our approximation is stable under various parameter settings. Amongst the 12 subsets, the

162 = E[T3] — E[TH]?, where E[Ty] and E[T%] are the 1°¢ and 2"¢ moment of the component life time. ¢ is the standard
deviation of the component life time distribution Ty (see Equation 8 and 6). Larger o is, larger the variance in the degradation

path is
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A Gap A Gap A Gap

by RCM by GP by RCM by GP by RCM by GP
1.7% 0.1% 0.2% 0.0% (03,0'1,>\1,7’1 0.0% 3.4%
2.9% 1.9% 0.4% 4.7% (C3,01,A1,T2 1.5% 1.2%
4.8% 2.6% 1.1% 0.1% (C3,01,A1,73 3.2% 1.0%
2.4% 0.0% 0.4% 0.0% (C3,01, 2,71 0.1% 2.6%
3.9% 2.5% 0.9% 3.2% (C3,0’1,>\2, T2 1.6% 0.2%
6.1% 4.3% 1.5% 0.3% (C3,01,A2,73 2.9% 0.3%

C1,01,A1,71 Co,01,M1,T1
C1,01,A1, T2

C1,01,A1,73

C2,01,A1, T2
C2,01,21,T3
Ca,01,A2,T1

Q

1,01,)\2, T2 C2,01,)2, T2

C2,01,)2,T3

3.1% 1.5%
3.8% 2.8%
0.3% 5.4%
2.8% 0.3%
3.7% 1.7%
0.1% 5.0%
2.2% 0.9%
3.3% 0.6%

2.3% 1.0%
3.8% 2.0%
0.5% 0.0%
2.8% 1.0%
5.2% 1.4%
0.5% 0.4%
2.5% 0.9%
5.2% 1.9%

0.2% 4.9% (C3,03,A1, T2
2.3% 0.4% (C3,03,A1,73
0.3% 1.5% (C3,03, 2,71
0.5% 3.1% (C3,03,X2, 72
2.0% 1.3% | (Cs,03,A2,73
0.4% 1.4% (C3,03,A3, 71
0.9% 3.5% | (Cs,03,A3,72
1.7% 1.2% (C3,03,A3,73

1,03, A1, T2 C2,03, A1, T2

C 0'1,)\3, T1 2.8% 0.3% Ca,01,A3,T1 0.5% 0.3% (C3,01,A3,T1 0.2% 2.4%
C1,01,A3, T2 3.6% 2.9% C2,01,A3,T2 1.3% 2.5% (C3,01, A3, T2 1.7% 0.4%
C1,01,A3,73 6.2% 4.2% C2,01,A3,T3 1.3% 0.4% (C3,01,A3,73 2.7% 0.1%
C1,02,21, 71 0.6% 0.0% Ca,02,A1, 71 0.3% 0.8% (C3,02, 1,71 0.0% 5.2%
C1,02,\1,T2 2.7% 1.3% Ca,02,A1,T2 0.2% 5.4% (C3,02, 1,72 2.9% 0.5%
C1,02,A1,T3 4.4% 2.0% Ca,02,A1,T3 2.1% 0.1% (C3,02,A1,73 3.9% 2.0%
C1,02,2,T1 1.0% 0.2% Ca,02,A2,T1 0.4% 0.6% (03,02,)\2, T1 0.1% 4.1%
C1,02,A2,T3 5.6% 2.2% Ca,02,2,T3 2.2% 0.5% (C3,02, 2,73 3.8% 0.7%
Ch,02,A3,T1 1.2% 0.1% Ca,02,A3,T1 0.4% 0.4% (C3,02,A3,T1 0.0% 4.2%
Ch,02,A3,T2 3.0% 1.3% Ca, 02,3, T2 1.0% 2.7% (C3,02,A3, T2 2.5% 1.0%
C1,02,)A3,73 5.8% 2.4% Ca,02,)A3,T3 1.8% 0.9% (C3,02,A3,73 3.3% 0.0%
C1,03,A1,T1 0.4% 0.2% Ca,03,A1,T1 0.1% 1.4% (C3,03, 1,71 0.0% 5.6%
C

C

1,03,A1,73 C2,03,1,T3

C1,03, A2, 71 C2,03, A2, 71

Q

1,03, A2, T2 C2,03, A2, T2

C1,03,)2,73 Ca,03,2,T3
C2,03,A3,T1

C1,03, A3, T2 C2,03, A3, T2

o~ o~~~ o~~~ o~~~ o~~~ o~~~ o~~~ o~~~ o~ o~ —~

) ( ) )
) ( ) )
) ( ) )
1) ( ) )
) ( ) )
73) ( ) )
) ( ) )
) ( ) )
) ( ) )
) ( ) )
) ( ) )
) ( ) )
) ( ) )
102,02, 72)  3.5% 1.7% | (Ca,02,A2,72)  0.6% 3.2% | (Cs,02,X2,72)  2.8% 0.6%
) ( ) )
) ( ) )
) ( ) )
) ( ) )
) ( ) )
) ( ) )
) ( ) )
) ( ) )
) ( ) )
) ( ) )
1) ( ) )
) ( ) )
) ( ) )

C1,03,23,T3 C2,03,)3,T3

Table 3: The evaluation of the gap ‘Z(C*Z)%f(c*)‘ between simulation result Z(C*) and approximation result Z(C*); in the
case of Random Coefficient Model (RCM) and Gamma Process (GP)

difference of mean gap values in the case of GP is smaller than in the case of RCM, which shows that the
GP outperforms RCM in terms of stability under various parameter settings. For each instance, the detail
of its optimal policies is shown in Table 11 and Table 12 in Appendix C. The differences between simulation
and approximation results on the probabilities of three maintenance actions and expected cycle length are
reasonably small in both case of RCM and GP, which implies our model are sufficiently accurate under not

only various parameter setting, but also at the different values of decision variable.

As shown in Table 4, our approximation is accurate for various control limits (on average 2.0% and 1.7%
gap in the case of RCM and GP respectively). The difference between the minimum and maximum of gap
values are small in both cases. Notice that the mean gap values for various control limit value in the case of
RCM fluctuate slightly more than in the case of GP.

Test Bed 2

To show the optimal policy of our approximation is close to the true optimal policy in reality, we set up
another test bed to show the gap of the simulated cost rate (Z(C’) - Z(C*))/Z(C’), where C* and C are the
optimal control limit of the approximation and simulation respectively. The control limit C' is no longer a

factor in the test bed. Hence, this test bed is similar to the previous one, except the state space of instances
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Gap in the case of RCM | Gap in the case of GP

mean min max mean min max
Acy 32%  0.4% 6.2% 1.4%  0.0% 4.3%
Ac, 0.9% 0.1% 2.3% 1.7%  0.0% 5.4%
Acy 1.9% 0.0% 3.9% 2.0% 0.0% 5.6%
Aoy 2.1% 0.0% 6.2% 1.6% 0.0% 4.7%
Aoy 2.1% 0.0% 5.8% 1.6% 0.0% 5.4%
Aoy 1.9%  0.0% 5.2% 1.9% 0.0% 5.6%
Ay, 1.8%  0.0% 4.8% 1.9% 0.0% 5.6%
Ay, 2.1% 0.1% 6.1% 1.6% 0.0% 5.4%
Ay, 2.1% 0.0% 6.2% 1.6% 0.0% 5.0%
Ary 0.6% 0.0% 2.8% 1.7% 0.0% 5.6%
Ary 2.0% 0.2% 3.9% 2.0% 02% 54%
Ary 35% 1.1% 6.2% 1.4% 0.0% 4.3%

Table 4: Summary of gap values in the test bed

Q by RCM by GP Q by RCM by GP

{c*/H,C/H,Gap} {C*/H,C/H,Gap} {c*/H,C/H,Gap} {C*/H,C/H,Gap}
(o1, A1,71) {75%, 75%,0.3%} {77%,76%,0.6%} (o2, A2,73) {72%,71%,0.6%} {74%,70%,1.0%}
(o1,M1,72) | {75%,66%,1.0%}  {70%,63%,1.3%} | (02,Xs,71) | {79%,76%,01%}  {81%,74%,1.6%}
(01, M,73) | {67%,64%,1.0%}  {66%,64%,0.7%} | (02,As,72) | {78%,80%,0.7%}  {78%,76%,1.3%}
(o1,A2,71) {75%,76%,0.0%} {78%,76%,0.4%} (02,3, 73) {75%, 74%,0.4%} {77%,74%,0.5%}
(o1, A2,7T2) {77%,71%,0.4%} {75%,69%,1.0%} (03, A1,71) {75%,76%,0.1%} {80%, 77%, 3.5%}
(01,02,73) | {71%,70%,0.4%}  {71%,69%,0.7%} | (03, A1,m2) | {63%,68%,0.8%}  {74%,70%,1.5%}
(01,03,71) | {76%,77%,0.1%}  {79%,77%,1.3%} | (03, 1,73) | {69%,68%,0.4%}  {72%,67%,0.8%}
(01,03,72) | {78%,77%,0.7%}  {77%,74%,0.2%} | (03, a,71) | {75%,76%,0.5%}  {82%,77%,4.3%)}
(01,03,73) | {74%,72%,0.3%}  {74%,77%,0.7%} | (03, A2, m2) | {70%,73%,0.8%}  {77%,74%,1.3%)}
(02,01,71) | {75%,76%,0.1%}  {78%,74%,2.4%} | (03, A2,73) | {73%,73%,0.4%}  {76%,72%,0.7%}
(o2, A1,7T2) {61%,65%,1.2%} {71%,68%,2.2%} (03, A3,71) {79%, 81%,0.6%} {83%, 78%,2.9%}
(02,M1,73) | {68%,67%,0.6%}  {69%,63%,0.3%} | (03,As,m2) | {76%,74%,1.0%}  {80%,76%,2.4%}
(02,00,71) | {75%,76%,0.1%}  {80%,77%,2.3%} | (03, As,73) | {75%,72%,0.2%}  {79%,77%,1.6%}
(02, M2, 72) | {76%,74%,08%}  {75%,74%,1.3%}

Table 5: The evaluation of the gap

12(6)-2(C™)]
Z(C

the case of Random Coefficient Model (RCM) and Gamma Process (GP)
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are (o7, A, Tm) € Q, VI, k,m = {1,2,3}, which leads to |2| = 27 instances in the test bed (see Table 5). For
each factor, we categorize the instances containing a specific level of a certain factor into a subset. For exam-
ple, a subset of instances containing o7 is defined as Q,, = {(01, Ak, Tm) |V, m € {1,2, 3}}, Q,, C Q. Table
7 summarizes the means, minimums and maximums of the gap values of these 3 subsets in Table 5, with the
degradation modeled by Random Coefficient Model (RCM) and by Gamma Process (GP) respectively.

Gap in the case of RCM | Gap in the case of GP
mean min max mean min max
Qoy 0.5% 0.0% 1.0% 0.7% 02% 1.3%
Qoq 0.5% 0.1% 1.2% 1.4% 0.3%  2.4%
Qo 0.5% 0.1% 1.0% 21%  0.7% 4.3%
Qx, 0.6% 0.1% 1.2% 1.5% 0.3% 3.5%
Qx, 0.5%  0.0% 0.8% 1.4% 0.4% 4.3%
0.4% 0.1% 1.0% 1.4% 0.2% 2.9%
Qry 0.2%  0.0% 0.6% 21% 04% 4.3%
Qr, | 08% 04%  1.2% | 14% 02% 2.4%
Qry 0.5% 0.2% 1.0% 0.8% 03% 1.6%

Table 6: Summary of gap values in the test bed

The evaluation of the gap is shown in Table 5. The average gap is 0.5% and 1.4% in the case of RCM and
GP respectively, which is smaller than the average gap in shown in 3. Therefore, we can conclude that the
optimal policy of our approximation is very close to the optimal policy in reality, which further validate the

accuracy of our approximation.

5.2 Cost reduction potential

Regarding the cost reduction, the optimal maintenance policy of our model Z(C*) is compared with a non-
opportunistic policy Z (C = H). Similarly, we have 3 levels for each factor o;, A\, and 7., VI, k,m = {1, 2, 3}.

The cost reduction A = % is shown in Table 5.

Table 7: The evaluation of the cost reduction between the optimal maintenance policy of our model Z(C*) and a non-
opportunistic policy Z with C' = H; in the case of Random Coefficient Model (RCM) and Gamma Process (GP)

Q A Q A Q A
by RCM by GP by RCM by GP by RCM by GP
(0’1,/\1,7'1) 29% 26% (0’2,)\1,7'1) 28% 25% (o3, A1,71) 26% 24%
(o1, A1,72) 14% 18% (o2, A1, 7T2) 13% 18% (03, A1, 72) 13% 19%
(o1,M1,73) 21% 16% (02,1, 73) 20% 16% (o3, A1,73) 19% 16%
(o1, A2,71) 28% 25% (o2, A2, 7T1) 27% 24% (o3, A2, 7T1) 25% 24%
(0'1,)\2,7'2) 16% 19% (0’2,)\2,7‘2) 14% 19% (0'3,>\2,T2) 14% 19%
(01, A2,73) 21% 17% (02, A2, 73) 21% 17% (03, A2, 73) 19% 17%
(o1, A3,71) 27% 25% (o2, A3,71) 26% 24% (03, A3, 71) 25% 24%
(0’1,)\3,7'2) 17% 19% (0’2,)\3,7'2) 16% 19% (0’3,>\3,T2) 16% 20%
(01,A3,73) 21% 18% (o2, A3,73) 21% 18% (o3, A3,7T3) 20% 18%

Generally speaking, our model has a considerable cost-saving potential, i.e., more than 20%, in both
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cases of RCM and GP. For each level of a certain factor, we categorize the instances containing a spe-
cific level of a certain factor into a subset. For example, a subset of instances containing o is defined as
Qo, = {(01, Moy 7)) [Vk,m € {1,2,3}},Q,, C Q. Table 8 summarizes the means, minimums and maximums
of the gap values of these 9 subsets in Table 5 for both cases of RCM and GP. In this case study, the mean
cost reduction is less sensitive to the variation of o and A than to the mean cost reduction under the variation

of .

A in the case of RCM A in the case of GP
mean min max mean min max
Qo 21.5% 13.6% 29.2% | 20.4% 16.5% 25.7%
Qoy 20.7% 12.9% 27.7% | 19.9% 15.6% 24.5%
Qs 19.8% 13.3% 26.1% | 20.1% 15.9% 24.2%

Qy, | 203%  129%  29.2% | 19.7% 15.6% 25.7%
Qy, | 20.6% 14.3% 28.1% | 201% 16.7% 25.3%
Qy, | 201%  15.7%  27.2% | 20.6% 17.7% 25.2%

Q| 269%  25.2%  29.2% | 24.7% 24.2% 25.7%
Qr, | 148% 129% 17.1% | 188% 17.9% 19.7%
Qr, | 204% 188% 21.3% | 17.0% 15.6% 18.0%

Table 8: Summary of cost reduction in the test bed

6. Conclusions

In this paper, we propose a new opportunistic maintenance policy for a monitored component to minimize
the downtime cost and setup cost of maintenance, given the scheduled and unscheduled system downs.
This opportunistic maintenance policy can be utilized in the context of a mixture of different maintenance
policies, such as corrective maintenance policies or/and periodic preventive maintenance policies. As the
decision variable of the model, a control limit is introduced to decide the timing of taking opportunities to
maintain together with other components in the system. The optimal control limit is determined accord-

ing to minimum long-run average cost rate of the monitored component under an infinite time horizon setting.

To validate our model, we compare our approximation results with the simulation results. In a case study
of lithography machines in semiconductor industry, our approximation is very accurate and the cost-saving
potential of our model is considerable. To verify this finding further, a sensitivity analysis are made with a
full factorial test bed. Under various parameter settings, our model shows a good accuracy and a consider-
able cost-saving potential. Also it is sensible to observe that our model is more accurate when the periodic

maintenance interval of the system are smaller, which matches our intuition.

our model can be applied widely to different types of monitored critical components in different complex
engineering systems, because i) different physics of failures and various degradations models (as Subsection
3.1) can be plugged directly into the optimization model (as Subsection 3.2) and ii) our model can accommo-
date a mixture of different maintenance policies (not only condition-based, but also age-based maintenance

or/and periodic inspection) by converting them into the scheduled or/and unscheduled system downs.

18



For future research, the model can be extended to the system structures or the dependency of compo-
nents in the systems. Another possible extension of the model is to consider the interaction of multiple

monitored components, in order to further reduce the average long-run cost rate of the system.

7. Appendices:

A. Derivation of the expected cycle length

E[L(C)] is formulated as

Z{/ - </ o (u+ s)Ae ™ ds—l—(v—!—()/ e ds> Jry1e (v|u) dv

n=1 =0

+ / - (/ - (w4 s)Ae ™ ds—l—nT/ e ds) Sy 1o (v|w) dv}
v=nT s=0 s=nT—u

X fro(u) du (7)

Using integration by part, we can obtain:

S=v—Uu s=00 1
/ (u+ s))\e—As ds + v/ Xe 2 ds = u+ N (1 _ e—)\(@—u))

s=0 s=v—u

and
S=NT—Uu §=00 1
/ (u+ s)re ™ ds + m'/ e M ds =u+ X (1 - e_’\(m_“))

=0 s=nT—u

Hence, E[L(C)] can be rewritten as

') u=nt v=nT /1
Z/ {u +/ ()\ (1 - 67)‘(”7“)) + Ee)‘(”“)) Jry 1o (v|u) dv
n—1 u=(n—1)1

v=Uu

N l /”:OO (1 _ e—A(m’—U)) fTH\TC (U|u> d’U} fTC <u) du

)\ vV=nT

B. Simulation Algorithm

As explained in Section 1, the periodic maintenance planned on the schedule will be shifted after each
maintenance cycle, which is not the case in practice. Consequently, the model formulation in Subsection 3.2
is an approximation. To evaluate the accuracy of the approximation, we run a simulation to compare with
the approximation results. We simulate i) the random failure by a poisson process with a rate A and ii) the
degradation parameters under certain distributions. Hence, for each cycle denoted by an index k € IN, T
and Ty are randomly generated (T¢, =Tc+Ry—1 and Ty, =T+ Ri—1, where Ry, is the renewal time point of

Eth cycle). Periodic maintenance time points {7,27,...,n7}, n € IN are given over a very long time horizon..
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To know which maintenance action is taken in each cycle, we use binary indicators:

Jopmousd _ 1 if a OPM-at-USD action is taken
k 0 otherwise

popmsd _ 1 if a OPM-at-SD action is taken
4§ 1o otherwise

Jerm _ { 1 if a CPM action is taken
o =

0 otherwise

There are m seeds in the simulation. Each seed ¢ € {1,2,...,m} consists of: 1) a Poisson process with random
arrival time points A = {a,as,....,a;} € R%,x € IN, where R, = [0,00); 2) a set of random passage times
Te, and Ty, € R+,VEk € IN according to the degradation process; and 3) a constant set B = {7, 27,...,n7},
n € N on a time horizon T}, that is sufficiently large to simulate the infinite time horizon (e.g., 10% times
larger than {L(C)} ).

Initialize k =1 and R =0
While Ry < Thmas
If 3 a non-empty subset {Ax} C A: {Ax} C [To,, TH, ),
If 3 a a non-empty subset {By} C B: {By} C [Tc,,Tw,),
If min{A} > min{By},
Calculate Z; given (Igpm’uSd,Igpm’Sd, IP™) =(0,1,0) and R, = min{By}
Else Calculate Z; given (I7P™ "4 [oPmsd [ePmy — (1.0,0) and Rj, = min{A;}
Else Calculate Z; given (IgP™"*4 [P [P™) = (1,0,0) and Ry, = min{Ay}
Else if Ja a non-empty subset {By} C B: {By} C [Ty, TH,)
Calculate Z; given (I,‘jpm’uSd,Izpm’Sd,Izpm) = (0,1,0) and Ry = min{ By}
Else Calculate Zy; given (IpP™"*¢ [oP™5¢ [P™) = (0,0,1) and Ry, = T,
End if
k=k+1
End while
Obtain Z=2

Table 9: Simulation algorithm

By running the algorithm in Table 9 iteratively with m seeds, the final result of the simulation 7 = #

with a 100(1 — &)% confidence interval is expressed as follows [22]:

Zit(l—a/Q,m—l)\/f (8)

where $ = >0, (Z;;—_Zlf and t(1 — a/2,m — 1) is the upper 1 — «/2 critical point for the t-distribution with

(m — 1) degrees of freedom (in our case, m = 100 and o = 5%) and the expected cost rate is:

opm,usd opm,sd cpm
Zke]N (Ik * Copm,usd + Ik * Copm,sd + Ik * Ccpm)

i Rlc

9)
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Table 10: The parameter setting
Parameter Explanation
7= 0.5 % {50%,100%, 150%} | The interval of scheduled downs
A= 2% {50%,100%, 150%} Poisson arrival rate of unscheduled downs
o =1/2{50%,100%,150%} | Standard deviation of component life time
E[Tg]=1 Expected component life time
H = 100% Failure threshold

The detail algorithm is summarized in Table 9.

C. Test bed design

To generate a efficient test bed, we set the expected life time E[Ty] of the CBM component to 1, which
normalizes the time scale to per unit of the expected life time. By fitting the two moments of component
life time 2, shape and scale parameters of the Weibull distribution in Random Coefficient Model (see Fit-
ting Option 1 in Subsection 3.1) and Gamma distribution (see Fitting Option 2 in Subsection 3.1) can be
derived. Hence, we choose standard deviation of component life time o as a varying parameter. Moreover, 7
and A are also suitable varying parameters, because they determine the frequency of the opportunities from
OPM-at-USD and OPM-at-SD events (see Section 2). Therefore, we set up a full factorial test bed with the

following parameter settings in Table 10.

Notice that no cost parameter is chosen as varying parameters in the test bed, which helps to reduce
the size of the full factorial. To compensate the absence of cost parameters, we can also compare the ex-
pected cycle length and the probabilities of different maintenance actions (OPM-at-USD, OPM-at-USD and
CPM) in the results of approximation and simulation, which is denoted by vectors [Pl, P, Pg,E[LH and
[Py, P2, P3, E[L]] ,  respectively (see Table 11 and 12). To see how much the approximation deviates from
the simulation, we define a deviation vector [(51, da, 03, 64] = [Pl, P, P3, ]E[L]] — [Pl, Py, Ps, IE[L]] Table

11 and 12 provide more details on the optimal solution in Table 3.

sim

Likewise, Table 13 shows the full factorial test bed of the cost reduction between the optimal maintenance
policy of our model with the minimum cost rate Z(C*) and a non-opportunistic policy ® with the minimum
cost rate Z, which is similar to Table 5. Notice [Pl,Pg,Pg,]E[L], C’*] in the non-opportunistic policy is
always [0, 0,1,1, 1], because C' = H.

References

[1] Superhydrophobic surface structures in thermoplastic polymers by interference lithography and thermal
imprinting. Applied Surface Science, 255(23):9305 — 9310, Jul 2009.

202 = E[T%] — E[Ty)?, where E[Ty] and E[T] is the first and second moment respectively
3Non-opportunistic policy can be seen as a special case of our model, where C = H
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Table 11: A full factorial test bed including { Py, Py, P3,E[L]} from the simulation and the deviation [61, d2, 03, 64] from the
approximation; in the case of Random Coefficient Model (RCM) and Gamma Process (GP)

A

by RCM

Simulation
[Py, P2, Py, BIL]] .

Deviation
[61,82,03,64]

Simulation
[Py, P2, Py, EIL] .

by GP
Deviation
[61, 82,03, 64]

(Ch,01,A1,71)
(C1,01,1,72)
(C1,01,21,73)
(C1,01,2,71)
(C1,01,X2,72)
(C1,01, 2, 73)
(C1,01,A3,71)
(C1,01,A3,72)
(C1,01,23,73)
(C1,02,1,71)
(C1,02,1,72)
(C1,02,A1,73)
(C1,02,X2,71)
(C1,02,A2,72)
(C1,02,2,73)
(C1,02,23,71)
(C1,02,A3,72)
(C1,02,A3,73)
(C1,03,M1,71)
(C1,03,A1,72)
(C1,03,A1,73)
(C1,03,2,71)
(C1,03, A2, 72)
(C1,03,A2,73)
(C1,03,A3,71)
(C1,03, A3, 72)
(C1,03,23,73)
(C2,01,A1,71)
(C2,01,A1,72)
(C2,01,21,73)
(C2,01,X2,71)
(C2,01,X2,72)
(C2,01, 2, 73)
(C2,01,A3,71)
(C2,01,A3,72)
(C2,01,23,73)
(C2,02,A1,71)
(C2,02,A1,72)
(C2,02,A1,73)
(C2,02, X2, 71)
(C2,02,2,72)

{0.15,0.849,0,0.45}
{0.198,0.802,0, 0.498}
{0.342, 0.624, 0.034, 0.642}
{0.264,0.736,0,0.432}
{0.37,0.629,0,0.485}
{0.528,0.449, 0.023, 0.564}
{0.353,0.647,0,0.417}
{0.506,0.494, 0,0.469}
{0.635,0.35,0.014, 0.512}
{0.129,0.87,0,0.431}
{0.202,0.798,0,0.502}
{0.34,0.595,0.065, 0.641}
{0.234,0.766,0,0.417}
{0.372,0.628,0,0.487}
{0.525,0.434,0.04, 0.564}
{0.319,0.681,0,0.406}
{0.506,0.494, 0, 0.468}
{0.635,0.342, 0.023,0.512}
{0.121,0.879,0,0.42}
{0.207,0.792,0.001, 0.506 }
{0.339,0.564, 0.096, 0.639}
{0.218,0.782,0,0.409}
{0.376,0.623,0.001, 0.488}
{0.523,0.421, 0.056, 0.562}
{0.302,0.697,0,0.4}
{0.505,0.494, 0.001, 0.469}
{0.634,0.334,0.031,0.512}
{0.097,0.902,0,0.598}
{0.169, 0.825, 0.005, 0.671}
{0.253,0.676,0.07,0.754}
{0.185,0.815,0, 0.592}
{0.302, 0.692, 0.006, 0.651}
{0.461,0.456,0.083, 0.73}
{0.259,0.741,0,0.587}
{0.4,0.594,0.006, 0.634}
{0.605,0.325,0.071, 0.702}
{0.103,0.897,0,0.603}
{0.171,0.822,0.007,0.671}
{0.262,0.612,0.126,0.762}
{0.195,0.805,0,0.597}
{0.304, 0.688,0.008, 0.651}

{—0.008,0.007,0, —1.8%}
{0.015, —0.015,0, 3%}
{—0.02,-0.011,0.031, —3.1%}
{—0.023,0.023,0, —2.5%}
{0.038, —0.039, 0, 3.9%}
{—0.063,0.042,0.021, —5.7%}
{—0.039,0.039, 0, —3.4%}
{0.055, —0.055,0,4.1%}
{-0.102,0.089,0.013, —6.6%}
{=0.005,0.004, 0, —0.7%}
{0.013, —0.013,0,2.6%}
{—0.02,—0.005,0.025, —3%}
{-0.01,0.01,0, —1.2%}
{0.033,—0.033,0,3.7%}
{—0.064,0.047,0.016, —5.3%}
{~0.016,0.016,0, —1.5%}
{0.047,-0.047,0,3.2%}
{—0.099,0.09, 0.008, —6.4%}
{~0.001,0.001,0, —0.5%}
{0.014, —0.015, 0.001, 2.6%}
{-0.019,0.002, 0.016, —3%}
{~0.005,0.005,0, —0.7%}
{0.03, —0.031,0.001, 3.1%}
{—0.063,0.056,0.007, —5.5%}
{=0.005,0.004,0, —0.5%}
{0.038,—0.039,0.001, 2.8%}
{—0.096,0.094, 0.001, —6.1%}
{0.001, —0.002, 0,0.3%}
{0.003, —0.009,0.005, 0.7%}
{0.024, —0.091, 0.066, 3.3%}
{0.006, —0.006, 0, 0.5%}
{0.019, —0.025,0.006, 1.5%}
{0.06, —0.14, 0.08, 4%}
{0.009, —0.009, 0,0.7%}
{0.033,—0.039,0.006, 1.9%}
{0.074, —0.142,0.069, 3.6%}
{0.002, —0.002, 0,0.3%}
{0.005, —0.012, 0.007, 0.7%}
{0.023,—0.103,0.08, 3%}
{0.007, —0.007,0,0.5%}
{0.018,—0.026, 0.008, 1.2%}

{0.117,0.883,0, 0.43}
{0.192,0.808,0.001, 0.503}
{0.336,0.605, 0.059, 0.651}

{0.21,0.79,0,0.42}
{0.348,0.651,0.001, 0.486}
{0.526,0.441,0.033,0.573}

{0.301,0.699,0,0.411}

{0.478,0.522,0,0.472}
{0.642,0.34,0.017,0.525}
{0.115,0.884,0,0.437}
{0.205,0.785,0.01,0.527}
{0.329,0.579, 0.092, 0.648}
{0.215,0.784, 0, 0.428}
{0.36,0.634,0.005, 0.504}
{0.515,0.434, 0.051, 0.582}
{0.295,0.705, 0, 0.421}
{0.477,0.519,0.004, 0.483}
{0.628,0.343,0.028, 0.535}
{0.116,0.883,0.001, 0.45}
{0.211,0.767,0.022, 0.545}
{0.313,0.565,0.123,0.649}
{0.207,0.791,0.001, 0.44}
{0.374,0.609,0.017, 0.519}
{0.511,0.424, 0.065, 0.588}
{0.294,0.705,0.001, 0.435}
{0.485,0.504, 0.01,0.497}
{0.627,0.333,0.04,0.541}
{0.119,0.88,0,0.623}
{0.21,0.774,0.016,0.713}
{0.241,0.643,0.116, 0.754}

{0.214,0.786,0,0.614}

{0.357,0.632,0.011, 0.683}
{0.444,0.466,0.09, 0.727}
{0.291,0.708,0,0.608}
{0.46,0.531,0.009, 0.663}
{0.579,0.349,0.072,0.702}
{0.112,0.888,0.001, 0.632}
{0.208,0.758,0.034, 0.726}
{0.262,0.555,0.183,0.773}
{0.214,0.786, 0, 0.623}
{0.36,0.613,0.027,0.693}

{—0.001,0.001,0,0.2%}
{0.01,—0.008, 0, 1%}
{~0.014, —0.007,0.021, —1%}
{—0.008,0.008,0,0%}
{0.023,—0.023,0,1.2%}
{~0.047,0.038,0.009, —2.5%}
{—0.002,0.002,0, —0.1%}
{0.04,—0.04, —0.001, 1.5%}
{~0.075,0.072,0.002, —2.5%}
{0,0,-0.001, 0%}
{0.007, —0.003, —0.003, 0.6%}
{~0.006, —0.003, 0.009, —1%}
{0.003, —0.003, —0.001, —0.1%}
{0.012, —0.008, —0.005, 0.7%}
{—0.035,0.039, —0.003, —1.6%}
{0,0.001, —0.001, 0%}
{0.014,-0.011, —0.003, 0.6%}
{—0.062,0.069, —0.008, —1.8%}
{0.001,0.002, —0.003, 0%}
{0.003,0.007, —0.009, 0.2%}
{=0.012,0.003,0.009, —1%}
{—0.006,0.008, —0.003, —0.1%}
{0.011, —0.004, —0.007, 0.3%}
{—0.022,0.034, —0.012, —1.3%}
{~0.003,0.005, —0.002, 0.1%}
{0.006,0.001, —0.008,0.2%}
{—0.043,0.056, —0.013, —1.7%}
{0.004, —0.004, —0.001, 0%}
{0.009,0.057, —0.066, 0.4%}
{0.02, —0.074, 0.054, 2.5%}
{0.002, —0.001, —0.001, 0%}
{0.011,0.035, —0.046,0.2%}
{0.059, —0.106,0.047, 2.7%}
{—0.004,0.004, —0.001, 0.2%}
{0.008,0.023, —0.031,0.4%}
{0.071, —0.113,0.042, 2.5%}
{=0.003,0.013, —0.009, 0.1%}
{0.01,0.048, —0.058, 1.2%}
{0.027, —0.07, 0.043, 2.2%}
{0.002,0.007, —0.008,0.1%}
{0.016,0.025, —0.041, 0.5%}
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Table 12: (Continued) a full factorial test bed including {P1, Pz, Ps, E[L]} from the simulation and the deviation [81, d2, 83, 64]
from the approximation; in the case of Random Coefficient Model (RCM) and Gamma Process (GP)

A by RCM by GP

Simulation
[P17P27 P37E[L]] im

Deviation

[61,62,03,04]

Simulation
[P, P, P3,E[L]] .

Deviation

[61,062,63,04]

(C2,02,2,73)
(C2,02,A3,71)
(C2,02,A3,72)
(C2,02,23,73)
(0270'3,)\1,7'1)
(C2,03,A1,72)
(C2,03,1,73)
(C2,03,A2,71)
(C2,03,2,72)
(C2,03, X2, 73)
(C2,03,A3,71)
(C2,03,A3,72)
(C2,03,A3,73)
(C3,01,1,71)
(C3,01,A1,72)
(C3,01,A1,73)
(C3,01,A2,71)
(Cs,01,A2,72)
(Cs,01,X2,73)
(C3,01,A3,71)
(C3,01, A3, 72)
(Cs,01,A3,73)
(C3,02,A1,71)
(C3,02,1,72)
(Cs,02,A1,73)
(C3,02,2,71)
(C3,02, A2, T2)
(Cs,02,2,73)
(C3,02,A3,71)
(C3,02,A3,72)
(C3,02,)3,73)
(C3,03,A1,71)
(C3,03,A1,72)
(C3,03,1,73)
(Cs,03,A2,71)
(C3,03, A2, 72)
(C3,03,\2,73)
(C3,03,3,71)
(C3,03,A3,72)
(C3,03,3,T3)

{0.463,0.421,0.115,0.731}
{0.271,0.729,0, 0.59}
{0.409,0.583,0.008,0.636}
{0.598,0.313,0.088,0.7}
{0.105,0.894, 0, 0.606}
{0.172,0.82,0.009, 0.672}
{0.265,0.562,0.173,0.766}
{0.198,0.801,0,0.6}
{0.306,0.683,0.011, 0.653}
{0.459,0.401,0.141, 0.732}
{0.283,0.716,0,0.594}
{0.413,0.576,0.01,0.639}
{0.593,0.305,0.101, 0.698}
{0.111, 0.884, 0.005, 0.812}
{0.201, 0.402, 0.397, 0.9}
{0.173,0.561, 0.266, 0.872}
{0.211,0.785,0.004,0.806}
{0.347,0.365, 0.288, 0.874}
{0.316,0.474,0.21,0.858}
{0.295,0.701,0.004,0.799}
{0.459,0.33,0.21,0.854}
{0.432,0.403,0.165, 0.843}
{0.121,0.848,0.031, 0.82}
{0.19,0.439,0.371,0.891}
{0.186,0.495,0.319, 0.886}
{0.219,0.758,0.023,0.811}
{0.336,0.392, 0.273,0.868}
{0.335,0.409, 0.256, 0.868}
{0.307,0.675,0.018, 0.802}
{0.448,0.35,0.202, 0.849}
{0.457,0.342, 0.201, 0.853}
{0.12,0.837,0.044, 0.819}
{0.185,0.463, 0.353, 0.886}
{0.191, 0.445, 0.364, 0.892}
{0.22,0.748,0.033,0.811}
{0.328,0.408, 0.265, 0.864}
{0.343,0.368, 0.289,0.872}
{0.306,0.67,0.025,0.801}
{0.439,0.361,0.2,0.845}
{0.463,0.307,0.23,0.855}

{0.048, —0.132,0.083, 3.3%}
{0.008, —0.008, 0,0.3%}
{0.034, —0.042,0.008, 1.7%}
{0.053, —0.12, 0.066, 2.6%}
{0,-0.001,0,0.2%}
{0.005,—0.013,0.009, 0.7%}
{0.02, —0.101, 0.081, 2.7%}
{0.002, —0.003,0,0.3%}
{0.017,—0.028,0.011, 1.2%}
{0.036, —0.111,0.076, 2.9%}
{0.009, —0.01,0,0.5%}
{0.032,-0.043,0.01, 1.9%}
{0.04, —0.096, 0.055, 2%}
{~0.001,0,0.001,0%}
{—0.019,0.09, —0.07, —2.2%}
{0.024,—0.124,0.099, 2.6%}
{0.003, —0.003,0.001,0.2%}

{-0.043,0.111, —0.069, —2.4%}

{0.051,—0.144,0.093,2.9%}
{0.004, —0.005, 0.001,0.3%}

{—0.061,0.123, —0.063, —2.2%}

{0.073,—0.156,0.083, 2.7%}
{0,0,—0.001, —0.1%}

{-0.02,0.113, —0.093, —2.1%}

{0.018,—-0.123,0.104,2%}

{—0.004,0.007, —0.003, —0.1%}
{-0.036,0.121, —0.084, —2.1%}

{0.037,—-0.138,0.101,2.2%}

{—0.003,0.006, —0.002, —0.1%}
{~0.049,0.122, —0.073, —2%}

{0.057, —0.145,0.088, 2.3%}
{0,0.003, —0.002, —0.1%}

{~0.014,0.099, —0.084, —1.5%}

{0.015,—-0.117,0.102,1.8%}
{-0.001, 0.006, —0.004, 0%}

{—0.025,0.098, —0.072, —1.5%}

{0.031,—-0.126,0.095,1.8%}

{-0.002,0.007, —0.005, —0.2%}
{—0.034,0.094, —0.06, —1.5%}

{0.044, —0.13,0.086, 1.8%}

{0.44,0.426,0.134,0.738}
{0.302,0.697,0.001,0.615}
{0.468,0.512,0.02, 0.673}
{0.575,0.337,0.089, 0.708}
{0.118,0.88,0.002, 0.64}
{0.209,0.734,0.057, 0.734}
{0.263,0.514, 0.224, 0.784}
{0.21,0.789,0.001, 0.632}
{0.355,0.603,0.042, 0.701}
{0.442,0.407,0.151,0.75}
{0.291, 0.708,0.001, 0.625}
{0.478,0.491,0.031, 0.686}
{0.563,0.334,0.102,0.715}
{0.117,0.882, 0.001, 0.82}
{0.184,0.47,0.346, 0.898}
{0.191,0.43,0.38,0.898}
{0.207,0.791,0.002, 0.809}
{0.342,0.406,0.252, 0.875}
{0.349,0.373,0.278,0.875}
{0.297,0.702,0.001, 0.804}
{0.458,0.358,0.184, 0.855}
{0.465,0.316,0.218, 0.863}
{0.116,0.874,0.01, 0.824}
{0.186,0.491,0.323,0.895}
{0.199,0.374, 0.428,0.906}
{0.211,0.78,0.01,0.813}
{0.329,0.434,0.237,0.872}
{0.36,0.315,0.325,0.887}
{0.292,0.701,0.006,0.81}
{0.445,0.371,0.183,0.855}
{0.466,0.286,0.247, 0.868}
{0.112,0.864,0.024, 0.827}
{0.175,0.499, 0.326,0.891}
{0.201,0.341,0.459, 0.916}
{0.209, 0.771,0.021, 0.822}
{0.313,0.434,0.253,0.872}
{0.343,0.304, 0.353, 0.892}
{0.292,0.692,0.016,0.815}
{0.424,0.382,0.194, 0.859}
{0.475,0.262, 0.263, 0.869}

{0.037,-0.072,0.035, 2%}
£0.006, 0, —0.006, 0%}
{0.014,0.017, —0.031,0.5%}
{0.051, —0.067,0.018,1.7%}
{0.004,0.016, —0.02,0.1%}
{0.012,0.039, —0.051, 1.2%}
{0.019, —0.054, 0.037, 1.5%}
{=0.001,0.019, —0.018,0.2%}
{0.012,0.03, —0.041,0.5%}
{0.027, —0.042,0.015, 1.8%}
{—0.003,0.018, —0.016,0.2%}
{0.024,0.01, —0.034, 1%}
£0.026, —0.029,0.001, 1.1%}
{0.004, 0.044, —0.048, 0.2%}

{-0.012, —0.006,0.018, —0.3%}

{0.02, —0.081,0.063, 2.2%}

{—0.003,0.042, —0.039, —0.1%}
{—0.004,0.007, —0.003, —0.3%}

{0.046, —0.084,0.038,1.9%}
{0.005, 0.029, —0.034, 0.2%}
{~0.005,0.02, —0.015, —0.4%}
{0.059, —0.095,0.035, 2.3%}
{0.005, 0.066, —0.071, 0.4%}
{0.006, —0.024,0.018,0.5%}
{0.01,—0.061, 0.052,0.7%}
{0.006, 0.057, —0.061,0.1%}
{0.01, —0.004, —0.006, 0.3%}
{0.028, —0.063,0.035,1.1%}
{0.005, 0.05, —0.057,0.5%}
{0.018, —0.006, —0.013, 0.3%}
{0.026, —0.046,0.02, 1.1%}
{0.003,0.076, —0.079, 0.3%}
{0,—-0.029, 0.029,0.1%}
{0.004, —0.067,0.064, 0.4%}
{0.007,0.065, —0.071, 0.6%}
{0.004, —0.014,0.01,0.2%}
{0,—0.043,0.043,0.6%}
{0.01,0.056, —0.066,0.6%}
{0.01,—0.004, —0.006,0.6%}
{0.022, —0.038,0.015,0.3%}
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Table 13: A full factorial test bed of the optimal maintenance policy from the approximation including {P1, P2, P3, E[L]}; in
the case of Random Coefficient Model (RCM) and Gamma Process (GP)

Q by RCM by GP
[Py, Py, P3, EB[L], C*] [Py, Py, P3, EB[L], C*]
( ) | {0.105,0.890,0.004,0.855,75%}  {0.108,0.763,0.127,0.880, 76%}
( ) | {0.188,0.309,0.501,0.936,74%}  {0.197,0.479,0.323,0.898, 69%}
( ) | {0.153,0.726,0.119,0.827,67%}  {0.175,0.590,0.234, 0.839, 65%}
( ) | {0.195,0.800,0.003,0.847,75%}  {0.200,0.669,0.130, 0.884, 78%}
( ) | {0.318,0.262,0.419,0.926,76%}  {0.312,0.375,0.311,0.907, 74%}
( ) | {0.262,0.600,0.136,0.842,71%}  {0.301,0.443,0.254, 0.863, 70%}
( ) | {0.272,0.703,0.024,0.853,76%}  {0.276,0.590, 0.132, 0.888, 79%}
( ) | {0.411,0.229,0.359,0.921,78%}  {0.396,0.315,0.288,0.910, 77%}
( ) | {0.349,0.510,0.139,0.853,73%}  {0.397,0.351,0.251,0.877, 74%}
( ) | {0.113,0.835,0.051,0.863,75%}  {0.104,0.715,0.180, 0.895, 78%}
( ) | {0.224,0.481,0.293,0.835,61%}  {0.176,0.500, 0.322, 0.898, 71%}
( ) | {0.172,0.642,0.185,0.854,68%}  {0.192,0.451,0.356,0.890, 68%}
( ) | {0.210,0.746,0.043,0.855,75%}  {0.190,0.628,0.181,0.899, 79%}
(o2, A2, 72) | {0.322,0.248,0.429,0.919,75%}  {0.294,0.389,0.315,0.908, 75%}
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )

{0.289,0.522,0.187,0.866,72%}  {0.317,0.336,0.346,0.903, 73%}
{0.281,0.628,0.089,0.880,78%}  {0.263,0.555,0.180, 0.904, 81%}
{0.412,0.212,0.374,0.917, 77%}  {0.379,0.319,0.300, 0.913, 78%}
{0.377,0.441,0.180,0.874, 74%}  {0.405,0.270, 0.324, 0.910, 76%}
{0.115,0.795,0.088,0.865, 74%}  {0.100,0.680,0.219, 0.912, 80%}
{0.208,0.492, 0.298,0.840,63%}  {0.166,0.486,0.347,0.915, 73%}
{0.179,0.575,0.245,0.868,68%}  {0.191,0.388,0.419, 0.923, 71%}
{0.214,0.711,0.074,0.857, 75%}  {0.183,0.598,0.218,0.916,81%}
{0.352,0.307,0.339,0.877,70%}  {0.279,0.382, 0.338, 0.923, 77%}
{0.298,0.466,0.234,0.877, 72%}  {0.311,0.292, 0.395,0.931, 76%}
{0.284,0.588,0.127,0.887,79%}  {0.253,0.530,0.216, 0.920, 82%}
{0.425,0.220,0.354,0.904, 76%}  {0.361,0.314, 0.323, 0.928, 79%}
{0.387,0.394,0.218,0.883,75%}  {0.396,0.237, 0.366, 0.934, 79%}
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