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Abstract

We develop a partially observable Markov decision process (POMDP) model to incorporate

population heterogeneity when scheduling replacements for a deteriorating system. The

single-component system deteriorates over a finite set of condition states according to a

Markov chain. The population of spare components that is available for replacements is

composed of multiple component types that cannot be distinguished by their exterior ap-

pearance, but deteriorate according to different transition matrices. This situation arises,

for example, if new components and repaired components are mixed into the population

without proper records of their repair history. We provide a set of conditions for which

we characterize the structure of the optimal policy that minimizes the total expected dis-

counted operating and replacement cost over an infinite horizon. By a numerical experiment,

we benchmark the optimal policy against a heuristic policy that neglects population hetero-

geneity.

Keywords: Replacement optimization, Population heterogeneity, Partially observable Markov

decision process, Optimal policy structure

1 Introduction

Capital goods, such as lithography machines in semiconductor fabrication plants, baggage han-

dling systems at airports, or wind turbines in wind farms, are essential for the primary pro-

cesses of their users. Deterioration of a capital good can lower the efficiency of its operations

or cause a quality loss in the products or services it delivers, resulting in increased operating
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costs. It can therefore be advantageous to replace deteriorated components of a capital good

by non-deteriorated spare components. Therefore, it can be advantageous to replace deterio-

rated components of a capital good by non-deteriorated spare components. Often, components

of capital goods are inspected periodically to obtain observations of their deterioration level,

which are then used to make replacement decisions. Such a maintenance strategy falls under

the umbrella of condition-based maintenance (CBM).

A common assumption in the literature on CBM models is that after each replacement the

newly installed component is subject to the same stochastic deterioration process, i.e., the com-

ponents form a homogeneous population. It is noticeable that population heterogeneity is taken

into consideration in closely related research areas. For example, in degradation modeling, Yuan

and Pandey (2009) present a case study on carbon steel pipes in a nuclear power plant. They

demonstrate how the accuracy in predictions of the future degradation path improves if ran-

dom parameters are included in the degradation model to account for population heterogeneity.

There exist several causes by which the population of components can be heterogeneous. One

cause is a difference in deterioration behavior between newly purchased spare components and

spare components that have been returned after a repair. Other causes include variations in

the production process and faults during the installation process. If these components cannot

be distinguished by their exterior appearance or historical records, the installed components

should be modeled as being randomly selected from a heterogeneous population. Despite these

facts, little work has been done on CBM models for components that form a heterogeneous

population. In this paper, we formulate and analyze a model for scheduling replacements for a

single-component, Markovian deteriorating system if the population of spare components con-

sists of multiple component types that cannot be distinguished by their exterior appearance.

In the literature on CBM models, a large number of works is devoted to maintenance opti-

mization models for single-component systems that deteriorate over a finite set of deterioration

levels (condition states) according to a Markov chain. One of the earliest works is due to Derman

(1963), who studies the problem of scheduling replacements to minimize long-run average cost

when corrective replacement of the installed component in the highest deterioration level (i.e.,

failure) is more costly than preventive replacement in other deterioration levels. He formulates

the problem using a Markov decision process (MDP) model and provides sufficient conditions

on the cost parameters and the transition matrix for the optimal policy to have a control-limit

structure. Numerous variations and extensions to this classical problem are explored in later
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research. For example, Kawai et al. (2002) also include operating cost in the model. The model

formulation in Bobos and Protonotarios (1978) allows for multiple maintenance activities, e.g.,

replacement and multiple types of repair. Kurt and Kharoufeh (2010) introduce a limit on the

number of repairs. Semi-Markovian deterioration (Kao, 1973) and age-dependent deterioration

(Benyamini and Yechiali, 1999) have been considered as generalizations of the deterioration

behavior. An excellent review of these variations and extensions is provided in Çekyay and

Özekici (2011). The majority of the works focus, just as Derman (1963), on identifying in-

tuitively meaningful conditions for the optimal policy to possess a certain structure—most

commonly a control-limit structure. The knowledge that the optimal policy has a certain struc-

ture offers managerial insight, and may enable efficient computation. All works assume that

each installed component deteriorates according to the same transition matrix, or, equivalently,

that the population of components is homogeneous. By contrast, we consider a heterogeneous

population of components that consists of multiple component types, each of which is associated

with a unique transition matrix.

We formulate the problem of scheduling replacements for a single-component system to

minimize the total expected discounted operating and replacement cost under this assumption

as a partially observable Markov decision process (POMDP) model and we characterize the

structure of the optimal policy.

In contrast, we consider the problem of scheduling replacements for a single-component sys-

tem to minimize the total expected discounted operating and replacement cost if the population

of spare components consists of multiple component types that cannot be distinguished by their

exterior appearance, but deteriorate according to different transition matrices. We formulate

the problem using a partially observable Markov decision process (POMDP) model and we

characterize the structure of the optimal policy.

In research areas that are related to maintenance, a number of efforts have been made to take

population heterogeneity into consideration. In reliability analysis, population heterogeneity is

modeled by using mixture models for the lifetime distribution of components (Follmann and

Goldberg, 1988). For components with such a lifetime distribution, Cha and Finkelstein study

optimal burn-in procedures (Cha and Finkelstein, 2010) and investigate the effect of time-

based, imperfect, preventive maintenance (Cha and Finkelstein, 2012). In degradation modeling,

population heterogeneity is often referred to as unit-to-unit variation. Typically, it is modeled

by including one or more random parameters in the degradation model that differ over the
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components in a population. Examples are random drift and diffusion parameters in a Wiener

degradation process (Peng and Tseng, 2009; Wang, 2010; Bian and Gebraeel, 2012) and random

scale parameters in a gamma degradation process (Lawless and Crowder, 2004; Tsai et al., 2012).

Most of these works focus on deriving reliability indices such as the failure time distribution

or the mean time to failure, assuming that failure is defined in terms of a specified level of

degradation. Also, for components with such a degradation process, Xiang et al. study optimal

burn-in procedures (Xiang et al., 2011) and optimal joint burn-in and age-based replacement

policies (Xiang et al., 2013). Optimal joint burn-in and age-based replacement policies are

investigated by Ye et al. (2012) as well.

Population heterogeneity is taken into account in CBM models by Crowder and Lawless

(2007) and Elwany et al. (2011), but neither of these works deals with the problem of schedul-

ing replacements to a system that deteriorates according to a Markov chain. Crowder and

Lawless (2007) consider a fairly simple maintenance scheme, in which only one inspection can

be performed to observe the component’s deterioration level before a preventive replacement

is scheduled, for components with a gamma process or Wiener process degradation model that

includes random parameters. Elwany et al. (2011) consider the problem of scheduling replace-

ments for a system that deteriorates according to a Wiener process degradation model with

random parameters. For this specific degradation process, they prove a control-limit structure

in the optimal policy with respect to the deterioration level and the age of an installed com-

ponent. These works do not explicitly examine the importance of accounting for population

heterogeneity in the CBM models that they consider.

Elwany et al. (2011) consider the problem of scheduling replacements for components with a

geometric Brownian motion degradation process, in which population heterogeneity is modelled

by a prior bivariate normal distribution on the intercept and drift parameters. In this model, the

posterior distribution on a component’s intercept and drift parameters can be fully determined

from the latest observed degradation signal and the age of the component.

Following this approach, Elwany et al. (2011) prove a control-limit structure in the optimal

policy with respect to the degradation signal and the age of the component.

Our main contributions are summarized as follows. We extend the literature on a classical

CBM problem by considering a heterogeneous population of spare components which is com-

posed of multiple component types that cannot be distinguished by their exterior appearance

but deteriorate according to different transition matrices. We formulate the sequential decision
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process of scheduling replacements as a POMDP model and characterize the structure of the

optimal policy. We introduce a new stochastic order to formulate the structural result. Also, we

examine in a numerical experiment the importance of accounting for population heterogeneity

in the replacement model. We present an adapted version of Hansen’s policy iteration algorithm

(Hansen, 1998) that is suitable for our model and use it as a solution technique in our numerical

study.

This paper is organized as follows. In Section 2, we introduce the POMDP model for

the problem of scheduling replacements for a Markovian deteriorating system with population

heterogeneity. We derive structural results for the POMDP model in Section 3. Next, in

Section 4 a numerical study is presented. We conclude and provide directions for future research

are in Section 5.

2 Model Formulation

We consider a single-component system that is operated over an infinite horizon, where time is

divided into periods of unit length. The deterioration level of the system evolves as a discrete-

time Markov chain on a finite set of deterioration levels, D = {0, 1, . . . , N}. Level 0 corresponds

to the best condition and level N indicates that the installed component has failed. We assume

that the installed component stems from a heterogeneous population that comprises components

of multiple component types, represented by the set T = {1, 2, . . . ,M}. The type of the

installed component determines the transition probability matrix of the Markov chain that

describes the deterioration process on D: each component type t ∈ T is associated with a

unique transition probability matrix Pt with elements ptij , i, j ∈ D. At any discrete time epoch,

the installed component may be either kept operating or replaced by a spare component with

deterioration level 0 from the heterogeneous population. The spare components are assumed to

be indistinguishable with respect to their component type; therefore, upon a replacement, the

type of the newly installed component is random. The probability of it being t ∈ T equals the

proportion ρt that components of component type t constitute in the population.

Two types of costs are incurred, operating costs and replacement costs. The per-period

operating cost for a system in deterioration level i ∈ D is given by Li ≥ 0, independent of

the type of the installed component. This cost depends on the deterioration level because the

deterioration level may have an impact on the quality loss in the products or services that

the system delivers or influence the system’s energy consumption. The cost of replacing the
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installed component in deterioration level i ∈ D is given by Ci ≥ 0. Because the salvage

value for a component may vary in the amount of deterioration, again, this cost depends on

the deterioration level. After a replacement, which we assume is instantaneous, the system is

immediately put into operation with the newly installed component. This means that the total

cost for a period when replacing the installed component in deterioration level i ∈ D is Ci +L0.

Our aim is to find the replacement policy that minimizes the total expected discounted costs

of system operation and replacements over an infinite horizon, where costs are discounted by a

factor λ ∈ [0, 1).

We model this replacement problem using a POMDP model. The system state is given by

(t, i), where t ∈ T is the type of the installed component and i ∈ D is the deterioration level;

accordingly, S = T ×D is the set of system states. We assume that, at every time epoch, a perfect

observation is made of the deterioration level but the type of the installed component cannot be

directly observed. Partial information on the type of the installed component can be inferred

from the history of deterioration levels that have been observed since the last replacement,

because the component type determines the transition probability matrix on D. As such, the

system state is said to be partially observable (as opposed to completely observable). A policy

can prescribe actions based on the observed deterioration level and the partial information with

respect to the type of the installed component. The set of available actions is A = {CO,RE},

where CO denotes “continue operating” and RE denotes “replace the installed component”.

A general result for POMDPs (see, e.g., Monahan, 1982, and references therein) is that,

at every time epoch, the information available for decision making can be summarized by

a probability distribution over the set of system states, called an information state, which

represents a belief about the system state. Here, we can simplify the definition of information

states based on the fact that one state variable, namely, the deterioration level, is completely

observable—a setting sometimes referred to as mixed observability (Araya-López et al., 2010;

Ong et al., 2010). This allows us to define information states as a combination of a (univariate)

probability distribution over the set of component types and a single deterioration level. Thus,

we define Ω = Π×D as the information state space, where

Π = {π ∈ RM :
∑M

t=1 πt = 1, πt ≥ 0 for all t ∈ T }

is the set of probability mass functions on T . In information state (π, i) ∈ Ω, π is the belief

about the type of the installed component and i is the observed deterioration level.

Because the information state is a sufficient statistic of the history, a POMDP can be

6



expressed as an MDP on the information state space. Suppose (π, i) ∈ Ω is the current in-

formation state. If action CO is taken, it incurs an immediate cost Li and induces a prob-

ability σ(j;π, i) =
∑M

t=1 πtp
t
ij that the system is in deterioration level j at the next time

epoch, for all j ∈ D. The set of all deterioration levels that can be reached from (π, i) is

O(π, i) = {j ∈ D : σ(j;π, i) > 0}. Having observed a deterioration level j ∈ O(π, i), the belief π

is updated to ψ(π, i, j) using Bayes’ rule. The updated probability that the type of the installed

component is t is obtained as

ψt(π, i, j) =
πtp

t
ij

σ(j;π, i)
,

for all t ∈ T . This results in a new information state (ψ(π, i, j), j). Otherwise, if action RE

is taken, it incurs an immediate cost Ci and then continues the process from information state

(πnew, 0), where πnewt = ρt for all t ∈ T .

The optimal value function V : Ω → R, where V (π, i) denotes the minimum total expected

discounted cost for initial information state (π, i) ∈ Ω, satisfies the optimality equations

V (π, i) = min

{
Li + λ

∑
j∈O(π,i)

σ(j;π, i)V (ψ(π, i, j), j),

Ci + L0 + λ
∑

j∈O(πnew,0)

σ(j;πnew, 0)V (ψ(πnew, 0, j), j)

}

for all (π, i) ∈ Ω (Monahan, 1982). The first (second) term in the minimization represents the

total expected discounted cost achieved by taking action CO (RE) in (π, i) and following the

optimal policy thereafter.

3 Structural Results

In this section, we characterize the structure of the optimal policy under a set of sufficient

conditions on the cost parameters and the transition probability matrices. The derivation is

based on certain monotonicity properties of the optimal value function. In Section 3.1, we first

provide preliminary results that are needed to establish these monotonicity properties. We then

present our main structural results in Section 3.2. The proofs are given in the Appendix.

3.1 Preliminary Results

To formulate any monotonicity results, a partial order has to be defined on the information

states. Whereas the deterioration levels in D are naturally ordered, it is not clear which stochas-

tic order should be imposed on the probability distributions in Π. Intuitively, this stochastic
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order must reflect how strong a component is believed to be. This requires that the strength of

component types can be compared, such that one component type is either stronger or weaker

than another component type. Therefore, we will need, as a condition for our structural results,

that the component types can be totally ordered by their transition probability matrices. Our

first task is now to determine suitable orders on the transition probability matrices and the

information states.

To begin, we provide definitions and properties of stochastic orders that will be helpful in

our analysis. The first two orders are commonly used for comparing probability distributions

(equivalently, the respective random variables), and their properties have been extensively stud-

ied in the literature (see, e.g., Shaked and Shanthikumar, 2007). Note that the definitions we

provide assume discrete probability distributions on some totally ordered finite support X . For

more general definitions, we refer to Shaked and Shanthikumar (2007).

Definition 1. Let g and h be probability mass functions. Then g is smaller than h in the usual

stochastic order, denoted by g �st h, if and only if
∑

x∈X :x≥y gx ≤
∑

x∈X :x≥y hx for all y ∈ X .

Definition 2. Let g and h be probability mass functions. Then g is smaller than h in the

likelihood ratio order, denoted by g �lr h, if and only if gyhx ≤ gxhy for all x, y ∈ X such that

x ≤ y.

The same concepts can be used to define a partial order on transition probability matrices.

For this, note that each row of a transition probability matrix is a probability mass function

for the next state given a current state; hence, stochastic orders can be employed in a row-wise

comparison of such matrices. The following definitions assume transition probability matrices

on some totally ordered finite state space X . We use p(x) to denote the row of a transition

probability matrix P that corresponds to state x ∈ X .

Definition 3. Let P and Q be transition probability matrices. Then P is smaller than Q in

the usual stochastic order, denoted by P �st Q, if and only if p(x) �st q(x) for all x ∈ X .

Definition 4. Let P and Q be transition probability matrices. Then P is smaller than Q in

the likelihood ratio order, denoted by P �lr Q, if and only if p(x) �lr q(x) for all x ∈ X .

The following proposition describes the relationship between these orders, which is that the

likelihood ratio order implies the usual stochastic order (for part (i), see Theorem 1.C.1 in

Shaked and Shanthikumar, 2007, and part (ii) is a direct consequence of part (i)).
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Proposition 1.

(i) Let g and h be two probability mass functions. If g �lr h, then g �st h.

(ii) Let P and Q be two transition probability matrices. If P �lr Q, then P �st Q.

In addition, we propose a third stochastic order. As will become clear later, having this

stochastic order along with the usual stochastic order and the likelihood ratio order enables us

to state our structural results under more general conditions in order to widen their applicability.

Definition 5. Let g and h be probability mass functions. Then g is smaller than h in the

likelihood ratio order on the left and the usual stochastic order on the very right, denoted by

g �lrst h, if and only if gyhx ≤ gxhy for all x, y ∈ X such that x ≤ y < u, and gu ≤ hu, where

u = maxX .

Definition 6. Let P and Q be transition probability matrices. Then P is smaller than Q in

the likelihood ratio order on the left and the usual stochastic order on the very right, denoted

by P �lrst Q, if and only if p(x) �lrst q(x) for all x ∈ X .

To gain intuition for the new stochastic order, we examine how it relates to the previous

two stochastic orders, thereby complementing the relationship given in Proposition 1. In the

following lemma, it is shown that the �lr order implies the �lrst order and the �lrst order

implies the �st order.

Lemma 1.

(i) Let g and h be two probability mass functions. If g �lr h, then g �lrst h.

(ii) Let g and h be two probability mass functions. If g �lrst h, then g �st h.

(iii) Let P and Q be two transition probability matrices. If P �lr Q, then P �lrst Q.

(iv) Let P and Q be two transition probability matrices. If P �lrst Q, then P �st Q.

Any of the three orders on the transition probability matrices could be applied in our

replacement problem to compare the strength of component types. If Ps and Pt, s, t ∈ T , can

be ordered by Ps �lr Pt, Ps �lrst Pt, or Ps �st Pt, component type t may be regarded as weaker

than component type s: all three orders imply that, for any current deterioration level, the

(random) next deterioration level is larger for component type t than for component type s in

a certain stochastic sense. The following example highlights the different comparisons that can

be made with these orders for an important class of transition probability matrices.
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Example 1. Many engineering systems are subject to both gradual deterioration and random

shocks that cause sudden failures (Lam and Yeh, 1994). In a continuous-time setting, researchers

have modeled such deterioration processes with a continuous-time Markov chain in which, from

any deterioration level, transitions can be made to the next deterioration level or to the failed

state (Ohnishi et al., 1986; Lam and Yeh, 1994; Chiang and Yuan, 2001). In discrete time, if the

deterioration level is monitored at sufficiently small time intervals and gradual deterioration is a

process with stationary increments, such deterioration behavior can be captured by a transition

probability matrix of the form

P =



1− α− β α 0 . . . 0 β

0
. . .

. . .
. . .

...
...

...
. . . 1− α− β α 0 β

...
. . . 1− α− β α β

...
. . . 1− α− β α+ β

0 . . . . . . . . . 0 1


, (1)

parameterized by (α, β). Parameters α and β represent the probability of experiencing a one-

level increase in deterioration and the probability of experiencing a sudden failure, respectively.

Now consider a population with four component types, T = {1, 2, 3, 4}, whose associated

transition probability matrices onD are of the form (1). The parameters of P1, P2, P3, and P4 are

given by: (α1, β1) = (0.02, 0.02), (α2, β2) = (0.05, 0.02), (α3, β3) = (0.12, 0.02), and (α4, β4) =

(0.25, 0.02). Compare these component types with another component type associated with a

transition probability matrix of the form (1) on D, P̂ , with parameters (α̂, β̂) = (0.10, 0.05).

This illustrates all possible levels of comparability:

• P1 �lrst P̂ and P1 �st P̂ , but P1 is incomparable to P̂ under the �lr order;

• P2 �lr P̂ , P2 �lrst P̂ , and P2 �st P̂ ;

• P3 �st P̂ , but P3 is incomparable to P̂ under the other orders;

• P4 is incomparable to P̂ .

Note that the likelihood ratio order only supports the conclusion that component type 2, not

component type 1, is stronger than the alternative component type, even though component

type 1 seems stronger than component type 2 as it is less susceptible to gradual deterioration.

The reason is that, under the likelihood ratio order, a decrease in α needs to be accompanied

by a relatively larger decrease in β to result in an improvement in strength. ♦
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Since T is finite and totally ordered with the natural order, any of the three stochastic orders

could be applied to compare beliefs about the type of the installed component. However, the

stochastic orders have a meaningful interpretation only if the natural order on T corresponds to

a ranking of component types according to strength: with component type 1 being the strongest

and component type M being the weakest, a larger belief then implies that the component is

believed to be weaker. This is also why, to obtain monotonicity in the belief about the type

of the installed component, we will need to impose a condition like P1 �lr P2 �lr . . . �lr PM ,

P1 �lrst P2 �lrst . . . �lrst PM , or P1 �st P2 �st . . . �st PM .

Results under the condition based on the �st order are more general than results under the

condition based on the ≺lrst order, and results based on the the �lrst order are more general

than results under the condition based on the ≺lr order (see Lemma 1)

Example 1 (Continued). Compare the four component types in T among each other. Given

that βs = βt for s, t ∈ T , it can be shown that Ps �lr Pt if and only if αs = αt and Ps �lrst Pt if

and only if αs ≤ αt. Hence, no two component types in T can be compared under the �lr order,

while there is a total ordering P1 �lrst P2 �lrst P3 �lrst P4 under the �lrst order.

This reasoning generalizes to all settings where the transition probability matrices are of

the form (1) and the component type has no influence on the occurrence of fatal shocks. In

these settings, structural results that require P1 �lr P2 �lr . . . �lr PM do not apply but, upon

a suitable labeling of the component types, structural results that require P1 �lrst P2 �lrst

. . . �lrst PM do. ♦

In Lemma 2, we show that the usual stochastic order is sufficient to conclude that, upon

taking action CO, a belief that the type of the installed component is stronger results in a

stochastically larger deterioration level at the next time epoch.

Lemma 2. Let P1 �st P2 �st . . . �st PM . If π, π̂ ∈ Π such that π �st π̂, then σ(· ;π, i) �st

σ(· ; π̂, i) for all i ∈ D.

Another important property in proving monotonicity properties of the value function is that

if the component is believed to be stronger, it still is believed to be stronger at the next time

epoch if the same or a larger deterioration level is observed. This result, presented in Lemma 3,

requires more restrictive conditions on the transition probability matrices and beliefs about the

type of the installed component.
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Lemma 3. Let P1 �lrst P2 �lrst . . . �lrst PM . If π, π̂ ∈ Π such that π �lr π̂, then ψ(π, i, j) �lr

ψ(π̂, i, l) for all i ∈ D and j ∈ O(π, i), l ∈ O(π̂, i) such that j ≤ l < N .

Lemma 3 leaves the case in which the next deterioration level is N out of consideration. In

that case, the component fails and one would expect it to be replaced regardless of its component

type so that the updated belief about the type of the installed component is of no importance.

SECOND PART OF THIS SECTION

It still needs to be verified that a larger deterioration level results in a higher future deteri-

oration level and does not allow less information to be gathered about the type of the installed

component.

We can establish this result for a rich class of transition probability matrices.

Definition 7. Let t ∈ T . Transition probability matrix Pt is truncated Toeplitz if and only if

there exists a sequence {ptl}l∈D such that

ptij =


ptj−i, i ≤ j < N,∑N

l=N−i p
t
l , i ≤ j = N,

0, otherwise.

Lemma 4. Let Pt be truncated Toeplitz for all t ∈ T . If π ∈ Π and i, k ∈ D such that i ≤ k,

then

(i)
∑j

l=0 σ(l;π, i) =
∑j+(k−i)

l=0 σ(l;π, k) for all j ∈ D such that j < N − (k − i);

(ii) ψ(π, i, j) = ψ(π, k, j + (k − i)) for all j ∈ O(π, i) such that j < N − (k − i).

Lemma 4 shows that, if all transition probability matrices are truncated Toeplitz, the dis-

tribution of increments remains unchanged as the deterioration level increases. Thus, the next

deterioration level shifts to the right, and the updated belief about the type of the installed

component depends only on the increment, not on the deterioration level.

This brings us to the final result of this section, which is key to the the inductive proof of

the monotonicity properties of the optimal value function. We first define a partial order on

the information state space

Definition 8. For (π, i), (π̂, k) ∈ Ω, we say (π, i) � (π̂, k) if and only if π �lr π̂ and i ≤ k.

A function F : Ω → R is called nondecreasing on (Ω,�) if and only if F (π, i) ≤ F (π̂, k) for all

(π, i), (π̂, k) ∈ Ω such that (π, i) � (π̂, k).
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We show the expectation of a function of the next information state to be monotone in the

current information state.

Lemma 5. Let Pt be truncated Toeplitz for all t ∈ T and satisfy P1 �lrst P2 �lrst . . . �lrst PM .

Let F : Ω → R be nondecreasing on (Ω,�) with F (π,N) being constant in π ∈ Π. Define the

function G : Ω→ R by

G(π, i) =
∑

j∈O(π,i)

σ(j;π, i)F (ψ(π, i, j), j)

for all (π, i) ∈ Ω. Then, G is nondecreasing on (Ω,�), with G(π,N) being constant in π ∈ Π.

3.2 Main Results

The results we present in this section assume that the following list of conditions is satisfied:

(C1) Li is nondecreasing in i;

(C2) Ci is nondecreasing in i;

(C3) Li − Ci is nondecreasing in i;

(C4) LN ≥ CN + L0;

(C5) P1 �lrst P2 �lrst . . . �lrst PM ;

(C6) Pt is truncated Toeplitz for all t ∈ T .

We briefly discuss these conditions to ascertain that they are reasonable and allow for realistic

problem instances. Conditions (C1)–(C3) have also been applied to derive structural results

for the analogous problem with population homogeneity (cf. Kawai et al., 2002, Section 8.1).

Conditions (C1) and (C2) require a positive relationship between the deterioration level and

the operating and replacement costs to capture the adverse effects of deterioration. Condition

(C3) implies that an increase in the deterioration level leads to a more significant increase in

operating cost than in replacement cost, which is natural for systems that are essential for

the operations of their user. The last condition on the cost parameters, (C4), is to ensure

that a failed component is replaced. This is done by requiring that, in deterioration level N ,

replacement is even myopically preferred over continue operating, which would imply a period

of downtime. While this requirement may be relaxed, it is generally satisfied in the domain of

capital goods where the cost of downtime is very large. Conditions (C5) and (C6) have been

discussed in Section 3.1.

The first result states monotonicity properties of the optimal value function.

Theorem 1. V is nondecreasing on (Ω,�), with V (π,N) being constant in π ∈ Π.
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Specifically, Theorem 1 shows that the optimal value function is monotone with respect

to the partial order defined in Definition 8. Thus, if the installed component is believed to

be weaker in the sense of the likelihood ratio order and the deterioration level is higher, then

the minimum total expected discounted cost is larger. Theorem 1 also shows that when the

installed component has failed, its component type is irrelevant for the minimum total expected

discounted cost.

The next result demonstrates a threshold-type structure of the optimal policy with respect

to the � order.

Theorem 2. If RE is the optimal action in information state (π, i) ∈ Ω and if (π̂, k) ∈ Ω such

that (π, i) � (π̂, k), then RE is also the optimal action in information state (π̂, k). Furthermore,

RE is the optimal action in information state (π,N) for all π ∈ Π.

The intuition is that failed components should be replaced and it is more advantageous to

replace a component if it is believed to be weaker and it is more deteriorated. The likelihood

ratio order is appropriate to formalize when a component is believed to be weaker.

4 Numerical Study

The optimal policy for the POMDP model adapts replacement decisions to the probabilistic

information that the history of observed deterioration levels provides about the component type.

Alternatively, a heuristic policy that ignores this information may be easier to implement and

has the advantage of avoiding the computational complexity of solving a POMDP. The purpose

of this section is to identify factors that suggest a large decrease in total expected discounted

cost can be realized by taking population heterogeneity into account—knowledge which can be

used to assess a priori, for a given problem instance, whether it is worthwhile to construct a

POMDP model and search for the optimal policy. To this end, we compare in a numerical

experiment the optimal policy with a heuristic policy that neglects population heterogeneity

under different parameter settings.

The heuristic policy is specified in Section 4.1. The solution technique that we use for the

POMDP model is described in Section 4.2, where it is also explained how the heuristic policy

is evaluated. In Section 4.3, we present an example to illustrate the comparison between the

optimal and the heuristic policy. Section 4.4 gives the parameter settings we use in the numerical

experiment, and Section 4.5 reports the outcomes.
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4.1 Heuristic Policy

The construction of the heuristic policy does not require formulating the POMDP model for

incorporating population heterogeneity in the replacement problem. We approximate the deteri-

oration process by making the simplifying assumption that all components deteriorate according

to transition probability matrix
∑M

t=1 ρtPt, which reduces the problem into a standard replace-

ment problem with population homogeneity that we can formulate as an MDP. Using standard

policy iteration, we obtain the optimal policy for the MDP model, which prescribes an action

to select in each deterioration level. Then, we get the heuristic policy for the POMDP model by

applying these actions irrespective of the information on the type of the installed component.

Note that the construction of the heuristic policy is computationally inexpensive.

4.2 Solution Technique

We wish to compare the total expected discounted cost of the heuristic policy with the minimum

total expected discounted cost as attained by the optimal policy. However, in general, the

problem of determining the optimal policy for infinite-horizon POMDPs is undecidable (Madani

et al., 2003). Therefore, we instead compute an ε-optimal policy, i.e., a policy which yields a

total expected discounted cost that is at most ε > 0 higher than the minimum total expected

discounted cost. By setting ε to a small value, we obtain tight bounds on the minimum total

expected discounted cost, which can then be used to make the desired comparison.

One of the best known methods to compute ε-optimal policies for POMDPs is Hansen’s

policy iteration algorithm (Hansen, 1998). It is not directly applicable to our problem, however,

due to the fact that the information states contain a completely observable state variable. Here,

we adapt Hansen’s policy iteration algorithm to handle such information states so that it can

be applied in our numerical experiment. We start by defining a key concept for the algorithm,

which we will see is also useful to evaluate the heuristic policy.

4.2.1 Finite-State Controllers

An FSC κ is defined by a triple 〈(Γi)i∈D, δ, ζ〉, where Γi is a non-empty, finite set of control

states for all i ∈ D; δ is a mapping from control states
⋃
i∈D Γi to action space A; and ζ is a

mapping from {(γ, j) : γ ∈ Γi, i ∈ D, j ∈ Oδ(γ)(i)} to control states
⋃
i∈D Γi. At every time

epoch, if the system is in deterioration level i ∈ D, the FSC is in a control state from Γi. If

the FSC is in control state γ ∈ Γi, i ∈ D, action δ(γ) is selected. Upon observing deterioration
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level j ∈ Oδ(γ)(i) at the next time epoch, the finite-state controller transitions into control state

ζ(γ, j) ∈ Γj . Here, OCO(i) =
⋃
π∈ΠO(π, i) and ORE(i) = OCO(0).

An FSC can be conveniently represented by a cyclic directed graph. In such a graph, the

nodes represent control states and are labeled by the action to which it relates via δ. The arcs

indicate the successor of a control state for each deterioration level that can be observed at the

next time epoch, which is given by ζ. In Figures 1a and 1e we will provide such graphs for

policies in the example of Section 4.3.

FSC κ is evaluated by solving a system of linear equations. For initial system state (t, i) ∈ S,

let υκt (γ) denote the total expected discounted cost when starting in control state γ ∈ Γi. It

can be computed from the system of linear equations given by

υκt (γ) =


Li + λ

∑
j∈OCO(i) p

t
ijυ

κ
t (ζ(γ, j)), δ(γ) = CO,

Ci + L0 + λ
∑

j∈ORE(i)

∑M
s=1 ρsp

s
0jυ

κ
s (ζ(γ, j)), δ(γ) = RE,

(2)

for all γ ∈ Γi, (t, i) ∈ S. Consequently, for initial information state (π, i) ∈ Ω, the total expected

discounted cost when starting in control state γ ∈ Γi is given by
∑M

t=1 πtυ
κ
t (γ). Therefore,

arg min
γ∈Γi

∑M
t=1 πtυ

κ
t (γ) is used as the starting control state of the FSC, resulting in a total

expected discounted cost of V κ(π, i) = minγ∈Γi

∑M
t=1 πtυ

κ
t (γ).

The above definition of an FSC deviates from the definition that is used in Hansen (1998)

by letting an FSC have control states per deterioration level, being the observable factor in

the information state space. It can be noticed that, under this definition, the heuristic policy

can be represented by an FSC that has one control state per deterioration level. Hence, in our

numerical experiment, we can evaluate the heuristic policy by solving a system of M(N + 1)

linear equations.

4.2.2 Algorithm

In the presentation of our adapted version of Hansen’s policy iteration algorithm, we use υκ(γ)

to denote the M × 1 vector with elements υκt (γ), t ∈ T , for all γ ∈ Γi, i ∈ D; we use e to denote

the M × 1 vector with ones; for all i, j ∈ D, we use RCO(i, j) to denote the M ×M diagonal

matrix with diagonal elements rCOtt = ptij for all t ∈ T ; and for all i, j ∈ D, we use RRE(i, j)

to denote the M ×M matrix with elements rREst = ρtp
t
0j for all s, t ∈ D. The outline of the

algorithm is as follows:

Step 1 (Initialization) Construct the heuristic policy and let κ be the corresponding FSC.
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Set ε > 0.

Step 2 (Policy evaluation) Solve the system of linear equations (2) to obtain υκ(γ) for all

γ ∈ Γi, i ∈ D.

Step 3 (Dynamic programming update) For all i ∈ D, generate the set of vectors

Υi = {Lie+ λ
∑

j∈OCO(i)

RCO(i, j)υκ(γj) : γj ∈ Γj for all j ∈ OCO(i)}

∪ {(Ci + L0)e+ λ
∑

j∈ORE(i)

RRE(i, j)υκ(γj) : γj ∈ Γj for all j ∈ ORE(i)}.

Each vector υ ∈ Υi is associated with a pair (a, (γj)j∈Oa(i)), where a ∈ A is an action

and γj ∈ Γj is a control state to be selected upon observing deterioration level j, for

all j ∈ Oa(i). Prune all vectors υ ∈ Υi for which there exists no π ∈ Π such that∑M
t=1 πtυt <

∑M
t=1 πtυ̂t for all υ̂ ∈ Υi/{υ}.

Step 4 (Policy improvement) Construct the improved FSC κ̂ = 〈(Γ̂i)i∈D, δ̂, ζ̂〉 as follows. For

all υ ∈ Υi, i ∈ D, with its associated pair (a, (γj)j∈Oa(i)):

(i) If there exists γ ∈ Γi such that δ(γ) = a and ζ(γ, j) = γj for all j ∈ Oδ(γ)(i), then

include a copy of γ in κ̂.

(ii) Else if there exists γ ∈ Γi such that υκ(γ) ≥ υ, then replace γ by a new control

state γ̂ in κ̂ with δ̂(γ̂) = a and ζ̂(γ̂, j) = γj for all j ∈ Oa(i). If there are multiple

such control states in Γi, merge them into one single control state.

(iii) Else, add a new control state γ̂ to κ̂ with δ̂(γ̂) = a and ζ̂(γ̂, j) = γj for all j ∈ Oa(i).

For all γ ∈ Γi, i ∈ D, that were not addressed in (i) or (ii) above: include a copy of γ in

κ̂ if there exists a vector υ ∈ Υk, k ∈ D, that is associated with a pair (a, (γj)j∈Oa(k))

in which γi = γ.

Step 5 (Convergence test) Computem = min(π,i)∈Ω minυ∈Υi

(∑M
t=1 πtυt − V κ(π, i)

)
. If−mλ/(1−

λ) < ε, exit with FSC κ̂. Else, set κ to κ̂ and go to Step 2.

It can be shown that, in any iteration of the algorithm, V κ̂(π, i) +mλ/(1− λ) ≤ V (π, i) ≤

V κ̂(π, i) for all (π, i) ∈ Ω (note that m ≤ 0). Therefore, the termination criterion guarantees

that the algorithm returns an FSC κ̂ that is ε-optimal, as

V κ̂(π, i)− V (π, i) ≤ V κ̂(π, i)−
(
V κ̂(π, i) +m

λ

1− λ

)
= −m λ

1− λ
< ε

for all (π, i) ∈ Ω. We let V (π, i) = V κ̂(π, i) + λ
1−λm and V (π, i) = V κ̂(π, i).

It is also possible to derive an ε-optimal policy that applies a stationary action rule that maps

Ω to A. This policy selects at every time epoch action δ(arg min
γ∈Γi

∑M
t=1 πtυ

κ
t (γ)) in information
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state (π, i), for all (π, i) ∈ Ω. In general, this policy is not equivalent to the policy that is

represented by FSC κ̂. The policies are equivalent, however, if κ̂ represents the optimal policy,

which is certain if m = 0 at termination of the algorithm.

One difference between the algorithm that is presented here and the original algorithm in

Hansen (1998) is that multiple steps of the algorithm contain loops over the deterioration levels

to accomodate the modified definition of an FSC. Another difference is that our algorithm is

initialized with a well-founded initial FSC: the heuristic policy is computationally inexpensive

to construct and evaluate, and it is likely to be closer to the optimal policy than an arbitrary

policy. Note that this choice underlines the increase in the computational complexity that is

caused by the incorporation of population heterogeneity in the replacement problem.

Remark 1. Interestingly, the structural result in Section 3 also provides knowledge about the

FSC that is returned by the adapted version of Hansen’s policy iteration algorithm. In the

special case that the algorithm returns the optimal policy, if conditions (C1)–(C6) are satisfied,

then the FSC satisfies the following properties.

(i) Let i, k ∈ D such that i ≤ k. If there exists γ ∈ Γi such that δ(γ) = RE, then there also

exists γ ∈ Γk such that δ(γ) = RE.

(ii) The set ΓN is a singleton, and δ(γ) = RE for the only control state γ ∈ ΓN .

(iii) Let γ ∈ Γi, i ∈ D, and j, l ∈ Oδ(γ)(i) such that j ≤ l. If δ(ζ(γ, j)) = RE, then also

δ(ζ(γ, l)) = RE.

Properties (i) and (ii) follow directly from Theorem 2. To derive property (iii), Theorem 2

needs to be combined with Lemma 3, which gives that, for a given information state, a higher

deterioration level at the next time epoch also makes it more likely that the component is of a

weaker component type.

4.3 Example

Consider a population with three component types, T = {1, 2, 3}, each accounting for an equal

fraction of the population, ρ1 = ρ2 = ρ3 = 1/3. There are four deterioration levels, D =

{0, 1, 2, 3}, and the cost parameters are L0 = L1 = L2 = 0, L3 = 500 and C0 = C1 = C2 = 100,
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C3 = 200. The transition probability matrices are given by

P1 =



0.9 0.05 0 0.05

0 0.9 0.05 0.05

0 0 0.9 0.1

0 0 0 1


, P2 =



0.6 0.25 0.05 0.1

0 0.6 0.25 0.15

0 0 0.6 0.4

0 0 0 1


, and P3 =



0 0.5 0.1 0.4

0 0 0.5 0.5

0 0 0 1

0 0 0 1


.

Note that conditions (C1)–(C6) are satisfied. In particular, component type 1 is the strongest

and component type 3 is the weakest based on the �lrst order. The discount factor is λ = 0.99.

In Figure 1a and Figures 1b–1d, we depict the heuristic policy as an FSC and as a station-

ary action rule that maps Ω to A, respectively. It can be observed that the heuristic policy

replaces the installed component if and only if the deterioration level is 2. We denote the total

expected discounted cost of the heuristic policy by Vheu. For initial information state (πnew, 0),

which corresponds to the situation where the system begins operating with a newly installed

component, the total expected discounted cost is evaluated as Vheu(πnew, 0) = 5846.37.

In Figure 1e, we depict the ε-optimal FSC that is obtained by the adapted version of Hansen’s

policy iteration algorithm with ε = 0.05. The node with a thicker border corresponds to the

control state in which the FSC is started for initial information state (πnew, 0). Only the control

states that are reachable from this starting control state are shown in the figure. The actual

FSC is larger and contains 22 control states. It can be observed that the ε-optimal policy,

in contrast to the heuristic policy, may replace the component if it is in deterioration level 1.

More precisely, it replaces the installed component if it reaches deterioration level 1 in three

or less periods after it is taken into operation. That would make it likely that the installed

component is of component type 2 or 3, and the probability of failure, which would require a

corrective replacement at cost C2, is too high to continue to operate the installed component.

For initial information state (πnew, 0), the algorithm provides bounds V (πnew, 0) = 4779.86 and

V (πnew, 0) = 4779.91 on the minimum total expected discounted cost. In Figures 1f–1h, we

depict the ε-optimal stationary action rule that can be derived from the ε-optimal FSC. As can

be observed, also this policy replaces the installed component in deterioration level 1 if it is

likely to be of a weak component type.

We evaluate the relative decrease in total expected discounted cost that results from applying

the optimal policy instead of the heuristic policy, for initial information state (πnew, 0), as

S =
Vheu(πnew, 0)− V (πnew, 0)

V (πnew, 0)
=

5846.37− 4779.91

4779.91
= 22.3%.
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4.4 Parameter Settings

In our numerical experiment, we study settings with T = {1, 2} where component type 1 is

stronger than component type 2. To generate a set of problem instances, we vary the population

composition, the number of deterioration levels, the transition probability matrices, and the cost

parameters.

For the fraction ρ1 = 1−ρ2, which determines the composition of the population, we consider

values of 0.5 and 0.8. We consider values of 3, 5, and 10 for the number of deterioration levels,

N + 1. The transition probability matrices are assumed to be of the form (1). We set (α1, β1),

the parameters of P1, at (0.15, 0.03) and consider values of (0.4, 0.2) and (0.7, 0.1) for (α2, β2),

the parameters of P2. A cost structure is assumed such that the replacement cost is given by

Ci =


C, i < N,

aC, i = N,

with C > 0 and a > 1, and the operating cost is given by

Li =


i

N−1bC, i < N,

2aC, i = N,

with b ≥ 0. Thus, the cost of preventively replacing a component does not depend on the

deterioration level and is lower than the cost of a corrective replacement. The operating cost is

linearly increasing for deterioration levels in {0, . . . , N−1} and sufficiently high in deterioration

level N to ensure that the optimal policy replaces the installed component if it has failed. Here,

C is the cost of a preventive replacement, a is the factor by which the corrective replacement

cost is a multiple of the preventive replacement cost, and b is the ratio between the operating

and replacement cost at deterioration level N − 1. The parameters a, b, and C completely

determine the cost structure, with C merely acting as a scale factor. We set C at 100, consider

values of 2, 5, 10, and 20 for a, and consider values of 0, 0.1, and 0.5 for b. We assume a discount

factor λ = 0.99. By taking all combinations of the parameter values that we consider, a test

bed of in total 144 instances is created.

4.5 Results

We set ε = 0.05 in our adapted version of Hansen’s policy iteration algorithm and compute

Vheu, V , and V for all instances. We evaluate the decrease in total expected discounted cost by
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applying the optimal policy instead of the heuristic policy by

S =
Vheu(πnew, 0)− V (πnew, 0)

V (πnew, 0)
,

where we assume that the initial information state is given by (πnew, 0). We find that the

average value of S over all instances is 3.66%. Because we are interested in parameter settings

for which the optimal policy achieves a large decrease in total expected discounted cost, we

report in Table 1 the 20 instances with the highest values of S.

Table 1: The 20 highest ranked instances (out of 144) in our numerical experiment based on

the value of S.

Rank ρ1 N + 1 (α2,β2) a b V (πnew, 0) V (πnew, 0) Vheu(πnew, 0) S (%)

1 0.5 10 (0.7,0.1) 20 0 7626.13 7626.17 9267.00 21.52

2 0.5 10 (0.7,0.1) 20 0.1 7875.65 7875.68 9569.83 21.51

3 0.5 10 (0.4,0.2) 20 0.5 11381.94 11381.98 13784.42 21.11

4 0.5 10 (0.4,0.2) 20 0.1 10487.18 10487.22 12286.48 17.16

5 0.5 10 (0.4,0.2) 20 0 10253.45 10253.49 12011.46 17.15

6 0.5 10 (0.7,0.1) 10 0.1 4350.37 4350.41 5019.47 15.38

7 0.5 10 (0.7,0.1) 10 0 4099.91 4099.96 4716.64 15.04

8 0.5 10 (0.7,0.1) 20 0.5 8792.39 8792.43 10082.53 14.67

9 0.5 5 (0.4,0.2) 20 0.5 13197.45 13197.45 15051.20 14.05

10 0.5 10 (0.4,0.2) 10 0.5 6496.18 6496.22 7404.44 13.98

11 0.5 10 (0.4,0.2) 10 0.1 5578.92 5578.97 6316.15 13.21

12 0.5 10 (0.4,0.2) 10 0 5342.77 5342.81 6041.13 13.07

13 0.5 5 (0.4,0.2) 20 0.1 12418.20 12418.20 13832.65 11.39

14 0.5 5 (0.7,0.1) 20 0.5 9792.90 9792.90 10880.80 11.11

15 0.5 5 (0.4,0.2) 20 0 12221.58 12221.58 13559.75 10.95

16 0.5 3 (0.7,0.1) 2 0 2897.20 2897.21 3181.11 9.80

17 0.5 5 (0.7,0.1) 20 0.1 8892.91 8892.91 9740.06 9.53

18 0.5 5 (0.4,0.2) 10 0.5 7594.63 7594.64 8314.41 9.48

19 0.5 10 (0.7,0.1) 10 0.5 5185.07 5185.10 5668.61 9.32

20 0.5 5 (0.7,0.1) 20 0 8667.05 8667.05 9454.87 9.09

From Table 1 several observations can be made. Most notably, ρ1 = 0.5 among all 20

instances that give the highest values of S. To explain why the heuristic policy performs

relatively worse when ρ1 = 0.5, note that the uncertainty in the random type of a newly installed

component is higher than when ρ1 = 0.8 (more formally, the entropy is higher). Therefore, the

observed deterioration levels contain more information about the type of the component and

neglecting that information is more disadvantageous.
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From Table 1 several observations can be made. One observation is that the highest values

of S occur in settings with ρ1 = 0.5. For settings with ρ1 = 0.5 the uncertainty in the type

of a newly installed component is higher than for settings with ρ1 = 0.8 so that the observed

deterioration levels contain more information about the type of the component. Formally, the

entropy of the random type of a newly installed component is higher for ρ1 = 0.5 than it is for

ρ1 = 0.8. This explains why the heuristic policy, which neglects the information on the type

of the installed component that is provided by observations on its deterioration level, performs

worse for ρ1 = 0.5.

A next observation is that high values of S occur more often in settings with N + 1 = 10.

That is because a higher number of deterioration levels has the effect that component lifetimes

are longer, which the optimal policy can exploit to gather more information about the type

of the installed component in order to improve replacement decisions. Also, we observe that

higher values of a result in higher values of S. For an explanation, note that the heuristic policy

can only avoid failures due to gradual deterioration. This is achieved by replacing the installed

component if it is in deterioration level N − 1. By replacing the installed component if it is

likely to be weak, the optimal policy can also reduce the occurrence of sudden failures. In this

way, the optimal policy can be more successful in avoiding failures and reducing the need for

corrective maintenance at cost CN = aC, which would cause the performance gap between the

optimal policy and the heuristic policy to increase in a.

In view of the previous observation, it is remarkable that a has a low value in the only

instance in Table 1 with three deterioration levels. Indeed, in settings with N+1 = 3, there is no

real difference between the optimal policy and the heuristic policy if the corrective replacement

cost is very high. To avoid failures, both policies replace the installed component in deterioration

level 1 regardless of its component type. That is because α1 + β1 > ρ1β1 + ρ2β2 for all values

of (α2, β2) that we consider, so that even for the strong component type the probability of

failure in deterioration level 1 is higher than the probability of failure for a newly installed

component. Furthermore, for initial information state (πnew, 0), neither of the policies replaces

an installed component in deterioration level 0. Clearly, the optimal policy does not replace a

newly installed component or a component that is still in deterioration level 0 at a later time

epoch, which only increases the likelihood that the component is of the strong component type.

No clear relation is observed between (α2, β2) and S. For settings with (α2, β2) = (0.4, 0.2),

in which, in particular, the difference between β1 and β2 is large, the optimal policy benefits
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more from its ability to replace the installed component if it is likely to be of the weak component

type. For settings with (α2, β2) = (0.7, 0.1), in which, in particular, the difference between α1

and α2 is large, it is more probable that a component is correctly identified as being of the weak

component type. Neither of these two effects is dominant. The effect of b on S is ambiguous as

well. An increase in b leads to an increase in the costs that are common to the heuristic policy

and the optimal policy, namely,

the operating costs in the first periods after installing a new component in which the heuristic

policy and the optimal policy still coincide. On the other hand, it also increases the operating

costs that the optimal policy can save afterwards.

From the numerical experiment, we conclude that (1) a high uncertainty in the type of

a newly installed component and (2) a large number of deterioration levels in combination

with a high cost for corrective replacement provide indications for a significant decrease in

total expected discounted cost if population heterogeneity is taken into account in replacement

decisions.

5 Conclusion

In this paper, we developed a POMDP model for the problem of scheduling replacements

for a single-component, Markovian deteriorating system if the population of components is

heterogeneous. This work extends the literature on a classical CBM problem. All previous works

assume that each installed component deteriorates according to the same transition matrix, i.e.,

that the population of components is homogeneous. In contrast, we considered a population of

spare components which is composed of multiple component types that cannot be distinguished

by their exterior appearance, but deteriorate according to different transition matrices.

We established a structural result for our POMDP model. Under intuitively meaningful

conditions on the cost parameters and the transition matrices, we showed monotonicity prop-

erties of the value function and derived the structure of the optimal policy. We introduced a

new stochastic order, which we denote as the �lrst order, to formulate the structural result.

This stochastic order may have applications in other domains as well. Further, we performed

a numerical experiment to benchmark the optimal policy against a heuristic policy that ne-

glects population heterogeneity. Results demonstrated that (1) a high uncertainty in the type

of a newly installed component and (2) a large number of deterioration levels in combination

with a high cost for corrective replacement are indicators for a significant decrease in total
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expected discounted cost if replacement decisions take population heterogeneity into account.

This knowledge can be used to assess a priori, for a given problem instance, whether it is worth

the complexity of formulating and solving a POMDP model.

In our model, we assume that costless, perfect observations on the deterioration level are

available at every time epoch. There are also works that consider costly or imperfect inspec-

tions in maintenance optimization problems (Maillart, 2006; Kim and Makis, 2013). In future

research, it will be interesting to study the implications of population heterogeneity in these

contexts. Then, the partial observability of both the deterioration level and the type of the

installed component may require to define information states as bivariate probability distribu-

tions. Another direction for future research is to relax the assumption that the type of the

installed component is independent of the types of the remaining spare components. This as-

sumption is not valid, for example, if the components originate from one production batch that

shares the same unknown component type.
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Appendix

Proof of Lemma 1. We prove parts (i) and (ii). Parts (iii) and (iv) directly follow by applying

respectively parts (i) and (ii) to each pair of rows in the row-wise comparison of P and Q.

(i) Suppose that g �lr h. By the definition of the �lr order, gyhx ≤ gxhy for all x, y ∈ X

such that x ≤ y < u. Also, since Proposition 1(i) establishes that g �st h, it is true that

gu =
∑

x∈X :x≥u gx ≤
∑

x∈X :x≥u hx = hu.
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(ii) Suppose that g �lrst h. From the definition of the �lrst order, we find that

(1− gu)
∑

x∈X :x<y

hx =

( ∑
z∈X :z<y

gx

)( ∑
x∈X :x<y

hx

)
+

( ∑
z∈X :y≤z<u

gx

)( ∑
x∈X :x<y

hx

)

≤

( ∑
x∈X :x<y

gx

)( ∑
z∈X :z<y

hx

)
+

( ∑
z∈X :y≤z<u

hx

)( ∑
x∈X :x<y

gx

)

= (1− hu)
∑

x∈X :x<y

gx

for all y ∈ X , and also gu ≤ hu. If gu < 1, then this implies that
∑

x∈X :x≥y gx ≤∑
x∈X :x≥y hx for all y ∈ X . Clearly, the same holds if gu = 1, because then

∑
x∈X :x≥y gx =∑

x∈X :x≥y hx = 1 for all y ∈ X . Hence, we conclude that g �st h.

The proof of Lemma 2 relies on the following characterization of the usual stochastic order

(cf. Shaked and Shanthikumar, 2007, Section 1.A.1).

Proposition A1. Let g and h be two probability mass functions. Then g �st h if and only if∑
x∈X gxF (x) ≤

∑
x∈X hxF (x) for every nondecreasing function F : X → R.

Proof of Lemma 2. Let π, π̂ ∈ Π such that π �st π̂ and i ∈ D. For all l ∈ D, because

P1 �st P2 �st . . . �st PM ascertains
∑N

j=l p
t
ij is nondecreasing in t, Proposition A1 can be

applied to show
∑N

j=l σ(j;π, i) =
∑M

t=1 πt
∑N

j=l p
t
ij ≤

∑M
t=1 π̂t

∑N
j=l p

t
ij =

∑N
j=l σ(j; π̂, i).

Proof of Lemma 3. Let π, π̂ ∈ Π such that π �lr π̂, i ∈ D, and j ∈ O(π, i), l ∈ O(π̂, i) such

that j ≤ l < N (if such deterioration levels exist). Then, for all s, t ∈ T such that s ≤ t,

ψt(π, i, j)ψs(π̂, i, l) =
πtp

t
ij

σ(j;π, i)

π̂sp
s
il

σ(l; π̂, i)
≤

πsp
s
ij

σ(j;π, i)

π̂tp
t
il

σ(l; π̂, i)
= ψs(π, i, j)ψt(π̂, i, l),

where the inequality follows from the definitions of the �lr order and the �lrst order.

Proof of Lemma 4. The result directly follows from the definition of the truncated Toeplitz

property.

Proof of Lemma 5. We use a coupling argument to prove that G is nondecreasing on (Ω,�).

Let

ξ[u;π, i] = min{l ∈ D :

l∑
j=0

σ(j;π, i) ≥ u}

for all (π, i) ∈ Ω and u ∈ [0, 1]; note that ξ[u;π, i] ∈ O(π, i). Now fix the information states

(π, i), (π̂, k) ∈ Ω such that (π, i) � (π̂, k). Letting U be a uniform [0, 1] random variable, define
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two random variables

X ≡ F (ψ(π, i, ξ[U ;π, i]), ξ[U ;π, i]),

Y ≡ F (ψ(π̂, k, ξ[U ; π̂, k]), ξ[U ; π̂, k]).

It is easy to see that E[X] = G(π, i) and E[Y ] = G(π̂, k). We will show that, in addition, these

random variables are such that P (X ≤ Y ) = 1 by establishing

F (ψ(π, i, ξ[u;π, i]), ξ[u;π, i]) ≤ F (ψ(π̂, k, ξ[u; π̂, k]), ξ[u; π̂, k]) (A1)

for all u ∈ [0, 1]. We distinguish two cases.

Case (i), u >
∑N−1

j=0 σ(j; π̂, k). Then ξ[u; π̂, k] = N , and (A1) is immediate from the

properties of F as F (ψ(π, i, ξ[u;π, i]), ξ[u;π, i]) ≤ F (ψ(π, i, ξ[u;π, i]), N) = F (ψ(π̂, k,N), N).

Case (ii), u ≤
∑N−1

j=0 σ(j; π̂, k). Then ξ[u; π̂, k] < N . Because Lemma 2, which we can apply

by Proposition 1(i) and Lemma 1(iv), gives that
∑N

j=l σ(j; π̂, k) ≥
∑N

j=l σ(j;π, k) for all l ∈ D

or, equivalently,
∑l

j=0 σ(j; π̂, k) ≤
∑l

j=0 σ(j;π, k) for all l ∈ D, we get ξ[u;π, k] ≤ ξ[u; π̂, k] < N .

Consequently, we can use Lemma 3 to obtain ψ(π, k, ξ[u;π, k]) �lr ψ(π̂, k, ξ[u; π̂, k]). Further-

more, given that ξ[u;π, k] < N , it follows from Lemma 4(i) that ξ[u;π, i] + (k − i) = ξ[u;π, k];

therefore, by Lemma 4(ii), ψ(π, i, ξ[u;π, i]) = ψ(π, k, ξ[u;π, k]). Putting everything together,

we have (ψ(π, i, ξ[u;π, i]), ξ[u;π, i]) � (ψ(π̂, k, ξ[u; π̂, k]), ξ[u; π̂, k]). Hence, (A1) follows from

the monotonicity of F .

This shows P (X ≤ Y ) = 1, which implies that E[X] ≤ E[Y ]. We conclude that G(π, i) ≤

G(π̂, k), which completes the proof that G is nondecreasing on (Ω,�).

It remains to prove that G(π,N) = G(π̂, N) for all π, π̂ ∈ Π. With Pt being truncated

Toeplitz for all t ∈ T , we have for all π ∈ Π that σ(j;π,N) = 1 if j = N , σ(j;π,N) = 0 if

j 6= N , and ψ(π,N,N) = π. This means G(π,N) = F (π,N) for all π ∈ Π. The result follows

by the properties of F .

Proof of Theorem 1. Let Vn(π, i) be the minimum total expected discounted cost-to-go with

n periods remaining for initial information state (π, i) ∈ Ω, where we define V0(π, i) = 0. We

prove by induction on the number of remaining periods that Vn is nondecreasing on (Ω,�), with

Vn(π,N) being constant in π ∈ Π, for all n ∈ N0. It is clear that V0 satisfies these properties.

Assume that, for m ∈ N0, Vm is nondecreasing on (Ω,�), with Vm(π,N) being constant in
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π ∈ Π. Using a dynamic programming recursion, Vm+1 can be expressed by

Vm+1(π, i) = min

{
Li + λ

∑
j∈O(π,i)

σ(j;π, i)Vm(ψ(π, i, j), j),

Ci + L0 + λ
∑

j∈O(πnew,0)

σ(j;πnew, 0)Vm(ψ(πnew, 0, j), j)

}

for all (π, i) ∈ Ω. In the minimum operator, the first term can be seen to be nondecreasing

on (Ω,�) by combining condition (C1), the induction hypothesis, and Lemma 5. Note that

Lemma 5 relies on conditions (C5) and (C6). By condition (C2), the second term is also

nondecreasing on (Ω,�). As a minimum of two such terms, Vm+1 is nondecreasing on (Ω,�)

as well. Further, it follows by condition (C4), the induction hypothesis, and Lemma 5 that

LN + λ
∑

j∈O(π,N)

σ(j;π,N)Vm(ψ(π,N, j), j)

= LN + λ
∑

j∈O(πnew,N)

σ(j;πnew, N)Vm(ψ(πnew, N, j), j)

≥ CN + L0 + λ
∑

j∈O(πnew,0)

σ(j;πnew, 0)Vm(ψ(πnew, 0, j), j)

for all π ∈ Π. Hence, Vm+1(π,N) = CN + L0 + λ
∑

j∈O(πnew,0) σ(j;πnew, 0)Vm(ψ(πnew, 0, j), j),

which is constant in π ∈ Π. By induction, we conclude that Vn satisfies these properties for all

n ∈ N0. Finally, the result is obtained from V (π, i) = limn→∞ Vn(π, i) for all (π, i) ∈ Ω.

Proof of Theorem 2. Let (π, i) ∈ Ω be an information state in which RE is the optimal

action and let (π̂, k) ∈ Ω such that (π, i) � (π̂, k). Condition (C3), Theorem 1, and Lemma 5

imply that

Lk + λ
∑

j∈O(π̂,k)

σ(j; π̂, k)V (ψ(π̂, k, j), j)

≥ Ck + Li − Ci + λ
∑

j∈O(π,i)

σ(j;π, i)V (ψ(π, i, j), j)

≥ Ck + L0 + λ
∑

j∈O(πnew,0)

σ(j;πnew, 0)V (ψ(πnew, 0, j), j).

It can be concluded that RE is the optimal action in information state (π̂, k) as well.

Next, let π ∈ Π and consider information state (π,N). By condition (C4), Theorem 1, and
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Lemma 5 it can be seen that

LN + λ
∑

j∈O(π,N)

σ(j;π,N)V (ψ(π,N, j), j)

= LN + λ
∑

j∈O(πnew,N)

σ(j;πnew, N)V (ψ(πnew, N, j), j)

≥ CN + L0 + λ
∑

j∈O(πnew,0)

σ(j;πnew, 0)V (ψ(πnew, 0, j), j).

Hence, RE is the optimal action in information state (π,N) for all π ∈ Π.
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