
Reliability Optimization for Series Systems under Uncertain

Component Reliability in the Design Phase

Qianru Gea, Hao Penga, Geert-Jan van Houtuma, Ivo Adanb

aDepartment of Industrial Engineering and Innovation Sciences, Eindhoven University of Technology,
Eindhoven, The Netherlands

bDepartment of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands

Abstract

We develop an optimization model to determine the reliability design of critical components

in a system. Since the system is under a service contract, a penalty cost should be paid by the

OEM when the total system down time exceeds a predetermined level, which complicates

the evaluation of the life cycle costs (LCC). Furthermore, in the design phase for each

critical component, all the possible designs are subject to uncertain component reliability.

We proposed three evaluation methods considering different levels of uncertainty in the

model, according to the numerical results, the full-uncertainty method which includes the

randomness of the number of failures as well as the randomness of the failure rates performs

very well. And ignore the two types of uncertainty may results in huge LCC.

Keywords: Capital goods, Reliability optimization, Performance-based contracting, Life

cycle costs

1. Introduction

Capital goods are machines or products that are used by manufacturers to produce their

end-products or that are used by service organizations to deliver their services. Advanced

technical systems such as medical systems, manufacturing systems, defense systems are ex-

amples of capital goods that are critical for the operational processes of their customers.

System downtime of these capital goods can have serious consequences (e.g., millions of

euros of reduced production output, extra waiting time of passengers, failure of military

missions) and maintaining these high-tech systems are too challenging for customers to take

care of by themselves. As a result, the original equipment manufactures (OEMs) provide

after-sale service to their customers to keep the availability of the systems on certain levels

through service contracts. Different types of service contracts were mentioned in Cohen

et al. [4], among which, performance-based contracts (PBC) are novel agreements promising
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a predetermined level of availability to meet the customers’ objectives. Therefore under a

PBC, customers pay for services according to the system performance. When the system

performance fails to meet the predetermined level of availability, OEMs need to pay a penalty

cost to their customers.

Under a PBC, one of the OEM’s major concern is the life cycle cost (LCC), which is

defined as the total cost incurred in the design/development, production, operation, main-

tenance, support, and final disposition of a system over its anticipated useful life span (Bar-

ringer and Weber [2]). The results of Öner et al. [19] showed that the summation of mainte-

nance cost and downtime cost is larger than the acquisition cost and constitutes a significant

portion of the LCC. These service costs are incurred by system failures which are highly

dependent on system designs. Therefore, reliability design decision should consider LCC.

The customers of capital goods measure the availabilities of these complex systems at the

end of service contract periods. The realized availabilities of the capital goods should meet

the required performance levels. According to the PBCs, when the overall downtime of a

system exceeds its targeted downtime, the OEMs will pay a penalty cost to their customers

for not meeting the target. Therefore, it is important for the OEMs to calculate the proba-

bility that the total downtime exceeds the targeted downtime of a given system, so that they

can choose the optimal option for system reliability design considering system availability.

In reality, engineers have to select a certain design from all possible alternatives for each

critical component in a system during the design phase. The outcome of any development

process for a certain design is uncertain with respect to the reliability requirement. For

example, since the failure mechanisms of some emerging technologies (e.g., Micro-Electro-

Mechanical Systems) are complex, it is often difficult to predict the actual reliability behav-

iors of the critical components before the development. Therefore newly-designed devices

have been found to have different component reliabilities than the expectations after the

completion of design. The uncertainties in component reliabilities can lead to large devia-

tions of the realized system availabilities from the expected system availabilities (i.e., point

estimates for the system availabilities). In this case, the uncertainty in component reliabili-

ties also needs to be considered in the decision making of system reliability design under a

PBC.

In this paper, we attempt to solve a system reliability design problem by minimizing the

LCC and considering both uncertain component reliability and interval availability under a

PBC, which has not been studied yet. The contribution of the paper is as follows: 1) we take

uncertainty in the failure rates of the critical components into consideration. The uncertainty
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in the failure rates is coming from the design phase of an advanced system; 2) in order to

reduce the time to calculate the total downtime for a certain reliability design, we propose

an approximate method to evaluate the total downtime of a given design in negligible time;

3) we compare results from different evaluation methods: a stochastic method ignoring the

uncertain failure rate distribution, a deterministic method using expected total downtime

as the actual total downtime and our own model considering both stochastic nature of the

number of the system failures and the uncertain failure rates. 4) According to our numerical

results, it is very important to consider the two levels uncertainty in the decision making

process, ignoring the uncertainties can results huge LCCs.

The remainder of the paper is organized as follows: in Section 2, we briefly review

related literature. Section 3 gives the model description and model formulation. We propose

three approximation evaluation methods in Section 4. The numerical results and managerial

insights of evaluation and optimization are given in Section 5. Conclusions and directions

for future research are presented in Section 6.
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2. Literature

According to the characteristics of our problem, we shall briefly review the literature

regarding interval availability, reliability optimization and uncertain component reliability

as described in Section 1.

As defined by Nakagawa and Goel [18], interval availability is the fraction of time that

a system is operational during a period of time [0, T ]. Several methods have been proposed

to measure interval availability during a service period in the literature. Takacs [23] first

derived the probability distribution function, the limiting distribution and the moments of

interval availability in closed form. Due to the computational difficulty, De Souza E Silva

and Gail [6] and Al Hanbali and van der Heijden [1] developed several methods to compute

the interval availability numerically.

Regarding reliability optimization, a lot of work have been done in this area since the

1990s (Kuo and Wan [14]). For example, Mettas and Kallenberg [16] provided the minimum

required reliability for each component of a system in order to achieve a system reliability

goal with minimum cost, and the cost function for each component in this paper has been

introduced by other papers as well, such as Huang et al. [8], Öner et al. [20] and Jin and Wang

[13]. Many papers maximize the system reliability by different techniques. For example, a

random search process has been proposed by Beraha and Misra [3] to assign the optimal

reliability to each stage of a multi-stage system. Hwang [11] used sequential unconstrained

minimization, and Li and Haimes [15] developed a 3-level decomposition approach to allocate

the resource among subsystems optimally.

Some papers also built reliability allocation models to find optimal warranty policies for

systems sold with traditional warranty contracts. For example, to minimize the system LCC,

Monga and Zuo [17] used genetic algorithms to solve the optimization problem and Öner

et al. [20] introduced a decision support model to jointly optimize the reliability level and

spare parts inventory level of a single-component system in the design phase. To maximize

the profit, Huang et al. [8] proposed a model to compute the optimal warranty policy under

different market situations.

In most previous work on system reliability optimization problem, all parameters are

assumed to be precise. However in reality there is considerable uncertainty and inaccuracy

in the estimation of the model parameters, especially the component reliabilities. To measure

the uncertain system reliability due to the insufficient component-level failure data, Coit [5],

Jin and Coit [12] and Ramirez-Marquez and Levitin [22] estimated the confidence intervals

of the system reliability for different systems. To solve the reliability optimization problem
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considering component reliability uncertainty, Hussain and Murthy [9] developed a model to

determine the optimal redundancy design considering quality uncertainty due to manufacture

variability, and obtained the best tradeoff between the manufacturing cost and warranty

cost. In Hussain and Murthy [10], the component uncertain reliability has been modeled by

a reliability growth model, and an optimization model has been proposed to find the best

tradeoff between the development cost and the warranty cost. Feizollahi and Modarres [7]

proposed a reliability design framework to address the uncertain component reliability by

using the Min-Max regret (also known as robust deviation) approach and transformed the

nonlinear programming formulation to a linear binary version to get the exact solutions.

None of the above works considered interval availability under a PBC.

In this paper, we focus on the cases in which all three aspects in Figure 1 are consid-

ered. We propose a reliability optimization model with uncertain component reliabilities and

approximately evaluated the LCC under a PBC considering interval availability.

3. Model

During the design phase of a system, engineers have to select a certain design from all

the possible alternatives for each critical component in the system. Suppose the system

is comprised of a set of critical components I = {1, 2, . . . , |I|}. If one of these critical

components fails, the system as a whole stops working. For each critical component , one

design needs to be selected from possible alternatives denoted by Ji = {1, 2, ..., |Ji|}. Each

design candidate in Ji has its own uncertain reliability parameters and cost parameters. We

aim to find out the optimal combination of designs for the system to minimize the expected

LCC over the service period T of a PBC contract.

We assume that the failure process of each of design from each component is independent

and follows a Poisson process. Then the lifetimes of the components are also independent and

exponentially distributed. Then for a certain rough design j of component i (i ∈ I, j ∈ Ji),
we denote its failure rate as Λij. The outcome of any development process for a certain design

is uncertain. Therefore, the failure rate Λij of design j for component i is usually not known

for sure before the development of the rough design. We use fΛij
(.) as the probability density

function of the random failure rate Λij before the development of the rough design, which

reflects the prior belief/information about the reliability uncertainty of the technologies used

in the rough design. In the evaluation of the expected LCC over the service period T , these

design uncertainties will be taken into account for different combinations of rough designs.

The system will be sold together with a PBC contract over a service period [0, T ]. The
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OEM is responsible for all the repairs in [0, T ]. Moreover the total downtime of the service

period should be lower than a predetermined targeted downtime D0. A penalty cost will

be paid by the OEM to compensate the customer if the total downtime exceeds D0. As a

result, the expected total cost of a system over [0, T ] consists of three parts: (a) acquisition

cost, (b) repair cost, and (c) penalty cost. A detailed description of the evaluation of these

cost elements are given in the following subsections.

Define the binary decision variable xij as

xij =

{
1 if rough design j for component i is selected,

0 otherwise.

We assume the OEM can only select one design from all the possible candidates for each

component, so we have
∑|Ji|

j=1 xij = 1. The vector of xij of a given component i, xi =

[xi1, xi2, . . . , xi|Ji|] represents which component design has been chosen for component i.

While the vector of xi (i ∈ I), x = [x1,x2, . . . ,x|I|] is the decision variable of the sys-

tem representing the selection of the alternative design for each component. The OEM is

interested in minimizing the expected LCC, π(x), which is the sum of the total design cost

A(x), the expected system repair cost R(x) and the expected penalty cost P (x). Due to

the randomness of the failure rates Λ1(x1),Λ2(x2), ...,Λ|I|(x|I|) in rough designs, the total

life cycle cost is random, so we only consider the expected value of the total life cycle cost

π(x). If the decision maker is risk-neutral, the optimization model of this problem can be

formulated as:

(P) minx π(x)

s.t.

|Ji|∑
j=1

xij = 1, for all i ∈ I

xij ∈ {0, 1}, for all i ∈ I, j ∈ Ji

where π(x) = A(x) +R(x) + P (x). This optimization problem is difficult to solve, because

of the complicated form of the objective function. In the objective function, the expected

penalty cost P (x) is a multiple integration over the ranges of the random failure rates,

which is difficult to calculate. Therefore, in the next section, an approximation method will

be proposed to make the evaluation of the objective function easier.
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4. Evaluation

In this section we will introduce two ways to evaluate the related costs. We will first

present the exact evaluation of A(x), R(x) and P (x), given that the exact evaluation of P (x)

is computationally intractable when |I| is large. We also propose three different methods to

evaluate P (x) approximately, the zero-uncertainty method, the partial-uncertainty method,

and the full-uncertainty method. Each differs in considering the level of uncertainty of P (x).

4.1. Exact evaluation

In this subsection, we describe how to evaluate a given policy exactly. For the exact eval-

uation of a given policy x, we present the exact evaluation of A(x), R(x), P (x) accordingly.

4.1.1. Acquisition cost

Let caij denote the cost of designing and manufacturing component i according to a rough

design j (i ∈ I, j ∈ Ji). It includes all costs incurred to realize a certain rough design of

component during the design phase, e.g., human resources, experimental equipment, testing

or prototype units, etc. The acquisition cost for component i is given by

Ai(xi) =

|Ji|∑
j=1

caijxij ,

where xi = [xi1, xi2, ..., xi|Ji|] represents the selection of rough designs for component i, and

the total system acquisition cost is given by

A(x) =

|I|∑
i=1

Ai(xi) =

|I|∑
i=1

|Ji|∑
j=1

caijxij , (1)

where x represents the selection plan of rough designs for all the critical components in the

system.

4.1.2. Repair cost

When a failure occurs in period [0, T ], a repair will be performed by the OEM. We assign

crij as the repair cost for each failure of the jth rough design for component i (i ∈ {1, 2, ..., |I|},
j ∈ {1, 2, ..., |Ji|). The repair cost crij corresponds to diagnosis cost, replacement cost, and

other service costs for each repair. A failure-based policy for maintenance is assumed for this

multi-component system in order to evaluate the maintenance cost over the service period

T . The evaluation of repair cost based on a failure-based policy is relatively accurate and

conservative. Let Si(xi) denote the total number of failures for component i during [0, T ].
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Under such a failure-based policy and the assumption that the lifetimes of components are

exponentially distributed, the expected number of repairs for component i during [0, T ],

E[Si(xi)] is given by:

E
[
Si(xi)

]
= E

[
Λi(xi)T

]
=

|Ji|∑
j=1

E(ΛijT )xij =

|Ji|∑
j=1

µijTxij ,

where Λij is the failure rate for the jth design of component i, while µij and σij are the

expectation and standard deviation of Λij. Λi(xi) =
∑|Ji|

j=1 Λijxij is the random failure rate

of component i given a certain rough design xi. Then the expected repair cost for component

i, Ri(xi) is expressed by:

Ri(xi) =

|Ji|∑
j=1

E(ΛijTc
r
ij)xij =

|Ji|∑
j=1

µijTc
r
ijxij .

Given that the failure processes of all the critical components are independent of each

other, the expected system repair cost R(x) in [0, T ] is given as:

R(x) =
n∑
i=1

Ri(xi) =

|I|∑
i=1

|Ji|∑
j=1

µijTc
r
ijxij . (2)

4.1.3. Penalty cost

A fixed period of system downtime rij(rij << T ) will be incurred due to a random failure

of component i with rough design j in the system (i ∈ {1, 2, ..., |I|}, j ∈ {1, 2, ..., |Ji|}).
Notice that while evaluating the repair costs in the previous section we ignore the downtime

since the downtime is usually negligible compared with the service period T , for the same

reason, when we computing the penalty cost, we ignore the downtime as well. However,

under a PBC contract, when the total system downtime over the service period T exceeds

D0, a penalty cost should be paid by the OEM to customers with a rate cp. D0 is at the

same time scale as rij. We assume the system downtime of each failure varies among different

components with different rough designs. Hence the total system downtime D(x) over the

service period T depends on the number of failures Si(xi) and the repair time per failure

ri(xi) for component i ∈ {1, . . . , |I|} in [0, T ]. The repair time per failure for component

i, ri(xi) =
∑|Ji|

j=1 rijxij, is a fixed value after the selection plan for component i has been

made. Notice that the number of failures from component i, Si(xi), is a Poisson distributed

random variable, and we neglect rij in calculating Si(xi) in [0, T ], then the distribution of
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Si(xi) is given as

Pr

[
Si(xi) = si

]
=

|Ji|∑
j=0

xijPr(Sij = si)

=

|Ji|∑
j=0

xij

∫ ∞
0

Pr(Sij = si|Λij = λij)fΛij (λij)dλij

=

|Ji|∑
j=0

xij

∫ ∞
0

e−λijT (λijT )si

si!
fΛij (λij)dλij .

According to the service contract, the OEM should pay a penalty cost to the customer.

Since the failure rates Λ1(x1),Λ2(x2), ...,Λn(xn) are random variables, the expected penalty

cost is a random variable as well. Without loss of generality, we assume the failure rates

are continuous random variables, with probability density functions fΛij
(.) over region Oij.

Then the expected penalty cost due to extra downtime exceeding D0 is given as

P (x) = E
{[
D(x)−D0

]+

cp
}

=

∞∑
s1=0

∞∑
si=0

· · ·
∞∑

s|I|=0

|I|∏
i=1

Pr

[
Si(xi) = si

][ |I|∑
i=1

siri(xi)−D0

]+

cp

=
∞∑
s1=0

∞∑
si=0

· · ·
∞∑

s|I|=0

|I|∏
i=1

|J|i||∑
j=1

xij

∫ ∞
0

e−λijT (λijT )si

si!
fΛij (λij)dλij

[ |I|∑
i=1

siri(xi)−D0

]+

cp.(3)

4.2. Approximate evaluation

In this section, we are going to explain how to approximately evaluate a given se-

lection plan of rough designs for all the component in the system. For a given policy

x = [x1,x2, . . . ,x|I|], the design cost A(x) and the expected repair cost R(x) can be deter-

mined from (1) and (2). These two cost terms are linear functions of the decision variables

x = [x1,x2, . . . ,x|I|].

For the exact evaluation of the expected penalty cost P (x), we will suffer from the

“curse of dimensionality” when the number of critical components becomes large, since each

critical component contributes a dimension in computing the convolution and integration

in (3). The computation time will explode as the number of critical components grows.

From (3), we can also observe that there are two levels of uncertainty existing in D(x)

throughout [0, T ]. The first level of uncertainty originates from the number of failures Si(x)

(i ∈ {1, 2, ..., |I|}), which is a Poisson distributed random variable. The second level of
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uncertainty comes from the failure rates λij (i ∈ {1, 2, . . . , |I|}, j ∈ {1, 2, . . . , |Ji|}), which

is a generally distributed random variable. We now introduce three approximation methods

to estimate the expected penalty cost, which vary in dealing with the uncertainty levels of

D(x). In the first commonly used evaluation method, we use the expected the downtime as

the actual downtime, thus ignoring both levels of the uncertainty. In the current literature,

for example, the uncertainty existing in the failure rates are usually ignored, so in the second

evaluation method, we only consider the uncertainty of the number of failures of the system.

While for the third evaluation method, we address both uncertainty levels of D(x) by using

a full-uncertainty method. These methods will be compared in Section 5.

To derive the first and second moment of D(x), for the total downtime of the jth design

in component i in [0, T ], the first moment is given as:

E(Dij) =

∫
λij∈Oij

E
[
Dij

∣∣∣∣Λij = λij

]
fΛij (λij)dλij

=

∫
λij∈Oij

λijTrijfΛij (λij)dλij

= µijTrij .

By using the moment generating function of Dij, we obtain:

E(D2
ij) =

∫
λij∈Oij

E
[
D2
ij

∣∣∣∣Λij = λij

]
fΛij (λij)dλij ,

=

∫
λij∈Oij

r2
ijλijT (1 + λijT )fΛij (λij)dλij ,

= r2
ijTµij + r2

ijT
2(σ2

ij + µ2
ij),

Var(Dij) = E
[
D2
ij

]
−
(
E[Dij ]

)2

= r2
ij [µijT + T 2σ2

ij ]. (4)

Then, for a single component i, we have:

Di(xi) =

|Ji|∑
j=1

Dijxij ,

E[Di(xi)] =

|Ji|∑
j=1

rijµijTxij ,

Var[Di(xi)] =

|Ji|∑
j=1

r2
ij [T

2σ2
ij + Tµij ]xij . (5)
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Finally, for the total downtime of the system in [0, T ]:

D(x) =

|I|∑
i=1

Di(xi) =

|I|∑
i=1

|Ji|∑
j=1

Dijxij ,

µD(x) = E[D(x)] =

|I|∑
i=1

E[Di(xi)] =

|I|∑
i=1

|Ji|∑
j=1

rijµijTxij , (6)

σ2
D(x) = Var[D(x)] =

|I|∑
i=1

|Ji|∑
j=1

Var[Di(xi)] =

|I|∑
i=1

|Ji|∑
j=1

r2
ij [T

2σ2
ij + Tµij ]xij . (7)

4.2.1. Zero-uncertainty method

The most direct way of approximating the system downtime is to use expected downtime

instead of the actual downtime. According to (6), zero-uncertainty method use E[D(x)] as

D(x), then we have the first evaluation of system downtime DA1(x) described as:

DA1(x) =

|I|∑
i=1

|Ji|∑
j=1

rijµijTxij ,

and the expected excess downtime DE(x) and penalty cost P (x) can be approximated as:

DE
A1

(x) =

[
DA1(x)−D0

]+

.

PA1(x) =

[
DA1(x)−D0

]+

cp

4.2.2. Partial-uncertainty method

In the current literature, for example in Mettas and Kallenberg [16], Öner et al. [20] and

Huang et al. [8], they do not consider the uncertainty of λij (i ∈ I, j ∈|Ji|). So for the

second approximation evaluation method, given that the lifetimes of the components are

exponentially distributed, we will simply assume λij (i ∈ I, j ∈|Ji|) is a constant which

equals to its mean. Given that D(x) is the summation of Di(xi), and the number of failures

for each component is poisson distributed, we approximate DE(x) by fitting a mixed Erlang

distribution to the first and second moments of D(x). The first moment of D(x), µD(x), is

given in (6). Under the assumption that λij = µij and σij = 0, Var(Dij), Var[Di(xi)] and
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σ2
D(x) in (4), (5) and (7) are rewritten as:

Var(D′ij) = r2
ijµijT,

Var[D′i(xi)] =

|Ji|∑
j=1

r2
ijTµijxij,

σ′2D(x) =

|I|∑
i=1

|Ji|∑
j=1

r2
ijTµijxij. (8)

From (6) and (8), the coefficient of variation of D(x) is given as:

c′v(x) =
σ′D(x)

µD(x)
=

√∑|I|
i=1

∑|Ji|
j=1 r

2
ijµijTxij∑|I|

i=1

∑|Ji|
j=1 rijµijTxij

(9)

Given that µD(x) > 1, if 0 < c′v(x) ≤ 1, according to Tijms [24](335-337), we fit the

downtime distribution to an Erlang(k′ − 1, k′) distribution with parameters(k′, θ′, q′E) such

that the first two moments of D(x) match the first two moments of the Erlang (k′ − 1, k′)

distribution. Thus the parameters of the Erlang (k′ − 1, k′) distribution can be obtained as:

k′(x) = d 1

c′2v (x)
e, (10)

q′E(x) =
1

1 + c′2v (x)

[
k′(x)c′2v (x)−

√
k′(x)

[
1 + c′2v (x)

]
− k′2(x)c′2v (x)

]
, (11)

θ′(x) =
k′(x)− q′E(x)

µ′D(x)
. (12)

Then the expected excess downtime can be approximated as:

DE
A2

(x) =
q′H(x)

θ′1(x)
e−θ

′
1(x)D0 +

1− q′H(x)

θ′2(x)
e−θ

′
2(x)D0 . (13)

The derivation can be found in Appendix B.2.

If c′v ≥ 1, we fit the downtime distribution to an Hyperexponential distribution with

parameters (θ′1, θ
′
2, q
′
H) such that the first two moments of D(x) match the first two mo-

ments of the Hyperexponential distribution. Thus the parameters of the Hyperexponential
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distribution can be obtained as:

θ′1(x) =
2

µD(x)

(
1 +

√
c′2v (x)− 1

2

c′2v (x) + 1

)
, (14)

θ′2(x) =
4

µD(x)
− θ′1(x), (15)

q′H(x) =
θ′1(x)(θ′2(x)µD(x)− 1)

θ′2(x)− θ′1(x)
. (16)

Then DE(x) can be approximated by:

DE
A2

(x) =
q′H(x)

θ′1(x)
e−θ

′
1(x)D0 +

1− q′H(x)

θ′2(x)
e−θ

′
2(x)D0 , (17)

(18)

The derivation can be found in Appendix B.2. And P (x) can be approximated by:

PA2(x) = DE
A2

(x)cp. (19)

4.2.3. Full-uncertainty method

To approximate both the uncertainty of the failure rate as well as the number of failures,

then the number of failures for each component is Poisson distributed with an uncertain

parameter. We approximate the downtime by two-moment fit method as well. We get the

first moment and variance of D(x), from (6) and (7). Then the coefficient of variation of

D(x) is given by:

cv(x) =
σD(x)

µD(x)
=

√∑|I|
i=1

∑|Ji|
j=1 r

2
ij [T

2σ2
ij + Tµij ]xij∑|I|

i=1

∑|Ji|
j=1 rijµijTxij

.

Under the condition that µD > 0, and 0 < cv ≤ 1, we fit the downtime distribution

to an Erlang(k − 1, k) distribution with parameters(k, θ, qE). Thus, similar to the partial-

uncertainty method the parameters of the Erlang (k − 1, k) distribution can be obtained as

13



:

k(x) = d 1

c2
v(x)
e, (20)

qE(x) =
1

1 + c2
v(x)

[
k(x)c2

v(x)−
√
k(x)

[
1 + c2

v(x)
]
− k2(x)c2

v(x)

]
, (21)

θ(x) =
k(x)− qE(x)

µD(x)
. (22)

Then for random failure rates Λ1(x1), Λ2(x2),. . . , Λn(xn), DE(x) can be approximated by

DE
A3

(x) =

[
k(x)− qE(x)

θ(x)
−D0

] k(x)−2∑
j=0

[
θ(x)D0

]j
j!

e−θ(x)D0

+

[
k(x)− qE(x)

θ(x)

][
θ(x)D0

]k(x)−1[
k(x)− 1

]
!
e−θ(x)D0 . (23)

The derivation is presented in Appendix B.1.

If cv ≥ 1, we fit the downtime distribution to an Hyperexponential distribution with

parameters (θ1, θ2, qH) such that the first two moments of D(x) match the first two mo-

ments of the Hyperexponential distribution. Thus the parameters of the Hyperexponential

distribution can be obtained as:

θ1(x) =
2

µD(x)

(
1 +

√
c2
v(x)− 1

2

c2
v(x) + 1

)
, (24)

θ2(x) =
4

µD(x)
− θ1(x), (25)

qH(x) =
θ1(x)(θ2(x)µD(x)− 1)

θ2(x)− θ1(x)
. (26)

Then DE(x) can be approximated by

DE
A3

(x) =
qH(x)

θ1(x)
e−θ1(x)D0 +

1− qH(x)

θ2(x)
e−θ2(x)D0 . (27)

The derivation can be found in Appendix B.2.And P (x) of the full-uncertainty method can

approximated by:

PE
A3

(x) = DE
A3

(x)cp (28)
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The procedure of the two-moment fit method is summarized in the following algorithm.

Algorithm 1

Step 1 Compute the µD(x), σ2
D(x) and cv(x) of the downtime distribution, check the value

of cv(x): if 0 < cv(x) ≤ 1, go to step 2; if cv(x) > 1, go to step 3.

Step 2 Fit the first two moments of an Erlang(k− 1, k) distribution to be equal to the first

two moments of the downtime distribution.

Step 2-a Let k(x), θ(x) and qE(x) be the parameters of the fitted Erlang(k − 1, k)

distribution, and compute the values of k(x), θ(x) and qE(x) according to (10)-

(12) for the partial-uncertainty method, or (20)-(22) full-uncertainty method.

Step 2-b Calculate DE
A2

(x) according to (13) and DE
A3

(x) according to (23).

Step 3 Fit the first two moments of a Hyperexponential distribution to be equal to the first

two moments of the downtime distribution.

Step 3-a Let θ1(x), θ2(x) and qH(x) be the parameters of the fitted Hyperexponential

distribution, compute the values of these parameters according to (14)-(16) for

the partial-uncertainty method and (24)-(26) for the full-uncertainty method.

Step 3-b Compute DE
A2

(x), DE
A3

(x) according to (17) and (27).

After approximate evaluation, our optimization problem is reformulated as P′:

(P′) minx πAk
(x) k = 1, 2, 3.

s.t.

|Ji|∑
j=1

xij = 1, for all i ∈ I

xij ∈ {0, 1}, for all i ∈ I, j ∈ Ji

where π(x) = A(x) +R(x) + PAk
(x).

5. Computational results

In this section, we propose two numerical experiments to test the accuracy of our evalu-

ation methods by comparing the results of these methods with the simulation results from

different test beds. In section 5.1, we investigate the quality of the evaluation results gen-

erated by the zero-uncertainty method, partial-uncertainty method, and full-uncertainty
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method, and compare them with the results generated by a simulation procedure mentioned

in Appendix A. In section 5.2, we investigate the quality of the optimal policies generated

by each evaluation method together with full enumeration.

5.1. Accuracy of the approximation

In this section, we execute a numerical experiment to assess the accuracy of the three

evaluation methods mentioned in the Section 4.2. To investigate the effect of three factors,

we conduct a full factorial test bed of 210 instances.

5.1.1. Test bed

To assess the quality of these methods, we compare the evaluation results of these methods

with the simulation results. Our simulation Monte Carlo simulation method is described in

Appendices A. DE
S is computed, as well as the gaps between DE

S and DE
A1

, DE
A2

and DE
A3

.

A full factorial test bed is set up to show the accuracy of the evaluation procedures under

different parameter settings. We identify three main factors: the number of the critical

components n, coefficient of variation cv of λi(xi) and the downtime budget factor Df .

Notice that λi(xi), µi(xi) and ri(xi) are functions of the given design xi. We will treat

them as parameters λi, µi and ri in the evaluation. Similarly, σi(xi) is also considered as a

parameter σi computed by cvµi. We generated 210 instances by taking all combinations of

the factor values shown in Table 1.

Table 1: The parameter setting of the test bed

n cv Df

5, 25, 50, 75, 100 0.2, 0.5, 0.8, 1.1, 1.4, 1.7 1, 1.05, 1.1, 1.15, 1.2, 1.25, 1.3

In the test bed, the factor Df is a coefficient to generate different values of D0 by the

following expression,

D0 = Df

n∑
i=1

µiriT , (29)

where
∑n

i=1 µiriT is the expected total downtime. Thus, if Df is one, the targeted downtime

D0 is set to be equal to the expected total downtime. The setting of the fixed parameters

in the test bed is given in Table 2. The repair time ri varies for different i by taking a value

from {1, 3, 5}. The average failure rate µi varies for different i as a sequence. We assume λi

(i ∈|I|) is lognormally distributed.
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For the zero-uncertainty method, it is apparent that when Df ≥ 1, DE
A1

= 0 for all the

210 instances. For the fixed-failure rate method, since the randomness of the failure rates

are not considered, DE
A2

is only related to n and Df , and only 35 instances are computed,

to compare the gap between DE
A2

and DE
S under all the 210 parameter settings. Namely, we

can get one value of DE
A2

for different cv under the same settings of (n, Df ).

Table 2: Parameter values for µi and ri, i = {1, 2, ..., n}

n T µi ri

5, 25, 50, 75, 100 10 {0.200, ..., 0.200− (i− 1) 0.18
n−1 , ..., 0.02} {1, 3, 5, 1, 3, 5, ...}

5.1.2. Results and managerial insights

We summarize the results of the test bed in Table 3. To see the deviations of the approxi-

mation results from the simulation results for each instance, we first compute the proportion

of DE in D0, e.g., DE
A1
/
∑n

i=1 µiriT for the approximation methods and DE
S /
∑n

i=1 µiriT for

the simulation methods, as well as the confidence intervals of the simulation results. The con-

fidence intervals of all the simulation results are relatively small, which shows the accuracy

of our simulation results. Then the accuracy of our approximation is assessed by the gaps

between {DE
A1
/
∑n

i=1 µiriT , DE
A2
/
∑n

i=1 µiriT , DE
A3
/
∑n

i=1 µiriT} and DE
S /
∑n

i=1 µiriT . The

Avg Gap and max Gap columns show the average gap and maximum gap of each method

for a group of instances that has the same value of one of the three factors. For example, the

values 1.7%, 5.5% in the first row are the average and maximum gaps of the full-uncertainty

method in the 42 instances with five components in the system. For the zero-uncertainty

method, the average gap is 8.2% and the max gap is 34.3% for all the instances; the av-

erage and max gap for the partial-uncertainty method is 3.5% and 16.1% respectively; for

the full-uncertainty method the average gap is 0.5% and the maximum gap is 5.5%. The

full-uncertainty method performs best among all the methods. The zero-uncertainty method

has the worst performance, which matches our intuition. Note that the computation times

of the approximation methods for all the instances are negligible compared with simulation.

The approximation methods are more accurate when n is large (e.g., 50 or 100). This is

due to the fact that the total downtime is the sum of n independent random variables, and

when n is large, the total downtime converges in distribution to a normal random variable,

regardless of the individual underlying distributions. The accuracy of the full-uncertainty

method is not sensitive to the changes of Df , whereas the accuracy of the zero-uncertainty

method increases when Df increases or D0 is higher. With the increase of cv, both the
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Figure 2: The simulation curve and approximation curve of the downtime density distribution under lognor-
mal distributed failure rate

average and max gaps of each method become larger. This is because when the cv becomes

larger, σi becomes larger as well, which increases the uncertainty of λi(i ∈|I|). Given that the

full-uncertainty method takes this uncertainty into account, the related gaps do not increase

much, compared with the other two methods.

In order to better demonstrate the accuracy of the full-uncertainty method, we also

compare the probability density functions of the downtime distributions estimated from

simulation with the ones estimated from the approximation method, as shown in Figure 2.

It is obvious that the downtime distributions estimated from simulation are approximately

the same as the ones estimated from the full-uncertainty method for various settings of n

and cv. We also conduct another full factorial test with the same settings but under the

assumption that λi is uniformly distributed(i ∈|I|). The numerical results is similar to the

first test bed.

5.2. The numerical experiment on the optimization test bed

In this section, to compare the quality of the optimal policies generated by the three

evaluation methods on the basis of full enumeration as well as the managerial insights of the
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Table 3: Average gap and maximum gap between the simulation results and three evaluation methods

zero-uncertainty method partial-uncertainty method full-uncertainty method
Avg Gap max Gap Avg Gap max Gap Avg Gap max Gap

N 5 19.65% 34.28% 6.78% 14.53% 1.51% 5.46%
25 7.19% 17.23% 3.36% 8.53% 0.31% 1.66%
50 4.37% 12.64% 2.23% 6.51% 0.12% 0.80%
75 3.20% 10.44% 1.69% 5.43% 0.08% 0.55%

100 2.55% 9.09% 1.37% 4.76% 0.07% 0.45%
Df 1 12.73% 34.28% 3.94% 14.53% 0.58% 5.46%

1.05 10.15% 31.22% 3.74% 14.38% 0.51% 4.92%
1.1 8.19% 28.48% 3.46% 14.12% 0.44% 4.47%

1.15 6.67% 25.96% 3.12% 13.72% 0.38% 4.13%
1.2 5.50% 23.46% 2.75% 13.02% 0.36% 4.08%

1.25 4.60% 21.31% 2.43% 12.42% 0.34% 3.93%
1.3 3.90% 19.70% 2.15% 12.12% 0.31% 3.48%

cv 0.2 4.44% 20.67% 0.14% 0.91% 0.07% 0.43%
0.5 5.22% 22.81% 0.91% 3.06% 0.06% 0.37%
0.8 6.46% 25.73% 2.16% 5.98% 0.10% 0.45%
1.1 7.92% 28.98% 3.61% 9.23% 0.33% 1.57%
1.4 9.43% 32.19% 5.12% 12.44% 0.71% 3.12%
1.7 10.87% 34.28% 6.57% 14.53% 1.23% 5.46%

All 7.39% 34.28% 3.09% 14.53% 0.42% 5.46%

optimal policies. We identify five factors and generate 243 instance from the full factorial

test bed. The test bed design are described in Section 5.2.1, the comparison of optimal

solutions are presented in Section 5.2.2, the managerial insights of the optimal solutions are

shown in Section 5.2.3.

5.2.1. Test bed

In this subsection, we will investigate how the optimal solution changes with different

parameter settings by creating a full factorial test bed. There are five factors under in-

vestigation: the downtime budget factor Df , the acquisition cost caij (i ∈|I|, j ∈|Ji|), the

expected failure rate µij (i ∈|I|, j ∈|Ji|), the coefficient variation cv and the penalty rate cp.

The values of these five factors for this full factorial test bed can be found in Table 4. Each

factor has three levels, so in total 243 instances are generated by taking all combinations of

the factor levels. We use different Dfs to generate different values of D0. D0 is computed

based on Df and the average value of the expected downtimes for two alternative designs of

each component, i.e.,

D0 = Df

|I|∑
i=1

1

|Ji|

|Ji|∑
j=1

µijrijT .
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Table 4: Parameter setting for the optimization test bed

Name of parameter No. Values
val.

Downtime budget factor (Df ) 3 1, 1.1, 1.2

Acquisition cost (caij) 3



1)

{
[500, . . . , 500i, . . . , 5000]

1.5 × [500, . . . , 500i, . . . , 5000]

2)

{
[500, . . . , 500i, . . . , 5000]

2 × [500, . . . , 500i, . . . , 5000]

3)

{
[500, . . . , 500i, . . . , 5000]

2.5 × [500, . . . , 500i, . . . , 5000]

Expected failure rates (µij) 3



1)

{
[0.15, 0.14, 0.12, 0.08, 0.06, 0.16, 0.18, 0.2, 0.04, 0.02]
[0.1, 0.12, 0.11, 0.06, 0.03, 0.13, 0.14, 0.15, 0.03, 0.01]

2)

{
[0.1, 0.14, 0.12, 0.08, 0.06, 0.16, 0.18, 0.2, 0.04, 0.02]
0.75× [0.1, 0.12, 0.11, 0.08, 0.03, 0.13, 0.14, 0.15, 0.03, 0.01]

3)

{
[0.1, 0.14, 0.12, 0.08, 0.06, 0.16, 0.18, 0.2, 0.04, 0.02]
0.5× [0.1, 0.12, 0.11, 0.08, 0.03, 0.13, 0.14, 0.15, 0.03, 0.01]

Coefficient of variation (cv) 3 0.3, 0.9, 1.5
Penalty cost factor (cp) 3 1000, 5000, 10000

In our test bed, the acquisition cost of the second design of every component is more

expensive than the first design, so the second design is referred to as the ”expensive” design

and the first design is referred to as the ”cheap” design. Notice that for the expensive design

of every component, the average and standard deviation of failure rate are always smaller

than the ones for the cheap design, which is sensible since otherwise there’s no intention to

choose the expensive design.

The constants of the test bed are set as follows: the cost per repair crij (i ∈|I|, j ∈|Ji|) is

equal to 30% of the corresponding acquisition cost caij. For every instance, we assume that:

the life cycle length T is ten years; there are ten components in the system (|I|= 10); each

component has two alternative designs to choose from (|Ji|= 2); the repair time for each

failure is 3 hours.

5.2.2. Results comparison of the optimization results between different evaluation methods

For each evaluation method as well as simulation, we generate 243 solutions from the

test bed by using full enumeration. As mentioned in Section 5.1.1, for the zero-uncertainty

method, DE
A1

(x) = 0 for all the instances. For the partial-uncertainty method, cv are not

considered, only 81 instances are computed. To compare the differences among all the 243

parameter settings, we use one value as the optimal policy for different cv under the same

settings of (Df , c
a
ij, µij, c

p).

The results are summarized in Table 5. To compare the LCC from different methods, we
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Table 5: Results compare of the optimization results between different evaluation methods

Zero-uncertainty Partial-uncertainty Full-uncertainty
∆π(xz) ∆Pxz ∆Pe(x

z) ∆π(xp) ∆Pxp ∆Pe(x
p) ∆π(xf ) ∆Pxf ∆Pe(x

f )
(%) (%) (%) (%) (%) (%) (%) (%) (%)

Df 1 105.7 100 0.71 0.31 34.6 0.04 0.02 13.6 0.01
1.1 83.9 100 0.61 1.32 54.3 0.08 0.02 12.3 0.01
1.2 60.1 100 0.49 3.21 64.2 0.11 0.03 14.8 0.02

caf 1.5 110.3 100 0.73 1.09 45.7 0.07 0.03 17.3 0.02
2 79.2 100 0.59 1.63 53.1 0.08 0.02 9.9 0.01

2.5 60.2 100 0.48 2.12 54.3 0.08 0.02 13.6 0.01
µf 1 21.9 100 0.47 1.21 49.4 0.09 0.06 28.4 0.03

0.75 72.5 100 0.65 1.66 46.9 0.08 0.02 11.1 0.01
0.5 155.3 100 0.68 1.97 56.8 0.07 0.00 1.2 0.00

cp 1000 31.8 100 0.45 0.96 50.6 0.07 0.03 17.3 0.02
5000 72.4 100 0.61 1.81 56.8 0.09 0.03 13.6 0.01

10000 145.6 100 0.74 2.07 45.7 0.08 0.02 9.9 0.01
cv 0.3 80.9 100 0.54 0.04 14.8 0.01 0.01 4.9 0.00

0.9 84.9 100 0.61 1.42 67.9 0.09 0.01 14.8 0.01
1.5 83.9 100 0.65 3.38 70.4 0.13 0.05 21.0 0.02

All 83.2 100 0.60 1.61 51.0 0.08 0.02 13.6 0.01

first compute the actual LCC by evaluating the optimal policy of different methods (xz, xp

and xf ), defined as π(xz), π(xp) and π(xf ). Then we compute the gap between π(xz), π(xp),

π(xf ) and π(xs) which are shown as ∆π(xz), ∆π(xp) and ∆π(xf ). We also interest in the

gap of the percentage of the optimal solutions different from xs over the optimal solutions

of all the instances, defined as Pe(x
z), Pe(x

p) and Pe(x
f ), between the three methods and

simulation, ∆Pe(x
z), ∆Pe(x

p) and ∆Pe(x
f ). The gap of the percentage of expensive design

chosen in the optimal between the three methods and simulation, are also computed as ∆Pxz ,

∆Pxp and ∆Pxf . The full-uncertainty method has the best performance in terms of smallest

π(xz), π(xz) and ∆π(xz). While the zero-uncertainty method has the worst performance.

This is because DE
A1

(xz) = 0, which means P (xz) = 0, so for all the instances, Pe(x
z) = 0.

This results in ∆Pe(x
z) = 100% and large values of ∆π(xz) and ∆Pxz . For the partial-

uncertainty method, given that it did not consider the variation of failure rates, it suffers

from larger gaps when cv is large and µf is small. Because for smaller µij, different cv can

cause big difference in λij. With large caf , partial-uncertainty method tend to chose more

cheap designs due to underrated P (x) comparing to simulation. When Df increases, each

gap of the partial-uncertainty method and full-uncertainty method becomes larger. Because

for large Df , D
E(x) becomes very small, which makes it very hard to be approximated.

21



Generally speaking, full-uncertainty method performs very well under all parameter setting.

5.2.3. Results and managerial insights

Given that we have already proved that the full-uncertainty method has a high accuracy.

In this subsection, we focus on discussing the managerial insights of xf under different

parameter settings. We summarize the results of the full-uncertainty method in Table 6

and Table 7. The optimal solution xf for each instance in the test bed is the choices of

alternative designs for ten components. To better demonstrate the solutions we compute

the percentage of expensive components chosen in the solutions, denoted as Pxf in Table 6.

The approximated probability of D(xf ) exceeding D0 is calculated for each instance as well,

shown as PD0 . DE(xf ) and the percentage of DE(xf ) over D0 are also given. In Table 6, we

categorize all the instances containing a specific level of a factor into a subset. For example,

value 70.4% in the first row is the average value of Pxf of 81 instances with Df = 1.

To observe the changes of the objective function under the optimal solution, we calculate

π(xf ), A(xf ), R(xf ) and P (xf ) of each instance and compare them with the ones of a

standard instance in which the optimal solution is x∗, and all factors (Df , c
a
ij, µij, cp, c2) are

set at the medium levels that are given in Table 4. For this standard instance, the values

of π(x∗), A(x∗), R(x∗) and P (x∗) are 64666, 43000, 9998 and 11669 respectively. For each

instance, the percentages of (π(xf ), A(xf ), R(xf ) and P (xf ) divided by the corresponding

values of the standard instance are summarized in Table 7.

The first observation from Table 7 and Table 6 is that when D0 in the service contract

becomes larger (when Df increases), it is more beneficial to choose the cheap designs, since

the expected excess downtime (in terms of PD0 ,
DE(xf )

D0

and DE(xf )) becomes smaller and

the penalty cost has less influence on the total expected cost. For similar reasons, when

the penalty cost rate cp increases, choosing more expensive designs becomes more attractive,

since in this way the excess downtime can be reduced to compensate the increase in cp.

In contrast, if the prices for the expensive designs increase, we should choose more cheap

designs regardless of the fact that the expected excess downtime, the penalty cost and the

repair cost will increase by doing this.

Remember that for the expensive design of every component, the average and standard

deviation of failure rate are always smaller than the ones for the cheap design. Namely,

the reliability performances of expensive designs are better than cheap designs. When the

improvement of reliability performances by choosing expensive designs becomes bigger, i.e.,

µijs are set at a higher level given in Table 4, it is more advantageous to have more expensive
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designs in the system. This will apparently decrease the excess downtime during the life

cycle (in terms of PD0 ,
DE(xf )

D0

and DE(xf ) ), together with the penalty cost. Moreover,

by choosing more expensive designs the repair cost decreases since the better reliability

performances can be obtained.

As we expected, the changes of the standard deviations of failure rates do not have a

significant impact on the acquisition cost and repair cost, whereas the penalty cost varies

considerably. Since the uncertainties in failure rates will increase the expected excess down-

time, we tend to select more expensive designs to avoid the big increment of the expected

excess downtime and penalty cost when the uncertainty is large or cv is large, although the

acquisition cost and repair cost will slightly increase.

Another observation based on the maximum and minimum value of Pxf and P (xf ) is

that the optimal solution (Pxf ) and the penalty cost varies a lot among different parameter

settings except the cases with Df = 1. This shows that the optimal solution is quite sensitive

to the changes of all the parameters and the penalty cost plays an important role in the

minimization of expected total cost.

Table 6: Numerical results of the optimization test bed

Pxf (%) PD0 (%) DE(xf ) (hrs) DE(xf )/D0 (%)
Avg. max min Avg. max min Avg. max min Avg. max min

Df 1 70.37 90.00 70.37 25.99 55.62 25.99 2.62 8.60 2.62 9.21 28.26 9.21
1.2 61.11 90.00 10.00 17.76 38.76 3.52 1.78 6.49 0.16 5.22 17.75 0.55
1.4 50.49 80.00 10.00 12.71 29.21 1.98 1.28 4.91 0.09 3.24 12.92 0.27

caf Level 1 73.83 90.00 20.00 15.12 35.36 1.98 1.44 5.42 0.09 4.52 17.81 0.27

Level 2 59.14 80.00 10.00 18.82 49.79 3.07 1.88 7.54 0.14 5.83 24.76 0.43
Level 3 49.01 80.00 10.00 22.52 55.62 5.34 2.36 8.60 0.34 7.32 28.26 1.00

µf Level 1 48.52 90.00 10.00 27.30 55.62 6.74 3.20 8.60 0.41 9.33 28.26 0.95
Level 2 65.68 90.00 20.00 18.57 44.77 3.29 1.73 4.91 0.17 5.59 14.52 0.44
Level 3 67.78 90.00 30.00 10.59 28.46 1.98 0.75 2.22 0.09 2.74 9.30 0.27

cp 5000 45.80 80.00 10.00 23.47 55.62 3.07 2.49 8.60 0.14 7.74 28.26 0.43
10000 61.85 80.00 10.00 17.95 43.80 3.07 1.76 6.28 0.14 5.45 20.63 0.43
20000 74.32 90.00 20.00 15.04 34.79 1.98 1.43 5.25 0.09 4.48 17.26 0.27

cv 0.3 53.83 90.00 10.00 17.92 55.62 1.98 1.27 5.47 0.09 3.99 17.96 0.27
0.9 60.86 90.00 10.00 18.55 51.35 2.54 1.77 6.93 0.14 5.51 22.75 0.42
1.5 67.28 90.00 10.00 20.00 46.05 5.08 2.64 8.60 0.40 8.17 28.26 1.21

All 60.66 90.00 10.00 18.82 55.62 1.98 1.89 8.60 0.09 5.89 28.26 0.27
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Table 7: Summary of the optimization test bed

π(xf )/π(x∗) (%) A(xf )/A(x∗) (%) R(xf )/R(x∗) (%) P (xf )/P (x∗) (%)
avg. max min avg. max min avg. max min avg. max min

Df 1 123 271 68 99 127 66 93 159 51 240 901 19
1.2 103 216 65 92 127 65 90 152 54 154 619 17
1.4 90 177 63 85 127 65 87 148 54 108 432 6

caf Level 1 92 234 63 84 90 66 76 100 51 138 879 6

Level 2 106 253 67 94 106 65 92 129 69 165 901 25
Level 3 117 271 67 99 127 66 102 159 84 198 901 55

µf Level 1 124 271 66 84 127 65 105 159 88 289 901 49
Level 2 105 197 67 95 127 67 95 122 75 149 521 26
Level 3 87 137 63 97 127 74 70 88 51 63 223 6

cp 5000 87 127 63 82 111 65 85 120 54 107 369 6
10000 103 187 64 93 127 65 90 133 54 151 538 12
20000 126 271 66 102 127 69 96 159 51 244 901 15

cv 0.3 91 182 63 87 127 65 88 152 54 106 432 6
0.9 103 219 65 92 127 65 90 152 51 154 633 14
1.5 122 271 67 97 127 66 92 159 51 241 901 23

All 105 271 63 92 127 65 90 159 51 167 901 6

6. Conclusion

In this paper, we introduced a decision support model for a series system with uncertain

component reliability and multiple designs for each component during the design phase. We

formulated the costs that are affected by the uncertain component reliability and different

design for each component throughout the life time of a systems (LCC). Two levels of

uncertainty are investigated, the uncertainty of the number of failures of the system and the

uncertainty of the failure rates. We proposed three different methods to evaluation a given

policy, the zero-uncertainty method does not consider either type of the uncertainty, the

partial-uncertainty method only considers the uncertainty of the number of failures in the

system, and the full-uncertainty method takes both uncertainty in to account. We conduct

two numerical experiment to investigate the accuracy of each method by comparing the

results of each method with the simulation. For the evaluation test bed and optimization

test bed, the full-uncertainty method performs the best, while the zero-uncertainty method

leads to large gap in excess downtime and LCCs. Partial-uncertainty methods also has

relatively larger gaps. The results of the optimization test bed also reveals some managerial

insights which may benefit the decision making process in practice.

Given that the optimization problem is formulated as a non-linear, non-separable, integer

programming problem. It is NP -hard. For optimization, we only use full enumeration which
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is time consuming. For evaluation, we only approximate a given policy numerically. In our

further research, we focus on getting the analytical results on which design should be chosen

to get the optimal solution exactly.

Appendices

A. Procedures of the Monte Carlo simulation

For the numerical experiment of evaluation, we use the following steps:

Step 1 First, we generate the sequences of ri, µi and σi, i = {1, 2, ..., n}. Then we get D0

immediately from (29). Furthermore, we take one sample Λ̂i from Λi ∼ G(µi, σi) for

each component to simulate its failure rate λi, where G(µi, σi) is a general distribution

with parameter mean µi and standard deviation σi. Given that the number of failures

of each component si is Poisson distributed with parameter λiT , we take one sample

Ŝi from Si ∼Pois(Λ̂iT ). Together with ri, we get one simulation result D̂E
S /D0 of the

proportion of DE/D0 computed as following:

D̂E
S /D0 =

∑n
i=1 Ŝiri −D0∑n

i=1 Ŝiri
. (30)

Step 2 Repeat step 1 for 10000 times to get 10000 D̂E
S /D0, we take the expected value

D̄E
S /D0 of all the D̂E

S /D0 and compare it with the approximation result DE
A1/D0,

DE
A2/D0 and DE

A3/D0 to get values of the absolute gap between D̄E
S /D0 and DE

A1/D0,

DE
A2/D0 and DE

A3/D0.

Step 3 Repeat step 3 for 50 times to generate final simulation results of DE/D0, DE
S /D0.

And the mean and maximum value for each gap and the confidence interval for D
Ep

S .

The 95% percent confidence interval is given as:

(DE
S /D0 − t(49,2.5%)

√
S2(50)

50
, DE

S /D0 + t(49,2.5%)

√
S2(50)

50
).

For the numerical experiment of optimization, the simulation procedure is similar, for

each feasible solution of a certain instance, we get A(x) and R(x) from (1) and (2). To

compute P (x), we first generate 10000 samples of Λ̂ij (i ∈ {1, 2, . . . , 10}, j ∈ {1, 2}), from
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Λij ∼ G(µij) and 10000 samples of Ŝij (i ∈ {1, 2, . . . , 10}, j ∈ {1, 2}) from Si ∼ Pois(Λ̂iT )

respectively. According to (3), we get 10000 values of P̂ (x), and take the expected value

P̄ (x). Run this procedure 50 times to general 50 P̄ (x), use the expected value as the

final evaluation value, P (x). Find the feasible solution with the minimum π(x) by solving

problem (P) with full enumeration.

B. Derivations for the full-uncertainty method

B.1. Identities for the Erlang(k − 1, k) distribution

Consider an Erlang(k − 1, k) distribution X with parameters (k, θ, q), the probability

density function is

ek−1,k(x) = qθk−1 xk−2

(k − 2)!
e−θx + (1− q)θk xk−1

(k − 1)!
e−θx,

and the cumulative distribution function of X is

Ek−1,k(x) = q

(
1−

k−2∑
j=0

(θx)j

j!
e−θx

)
+ (1− q)

(
1−

k−1∑
j=0

(θx)j

j!
e−θx

)
.

Then the first partial moment of the Erlang(k − 1, k) can be described as:

E[(X −X0)+] =

∫ ∞
0

(x−X0)+ek−1,k(x)dx

=
q(k − 1)

θ

∫ ∞
X0

θk
xk−1

(k − 1)!
e−θxdx+

k(1− q)
θ

∫ ∞
X0

θk+1x
k

k!
e−θxdx

−X0

∫ ∞
X0

ek−1,k(x)dx.

Given the probability density function of an Erlang distribution is: eθk(x) = θk xk−1

(k−1)!
e−θx and

the Erlang cumulative distribution function is Eθ
k(X) = 1−

∑k−1
j=0

(λx)j

j!
e−λx, we have:

E[(X −X0)+] =
q(k − 1)

θ

[
1− Eθ

k(X0)

]
+
k(1− q)

θ

[
1− Eθ

k+1(X0)

]
−X0

[
1− Eθ

k−1,k(X0)

]
= (

k − q
θ
−X0)

k−2∑
j=0

(θX0)j

j!
e−θX0 + (

k − q
θ

)
(θX0)k−1

(k − 1)!
e−θX0 .
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B.2. Identities for the Hyperexponential distribution

For a Hyperexponential distribution X with parameters (θ1, θ2, q), the probability density

function is given as:

h2(x) = qθ1e
−θ1x + (1− q)θ2e

−θ2x,

the cumulative distribution function is given as:

H2(x) = q(1− e−θ1x) + (1− q)(1− e−θ2x),

and the first partial moment is given as:

E[(X −X0)+] =

∫ ∞
0

(x−X0)+h2(x)dx

=

∫ ∞
X0

xqθ1e
−θ1xdx+

∫ ∞
X0

x(1− q)θ2e
−θ2xdx−X0

∫ ∞
X0

h2(x)dx

= qX0e
−θ1X0 +

q

θ1

∫ ∞
X0

θe−θ1xdx+ (1− q)X0e
−θ2X0 +

1− q
θ2

∫ ∞
X0

θ2e
−θ2xdx

−X0

[
1−H2(X0)

]
.

With the exponential probability density function fθ(x) = θe−θx, and the exponential cu-

mulative distribution function Fθ(x) = 1 − e−θx, denote the complementary distribution

function of Fθ(x) as F̄θ(x), then the first partial moment can be written as:

E[(X −X0)+] = qX0e
−θ1X0 + (1− q)X0e

−θ2X0 +
q

θ1

[
1− Fθ1(X0)

]
+

1− q
θ2

[
1− Fθ2(X0)

]
−X0

[
1−H2(X0)

]
.
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[21] K.B. Öner, A. Scheller-Wolf, and G.J. van Houtum. Redundancy optimization for

critical components in high-availability technical systems. Operations Research, 61(1):

244-264, 2013.

[22] J.E. Ramirez-Marquez and G. Levitin. Algorithm for estimating reliability confidence

bounds of multi-state systems. Reliability Engineering and System Safety, 93(8):1231-

1243, 2008.

[23] L. Takacs. On certain sojourn time problems in the theory of stochastic processes. Acta

Mathematica Hungarica, 8(1):169-191, 1957.

29



[24] H.C. Tijms. Stochastic models: an algorithmic approach. Wiley, New York, 1994.

30


	Introduction
	Literature
	Model
	Evaluation
	Exact evaluation
	Acquisition cost
	Repair cost
	Penalty cost

	Approximate evaluation
	Zero-uncertainty method
	Partial-uncertainty method
	Full-uncertainty method


	Computational results
	Accuracy of the approximation
	Test bed
	Results and managerial insights

	The numerical experiment on the optimization test bed
	Test bed
	Results comparison of the optimization results between different evaluation methods
	Results and managerial insights


	Conclusion
	Appendices
	Procedures of the Monte Carlo simulation
	Derivations for the full-uncertainty method
	Identities for the Erlang(k-1,k) distribution
	Identities for the Hyperexponential distribution

	References

