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Abstract. Brain networks are becoming forefront research in neuro-
science. Network-based analysis on the functional and structural connec-
tomes can lead to powerful imaging markers for brain diseases. However,
constructing the structural connectome can be based upon different ac-
quisition and reconstruction techniques whose information content and
mutual differences has not yet been properly studied in a unified frame-
work. The variations of the structural connectome if not properly under-
stood can lead to dangerous conclusions when performing these type of
studies. In this work we present evaluation of the structural connectome
by analysing and comparing graph-based measures on real data acquired
by the three most important Diffusion Weighted Imaging techniques:
DTI, HARDI and DSI. We thus come to several important conclusions
demonstrating that even though the different techniques demonstrate
differences in the anatomy of the reconstructed fibers the respective con-
nectomes show variations of 20%.

Introduction

Over the last decade, the study of complex networks has expanded dramatically
across different scientific fields including Neuroscience. The brain is a complex sys-
tem whose complex components continuously create complex patterns. Therefore,
a natural paradigm for studying the brain is via network analysis. A comprehen-
sive map of neural connections of the brain is called “connectome” [1,2]. At the
macroscopic scale, the connectome can be seen as a network, usually represented as
a matrix, where each vertex represents well-defined cortical or sub-cortical struc-
tures and the edges quantify the structural white matter connectivity as measured
with tractography. When this matrix is estimated from Diffusion Weighted MRI
(dwMRI) data we speak about structural connectivity. In the process of calculat-
ing the connectomes, from the measureddata, several parameters are involved that
can lead to variations of the connectivity matrices. In the structural connectome
however, the most important step is the fibre tractography that depends not only
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on the acquired dwMRI data but also on the choice for particular reconstruction
and fibre-tracking algorithms, as pointed out by Bastiani et al [3]. The most com-
mon acquisition model is the Diffusion Tensor Imaging (DTI) [4] which requires
modest q-space acquisitions with short scanning time ( 3-5min). However, DTI
has been proved to have limitations in complex fibre areas. Therefore, more com-
plex acquisitions models were developed, known as High Angular Resolution Dif-
fusion Imaging (HARDI) [5], with denser q-space sampling on a spherical shell.
It has been demonstrated that it is able to give good results even at lower (clin-
ically preferable) b-values [6] resulting in scanning times of about 15 min. The
richest q-space sampling technique is Diffusion Spectrum Imaging [7], resolving
more complex fibre configurations, however, at a cost of very long acquisition times
(>35min). With the arrival of the connectomics many groups have initiated re-
search in this direction, choosing the dwMRI data acquisition
technique, however, without knowing how this choice influences the quality of the
connectomes. The choice of suitable technique with high reproducibility for the
purpose of constructing structural connectomics has not yet been properly ad-
dressed in literature, even though some attempts have been done for the functional
connectome [8]. In this work, we evaluate the information difference contained in
the structural connectomes constructed from the same subject scanned with dif-
ferent dwMRI acquisition techniques (DTI, HARDI and DSI). Since the goal is not
evaluating all the possible parameters involved in the process, we acquire the data
with the most commonly used parameters in literature. We perform the connec-
tome construction for all the modalities with equal parameter settings. We fur-
thermore test the reproducibility of the connectome and information difference
in relation to the acquisition using network analysis. Finally we perform a ’blind’
qualitative analysis of different fibre bundles involved in the connectome construc-
tion by an experienced Neuroanatomist.

1 Methods

Data: MRI acquisitions were performed on 5 healthy volunteers (4 male and 1
female, age:31.2±2.9 years) using a twice refocused spin-echo echo-planar imag-
ing sequence on a 3T Siemens Trio MRI scanner (Erlangen, Germany). Informed
consent was obtained prior to the acquisition. The MRI protocol included the
following sequences: a) 3D structural T1-weighted MPRAGE sequence: Repeti-
tion Time (TR): 1900ms, Echo Time (TE): 4.44ms, Inversion recovery time (TI):
1050ms, Flip angle: 8◦, FOV: 220×220mm2, isometric 1mm3; b)The parameters
for the dwMRI sequences are given in the table 1 (top). We have acquired in
total 21 datasets from which 7 DTI, 6 HARDI and 8 DSI. For some of the sub-
jects the scans were repeated in the same scanning session or after one month. In
table 1 (bottom) we report the subset of data we used for each of the performed
tests and the number of subjects involved.

Connectome Construction: We calculated the connectomes using publicly
available software, the connectome mapper (cmp)1 [9]. For all imaging modalities
1 http://www.connectomics.org

http://www.connectomics.org
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Table 1. Top: Scanning parameters used in our dwMRI acquisitions. ∗Due to technical
reasons two DTI datasets were obtained using spatial resolution of 1.25×1.25×2.5mm3 .
∗∗Due to technical reasons one DSI dataset was obtained using spatial resolution of
3mm3 isometric. bottom: Data overview per performed test.

Modality DTI HARDI DSI
b−val (s/mm2) 1000 1500 bmax=8000
num. grad. 30 82 515
num. b0 1 6 N/A
spatial res. (mm3) 2.5×2.5×2.5∗ 1.25×1.25×2.5 2.2×2.2×3∗∗

TR/TE 6900/89 7600/98 8200/164
acq.time(min) 3.56 11.33 35.42
Evaluation DTI HARDI DSI #subjects
reproducibility 5 4 6 3
intra-subject 7 6 6 4
network based 7 6 8 5
qualitative 3 3 3 3

we used the default settings (re-sampling the dwMRI data to 1mm3 isometric
voxel size using trilinear interpolation, tracking stopping criteria at angle=60◦,
number of seeds=32, fibre filtering with enabled spline filter and cut-off filter in
the interval of [20;500] mm). For DTI fibre tracking, the cmp uses the standard
FACT method and for Qball and DSI FACT-alike algorithm implemented in the
Diffusion Toolkit [10]. For two subjects to improve the registration step we per-
formed non-linear registration using the T2 data, and for the rest of the subjects
we used linear registration. We employed Lausanne parcellation since it offers 5 hi-
erarchical scales to test and compare the quality of the connectomes. Depending
on the imaging modality, DTI, HARDI (Qball) or DSI reconstruction was per-
formed. For network creation, we first apply an absolute threshold in order to
discard edges with less than 10 fibres (considered spurious fibres from data ob-
servation), and connection matrices are created by either binarizing edge weights,
or by normalizing the edge weights with maximum number of found fibres.

Indices for Connectome Comparison and Quality Assessment: The sim-
plest way of comparing networks is to assess the difference between their over-
all matrix representations. We computed the correlation between the graphs
as described in Table 2. We computed several other indices (normalized root-
mean-square deviation, dot product of the direct embedding of the matrix into
a vector-space representation, Hamming distance and Fleiss’ kappa reliability of
agreement) but since they do not give further insight, we omit them for simplicity
of presentation.

Table 2. Correlation measure of structural connectome agreement, represented as a
matrix where Ai,j is the weighted edge between nodes i and j
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Network-Based Indices: To compare certain network features of the ma-
trices we used the brain connectivity toolbox2. We considered graph density,
node strength, characteristic path length and global efficiency over bi-
nary undirected graph representation of the connectomes.

Track-Based Quality Assessment Indices: We extracted 40 fibre bundles
that connect different cortical regions in the lowest parcellation scale (33) since
it corresponds to the underlying anatomy. The regions were carefully selected
spanning the whole brain in order to capture fibres with different neuroanatom-
ical nature: commisural, projection, u-fibres and subcortical fibres. We exported
the fibres of each reconstruction technique per subject and grouped in triplets of
bundles visualised in the Amira3 software. This data was presented to a professor
in Neuroanatomy in a completely anonymized way (the fibres were only shown
with different colors and no reference to the underlying acquisition modality). He
was asked to score the accuracy of the fibres to the underlying anatomy as objec-
tively as possible with scores from 1-3, where 3 stands for the most accurate and
1 for the least accurate technique. In case few techniques present similar accuracy
they could be scored with the same score. We additionally report percentage of
the missing fibre bundles (out of the 40 considered) that each technique fails to
reconstruct, i.e., finds no fibers between 2 regions or only aberrant fibers.

2 Results

Reproducibility of the Structural Connectome: Structural connectome
can be seen as a potential imaging marker sensitive to certain pathologies of the
white matter (e.g., Multiple Sclerosis, Schizophrenia). If the variability of the
connectome is larger than its sensitivity to the pathology then this will alter
the accuracy of the experimental design study. Therefore one important analysis
that we conducted here is assessing the variability of the connectome constructed
from data acquired in the same imaging session, as well as after some period of
time (one month) and compare it among connectomes constructed with different
acquisitions schemes (DTI, HARDI and DSI) at different scales of parcellation
(33-500). For simplicity, we show results for scale 33, since trends are kept across
scales. Fig. 1(a,b) shows that highest reproducibility is achieved within same day
for DTI and DSI acquisitions (0.95, normalized network). At 1 month time dif-
ference, DTI shows the least correlation 0.76. This shows that the connectivity
maps can change in healthy subjects for about 20%, within a month (worst case
scenario performing DTI acquisition). HARDI shows the highest reproducibility
across time, however this might be due to the small sample size. Same trend
is observed for binarized connectomes, however the variability change is in the
order of 15%.

Intra-subject Structural Connectome Variability: To assess the differences
between structural connectomes built using different modalities, we calculate the
2 https://sites.google.com/site/bctnet/
3 http://www.vsg3d.com/amira/overview

https://sites.google.com/site/bctnet/
http://www.vsg3d.com/amira/overview
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similarity between different modalities within each subject. Fig. 1(c,d) demon-
strates the biggest agreement in the connectomes between DTI and HARDI (both
in normalized and binarized case). Taking the biggest agreement from the previ-
ous analysis as reference (same day DSI, normalized 0.95) we can observe that
DSI and DTI connectomes disagree in about 23%, DSI and HARDI disagree 19%
whereas DTI and HARDI differ in 10%. For binarized connectomes, the minimal
agreement is between DSI and HARDI of about 23% difference (reference 0.75).
These results should be taken with care given the low amount of subjects involved
in the analysis.

a) b) c) d)

Fig. 1. left: Within subject, connectome variability with different modalities, for bi-
narized (a) and normalized (b) networks. right: Correlation within intra-subject con-
nectomes for binarized (c) and normalized (d) networks.

Network-Based Indices Subject Variability: Network-based indices are
typically used to assert pathologies of the brain white matter. A very important
fundamental analysis is to evaluate how sensitive and reproducible these indices
are w.r.t. different acquisition modalities. As anatomical connectivity becomes
increasingly sparse with higher scale, density values decrease. As we can ob-
serve in Fig. 2, DSI shows higher density values than DTI and HARDI, which
may indicate a denser connectome. Global Efficiency is the average inverse
shortest path length in the network. DSI presents higher global efficiency index,
while DTI and HARDI show similar values. Characteristic path length is the
average shortest path length in the network and it is normally used to compute
small-worldness. It increases with scale, DSI showing the lowest values, while
DTI and HARDI are similar. Strength is the average of the sum of weights of
links connected to each node. It is seen as highly predictive of stronger functional

Fig. 2. Variability of network-based indices across scales and modality. Overall, DSI
shows more distinctive indexes than DTI and HARDI (very similar to each other),
however HARDI shows a higher standard deviation. This may suggest that HARDI is
more sensitive to inter-subject variability.
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Fig. 3. Initial exploration of DTI vs HARDI vs DSI differences. DSI is obviously able
to capture complex crossing structures, such as the superior longitudinal fasciculus
connecting the frontal, occipital, parietal, and temporal lobes.

Fig. 4. Illustration of fibre bundle quality assessment. Red stands for DTI, green for
HARDI and blue for DSI techniques. In each category the corresponding graphs show
the average scores and standard deviation. a) DSI bundle originates in a different
section of the postcentral medial ROI (likely the sensory leg nerves) while DTI and
HARDI depict similar bundles, however HARDI bundle is more selective. b) Generally
U-fibres are very well captured by DTI, whereas DSI does not depict the underlying
anatomical shape, and often connects distant regions with additional long straight
fibre bundles. HARDI generally has multiple isolated groups of U-fibre bundles. c)
In the commissural bundles DSI is typically the best technique. It has long, extensive
connections from the middle and upper parts of the cortex through the corpus callosum.
DTI fibre bundles are vertically oriented, only connecting paramedial parts of this
region. HARDI stands between the two techniques. d) These connections are composed
of different fibre bundles connecting different regions of the thalamus with the cortex. In
the evaluation some techniques proved better than others in relation to the anatomical
correctness. Therefore in these regions when we perform the overall statistic we get
similar reconstruction quality by all of the three techniques.
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connectivity. Same trend applies here, where DSI shows higher values while DTI
and HARDI have similar behaviour. Higher strength values are shown in middles
scales (60 and 125), suggesting a stronger depiction of the overall connectivity
at these scales.

Track-Based Quality Assessment: Fig. 3 gives an illustration of the obvi-
ous benefits of DSI as a modelling and ultimately fibre reconstruction technique
over DTI and HARDI since it is able to capture long fibre bundles such as the
superior longitudinal fasciculus that is passing and crossing through complex
fibre structures and many other complex configurations in the brain. This has
been illustrated by Wedeen et al. [7]. However, in the connectomic approach
with the predefined regions of parcellation we observe that these differences are
not significantly favourable over DTI and HARDI. The differences have been
clearly demonstrated in figure 4 where different techniques, for different fibre
groups seem more anatomically correct. Furthermore, each technique missed the
following fraction of fibre bundles (out of the analysed 40 bundles): DTI - 24%,
HARDI - 18%, DSI - 14%.

3 Conclusion

In this paper we have evaluated the characteristics and mutual differences of the
structural connectomes constructed over different dwMRI acquisition schemes:
DTI, HARDI and DSI. We have done this by employing graph based measures to
real data that can quantify the information content and the differences between
different techniques, at different scales of hierarchy. From these measures we ob-
served that the connectome does not significantly capture richer information by
using locally more accurate acquisition schemes such as DSI. In fact these tech-
niques applied on a clinical scanner (3T) might produce noisier images leading
to more aberrant fibres. Therefore in certain cases, such as the short U-fibres,
simple techniques as DTI can outperform. Furthermore, in the case of global
connectomic approaches, connectivity is typically measured as a function of the
number of fibres passing through two ROIs of parcellation or average values of
scalar measures such as FA. In certain approaches, the connectivity matrices are
binarized, and as such the anatomical properties of the fibres are ignored. This
explains the small differences (15-20%) between the connectomes constructed by
different acquisition schemes. In the qualitative analysis this is strongly demon-
strated showing at times many aberrant fibres in DSI and HARDI approaches
that in the connectivity matrices appear as valid connections. Future research
should be aimed at capturing anatomical properties of the connectivity fibres
as weights of the connectome, such as fibre volume, bundle cohesiveness and
cluster based approaches. DSI can be seen as a powerful tool for neurosurgical
application since it can detect complex fibre bundles, however it presents more
aberrant fibers. In neurosurgery applications there is a direct visualization of the
reconstructed fiber tracts, immediately identifiable by the neurosurgeons. How-
ever in connectomics, such false positives can be misleading (e.g., Fig. 4b) which
implicates wrong connections between sub-regions at a higher scale. This can be
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wrongly interpreted as differences between two categories of subjects. Given the
variation of performance in the qualitative analysis of the different reconstruc-
tion techniques, more modest (w.r.t. acquisition time and high b values), such
as multi-shell HARDI approaches [12] would give significantly better results,
combined with adaptive reconstruction techniques depending on the parts of the
brain regions we evaluate. Finally, this study shows only preliminary results done
on 5 subjects. To improve the statistic analysis, larger cohort of subjects should
be analysed, and the intra-subject variability (20% difference in longitudinal
acquisition) must be taken into careful consideration.
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