Recent focus in noncommutative algebra has been towards investigating
“quantisations” of classical algebras. Perhaps the simplest example of what
we mean by a quantisation, is by taking the polynomial ring C[z,y] in two
commuting indeterminates, and then quantising it by first fixing a nonzero
parameter ¢ € C and declaring that xy = qyx. Notice that if ¢ = 1, then
we recover the original ring. An understanding of the quantum version of
an algebraic object can often reveal deep insight into both the original and
closely related objects. In general, quantisations of algebraic objects are of
interest not only because of their intimate connection with mathematical
physics (whence the term “quantum”), but also because deep applications
have been found to, among other things, Lie theory, classical representation
theory, knot theory, and the theory of total positivity.

A particular instance of interest to us are quantised coordinate rings,
which encompass noncommutative algebras such as quantum matrices, quan-
tum flag varieties and quantum Schubert cells. As coordinate rings appear
in classical algebraic geometry, this suggests we study the quantisations
not only by algebraic means, but also from a geometric perspective as a
part of “noncommutative algebraic geometry”. From this point of view, the
“points”, “curves”, “surfaces”, etc. from classical geometry are replaced in
the noncommutative world by the spectrum of prime ideals and the repre-
sentation theory.

The most elementary quantized coordinate ring is that of m x n matri-
ces, called simply m X n quantum matrices. Quantum matrices may be used
to construct other quantum groups such as the quantum special and gen-
eral linear groups and the quantum grassmannian. In the years preceding
the start of this Marie Curie project, the researcher found that quantum
matrices, as well as their quotients by certain prime ideals, could be con-
structed using a certain weighted grid-like network with weights in certain
noncommutative algebras. The simplest example is in Figure 1.

Each generator of 2 x 2 quantum matrices corresponds to a collection of
paths in this network. One nice feature of this approach is that the defining
relations for quantum matrices are interpreted by looking at pairs of inter-
secting paths. Moreover, important elements called quantum minors have
an interpretation in this model as sums over collections of non-intersecting
paths. That this approach is more than a mere curiosity was demonstrated
by characterising generating sets for prime ideals of a special but important
type, called H-prime ideals.

Thanks of this grant, we have been able to extend the above approach
to show that other quantum groups have a paths model and were able to
use this to study their properties.
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Figure 1: A planar network used to study 2 x 2 quantum matrices.

The most extensive study made was of the quantum grassmannian. This
is the subalgebra of quantum matrices generated by mazimal quantum mi-
nors and is becoming increasingly important due to its intimate connections
with physics. In particular, only recently a close connection has been discov-
ered with the H-primes of the quantum grassmannian and the interaction
of waves on the surface of water.

A natural but difficult problem is to describe the H-prime ideals of this
algebra. The conjecture here is that each is generated by the maximal quan-
tum minors that they contain. For this algebra, we were able to prove that
the maximal minors form a so-called SAGBI basis. While this result was
known for the classical grassmannian, the paths setting interprets the max-
imal minors differently and thus the maximal minors look quite different as
elements of the algebra. Using this, we were able to quantise old results for
SAGBI bases in commutative algebras in order to obtain tests for determin-
ing whether a given set nicely generates the ideal it generates. From this we
were able to prove the conjecture for the 2 x n case and describe a technique
that has the potential to work for the general case.

Next, we have identified a paths model for the positive part of the quan-
tised universal enveloping algebra of a simple Lie group of type A. Using
this, we have now completely described the H-primes of this algebra using
a generalised notion of quantum minor.

Paths models have also been described for quantum symmetric and quan-
tum skew-symmetric matrices and positive part of the quantised universal
enveloping algebra of a simple Lie group of type B for small sizes. In the
skew-symmetric matrices case it is notable that the paths approach has iden-
tified a new notion of quantum minor which should be taken as the natural
definition.



