Table 1: Summary of the developed network around spectroscopic techniques during this Marie Curie project (μXRF : micro X-ray fluorescence, $\mu XANES$: micro X-ray absorption near edge structure spectroscopy, $\mu PIXE$: micro particle induced X-ray Emission, $\mu FTIR$: micro Fourier transformed infra-red spectroscopy)

Subject	Place	Country	Names	Comments	
synchrotron	ESRF (European Synchrotron Radiation Source)	Grenoble, France	Hiram Castillo- Michel	Pre-established collaboration	
synchrotron	SLS (Swiss Light Source)	Villigen, Switzerland	Daniel Grolimund, Vallerie-Ann Samson	Development of a cryo set-up for biological sample analysis	
synchrotron	APS (Advanced Photon Source)	Chicago, United States	Sophie Gleber	Experiment scheduled for the second part of 2015	
nuclear microprobe	CEA Saclay (Atomic Energy Commission)	Saclay, France	Suzy Surblé, Hicham Khodja	Pre-established collaboration	
nuclear microprobe	AIFIRA	Bordeaux, France	Stéphanie Sorieul	Pre-established collaboration	
nuclear microprobe	RUBION	Bochum, Germany	Hans-Werner Becker, Detlef Rogalla	Development of a micro-focused beam	
nuclear microprobe	LIPSION	Leipzig, Germany	Juergen Vogt, Jan Meijer	Development of a new collaboration	
nuclear microprobe	Jožef Stefan Institute	Ljubljana, Slovenia	Katarina Vogel- Mikus, Primož Pelicon	Extensive knowledge on sample preparation	
LA-ICP-MS	Hannover University	Hannover, Germany	Carla Vogt, Jan Thieleke	Optimisation of Pb standard for accurate quantification	
nanoSIMS	Helmholtz Centre for Environmental Research	Leipzig, Germany	Hans Richnow, Hryhoriy Stryhanyuk	Technical platform with cutting edge instruments	
nanoSIMS	UCLA (University of California Los Angeles)	Los Angeles, United Sates	Markus Miethke	Development of a new collaboration	
irt1 project	RUB, Ruhr Universtät Bochum	Bochum, Germany	Maria Bernal	Distribution (µXRF) and speciation (µXANES) of Fe in A. thaliana mutant. In progress: imaging at the sub-cellular level (nanoSIMS, X-ray tomography)	
dez project	RUB, Ruhr Universtät Bochum	Bochum, Germany	Scott Sinclair	Imaging (µXRF) and speciation (µXANES) determination of Zn in an A. thaliana mutant. Analysis of the mutation impact on biomacromolecules distribution (µFTIR)	
Role of HMA2 and HMA4 in seeds project	Copenhagen University	Copenhagen, Denmark	Michael G. Palmgren, Lene Olsen	Mapping of Zn in mutant seeds of A. thaliana	
FRD3 RNAi project	RUB, Ruhr Universtät Bochum	Bochum, Germany	Romario Melo	Distribution and quantification of elements (µPIXE) in an <i>A. halleri</i> mutant	
A. thaliana vs.	RUB, Ruhr	Bochum,	Ricardo Stein	Elemental mapping (μXRF, μPIXE),	

A. halleri & A.	Universtät	Germany		quantification (µPIXE) of metals in A. thaliana
halleri	Bochum			and A. halleri plants. Determination of bio-
diversity in the				macromolecules distribution (µFTIR)
field projects				
Pb imaging	Bayreuth	Bayreuth,	Dayla Danamaa	Joint projects to image Pb in different A.
	University	Germany	Paula Pongrac	<i>halleri</i> plants

Table 2. Fe speciation in roots and shoots of WT and mutant seedlings grown on 50 μ M Fe as determined by linear combination fitting of experimental μ XANES spectra (in %).

		WT			roz1	
	Fe(0)	Fe(II)	Fe(III)	Fe(0)	Fe(II)	Fe(III)
LEAF						
trichome		29 ± 12	77 ± 16		21 ± 16	81 ± 18
surface	20±3	37 ± 1	44 ± 4	12 ± 1	23 ± 6	65 ± 6
cell wall	31 ± 12	13 ± 3	56 ± 9	10 ± 1	15 ± 1	73 ± 0
vein	10 ± 4	18 ± 6	74 ± 12	11 ± 4	20 ± 2	67 ± 6
ROOT						
quiescent center		30 ± 16	70 ± 16		13 ± 13	88 ± 14
epidermis	22±3	51 ± 1	27 ± 4	21 ± 16	18 ± 6	62 ± 13
cell wall		13 ± 18	86 ± 19		15 ± 6	86 ± 5

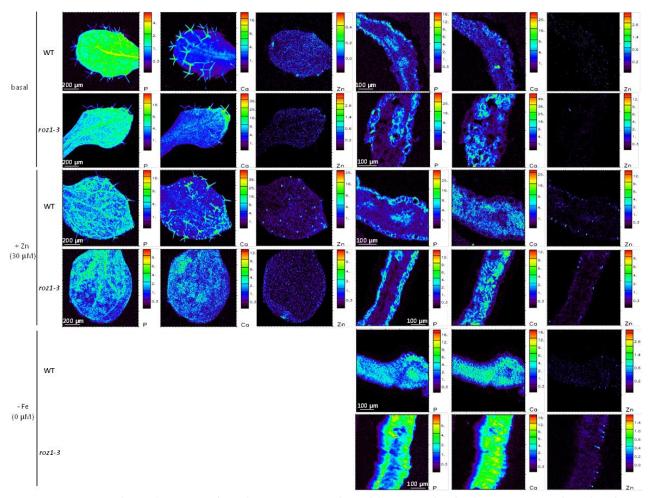


Figure 1. μ PIXE analysis of roz1-3 and WT leaves grown in three different media displaying P, Ca and Zn distributions. The color scale is in wt%.

Figure 2: WT and roz1 phenotype on soil (sown on the same day).

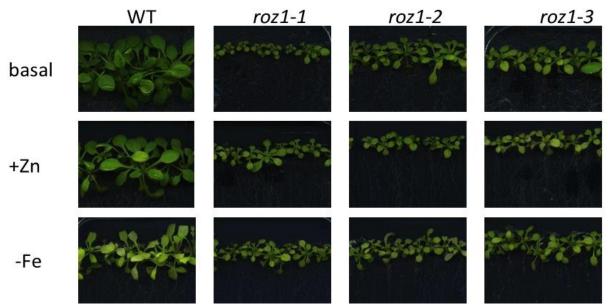


Figure 3: 4 day old mutant phenotypes in basal, high Zn (30 μ M) and no Fe (washed agar) conditions after 7 day exposure.

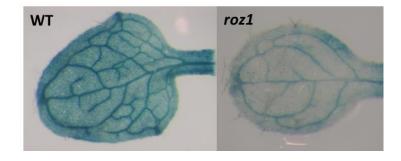


Figure 4: GUS staining of the first true leaf of WT and roz1 15 d old seedlings exposed for 7 days in high Zn condition

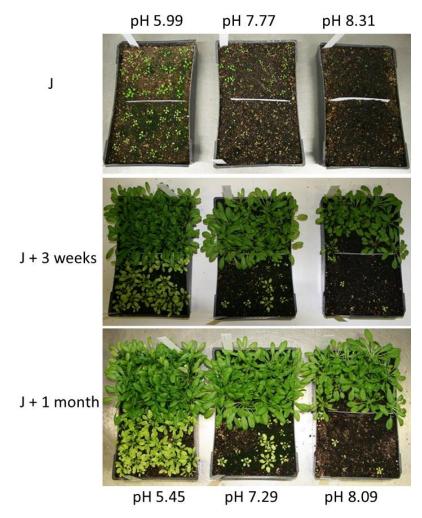


Figure 5: upper side of the tray Columbia and lower side irt1. Plants were sown on minitray soil (first column) or minitray with modified pH soil (second and third columns).