Point-Of-Care tests to revolutionise the clinical management of patients infected by Hepatitis C Virus

We are actively seeking strategic partnerships with national health agencies, development agencies and NGOs to help implement these point of care tests. If you are interested in such a partnership please contact us.

For further information, please visit our website at: www.poc-hcv.eu

INSERM is the French National Institute of Health and Medical Research. It is a public scientific and technological institute, which operates under the joint authority of the French Ministry of Health and French Ministry of Research. The ANRS is the French Agency for Research on HIV/AIDS and viral hepatitis which since 2012 has been an autonomous agency.

INSEEM Transfert is specialised in technology transfer, legal affairs & business negotiation with industry, as well as EU-project management.

Epistem’s Biomarker Division specialises in providing gene expression information using their proprietary GenetRx™ platform and gene polymorphism and genotype tests using their GeneDrive™ point-of-care platform.

Qlucore is an industry driven in the development of user-friendly software tools for analysing and integrating complex data sets.

Scientific Coordinator
Prof. Matthew Albert
Inserm U818 - Laboratory of Dendritic Cell Immunobiology
25 Rue du Docteur Roux
75724 Paris cedex 15
FRANCE
Tel: +33 1 45 68 85 45
Email: albertm@pasteur.fr

Operations Coordinator
Anna Boitard
Paris BioPark
Inserm Transfert
7 Rue Watt
75013 Paris
FRANCE
Tel: +33 1 55 03 01 55
Email: anna.boitard@inserm-transfert.fr

Biosurfit developed spinfit®, a proprietary technological platform for the point-of-care testing market. Their goal is to deliver results in a matter of minutes, translating into fast and accurate predictive tests and improved patient care.

Epistem
www.epistem.com

Qlucore
www.qlucore.com

Biosurfit
www.biosurfit.com

INSERM is a three year European project (Collaborative Research Project), which started in September 2013 and is coordinated by the French National Institute for Health and Medical Research (Inserm), Professor Matthew Albert, based at Pasteur Institute in Paris, France. Our consortium brings together five complementary partners, including three small medium sized enterprises, one technology transfer/management company and the coordinator, a public research organisation. The partners are based in four European Member States (France, Portugal, Sweden and the United Kingdom) and the project is supported by the European Commission under the Health Priority of the 7th Framework Programme.
Hepatitis C is an infectious disease affecting the liver, caused by the hepatitis C virus (HCV). Chronic infection may result in life-threatening liver failure or cancer. About 170 million people worldwide are chronically infected with hepatitis C virus, representing a 15 billion euro/year economic burden. More than 350,000 people die every year from hepatitis C-related liver diseases.

Current treatment options against HCV are not without problems: (i) addressing the need to predict, pre-treatment, individuals in resource poor countries who will benefit from conventional treatment, and (ii) helping to limit treatment costs globally, where new therapies for HCV are anticipated to significantly increase health care expenditures.

Hepatitis C virus (HCV) infection is a major public health problem. More than 350 million people worldwide are estimated to be infected with HCV, representing a 15 billion euro/year economic burden. More than 350,000 people die every year from hepatitis C-related liver diseases.

The value of personalized approaches for managing patients with HCV infection is rooted in the realization that different patients have different problems: (i) addressing the need to predict, pre-treatment, individuals in resource poor countries who will benefit from conventional treatment, and (ii) helping to limit treatment costs globally, where new therapies for HCV are anticipated to significantly increase health care expenditures.

The PoC-HCV project will extend this approach combining well established genetic and protein biomarkers to help predict patient outcome when required. These point-of-care tests will be performed from single blood droplets with results delivered in 30 minutes enabling real-time treatment decisions. The point-of-care technologies will also be applied to monitor in treatment response and to identify early indicators of adverse reactions. In addition they may enable the detection and diagnosis of previously undetectable HCV infected cases. The newly developed PoC assays will enable maximization of health resources in all clinical settings.

The PoC-HCV project will extend this approach combining well established genetic and protein biomarkers to help predict patient outcome when required. These point-of-care tests will be performed from single blood droplets with results delivered in 30 minutes enabling real-time treatment decisions. The point-of-care technologies will also be applied to monitor in treatment response and to identify early indicators of adverse reactions. In addition they may enable the detection and diagnosis of previously undetectable HCV infected cases. The newly developed PoC assays will enable maximization of health resources in all clinical settings.