

Figure 1: Overall concept developed in PEMBeyond project.

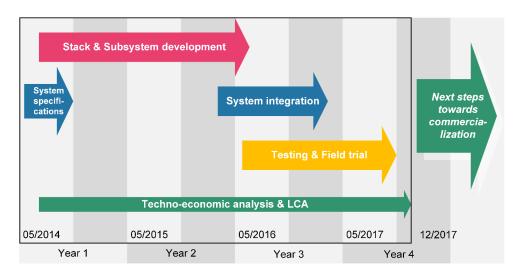


Figure 2: Overview of PEMBeyond project schedule.

Table 1: Initial specifications for the reformed ethanol fuel cell system (REFCS).

Complete REFCS Pro	ototype:
Net electric output	> 5 kW / 48 VDC (3 h with H ₂
)	buffer, then limited to 2 kW)
Efficiency	> 30 %
Fuel consumption	1 kg/h bioethanol
Back-up time	7 days (with 190 liter ethanol vessel)
Physical footprint	10 ft. ISO container (not including the H ₂ buffer storage)
Ambient temp. range	-25 °C to + 40 °C
Start-stop cycles	> 1000
Availability / reliability	> 98 %
	Net electric output () Efficiency Fuel consumption Back-up time Physical footprint Ambient temp. range Start-stop cycles

Figure 3: Product version of the S2 stack employed in the project, with 100-cells and 9 kW nominal power.

Figure 4: The S2 stack on impurity tolerance measurements (left) and under thermal stabilization preceding freeze start-up (right).

Figure 5: Breadboard FCS prototype (left), industrial FCS prototype used in REFC system (middle), and cost-optimized FCS prototype (right).

Figure 6 - Fuel cell system operated with 3D-printed ejector and discrete controller.

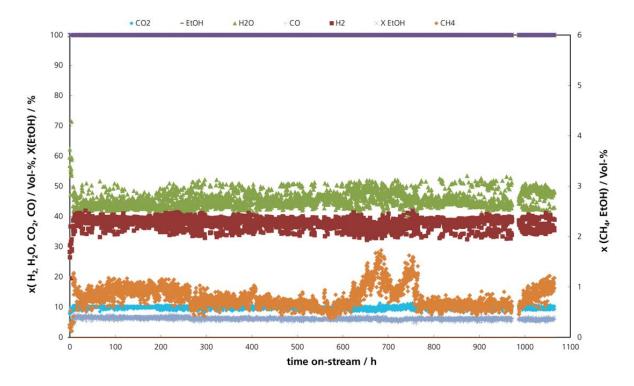


Figure 7: Stability test of ETAX-B crude bioethanol steam reforming over catalyst IMM 1474e. Species concentrations in the reformate: pressure, 8 barg; temperature, 750 °C; feed S/C ratio, 4.1; feed flowrate 100 mL/min; mass of catalyst in screening reactor, 17 mg.

Figure 8: Fuel processor during installation of reactors and thermocouples at Fraunhofer IMM (left), and fuel processor installed to test bench at VTT (right).

Figure 9: Lab scale PSA unit at UPorto (left) and prototype PSA unit by HyGear (right).

Figure 10: FP and PSA during initial testing.

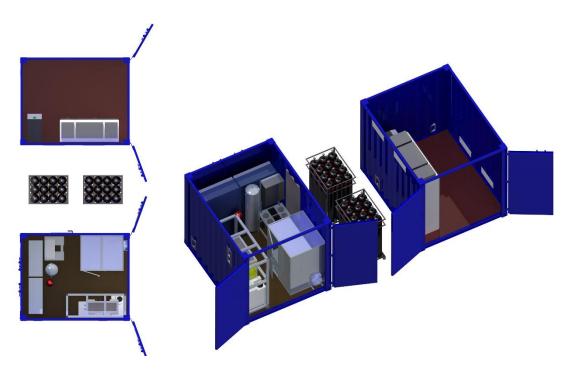


Figure 11: Rendered images of CAD model from REFC system container, H₂ buffer tanks, and control room container.

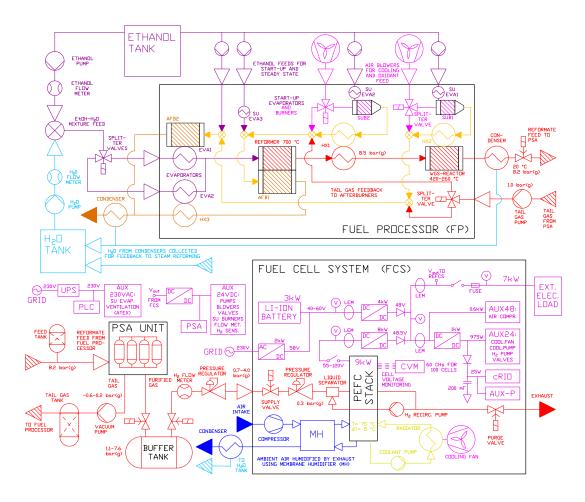


Figure 12: Simplified process flow diagram of the reformed ethanol fuel cell (REFC) system.

Figure 13: Integrated REFC container layout during commissioning.

Figure 14: Data showing fuel feed, reactor temperatures, and pressure during 7.5 hour run.

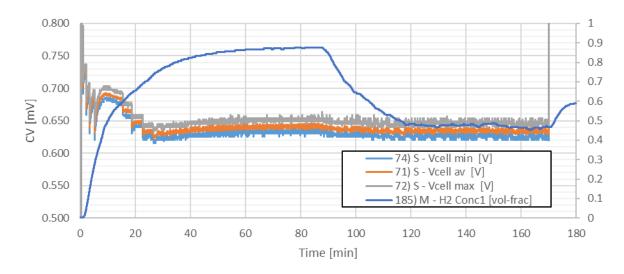


Figure 15: FCS cell voltages during operation at 117 A current with pure H₂ 2.5 and H₂ produced from EtOH starting from 90 minutes onwards.

Project logo:

PEMBeyond