European Commission logo
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

AI-augmented, Multiscale Image-based Diagnostics of Chronic Kidney Disease

Opis projektu

Zaawansowana diagnostyka obrazowa w przewlekłej chorobie nerek

Przewlekła choroba nerek (PChN) dotyka 10 % osób na całym świecie i jest jedną z głównych przyczyn zgonów. Schorzenie to stanowi poważne obciążenie dla społeczeństw i systemów opieki zdrowotnej. Ponieważ nie ma powtarzalnych technik pozwalających badać aktywność PChN i procesy patologiczne zachodzące w nerkach, liczba translacyjnych badań klinicznych z randomizacją oraz metod leczenia dostępnych dla pacjentów cierpiących na tę chorobę jest ograniczona. Zespół finansowanego ze środków UE projektu AIM.imaging.CKD opracuje, zwaliduje i zintegruje techniki diagnostyki obrazowej związane z PChN. Wykorzystanie interdyscyplinarnej wiedzy fachowej pozwoli przygotować wieloskalową (nano, mikro i makro) metodę diagnostyki morfologicznej i molekularnej. W ramach projektu powstanie udoskonalona, kompleksowa technika diagnostycznej oceny ultrastrukturalnej i histologicznej bioptatów nerki. Będzie ona oparta na sztucznej inteligencji, a w szczególności na uczeniu głębokim i maszynowym.

Cel

Chronic kidney disease (CKD) is a major global health problem, affecting 10% of the world population and projected to be the fifth major cause of death in 2040. CKD patients are one of the most complex and multi-morbid populations in internal medicine while at the same time having the least translational randomized clinical trials and limited treatment options. One of the major reasons for this is the lack of reproducible approaches specifically reflecting intrarenal pathological processes and disease activity. The overall goal of AIM.imaging.CKD is to specifically address this unmet need by developing, validating and integrating image-based diagnostics for CKD. The integration of broad interdisciplinary expertise will enable to develop a multiscale approach from nano- to micro- to macromorphological and molecular diagnostics. Specifically, the project will develop augmented full-spectrum ultrastructural (“nano”) and histological (“micro”) renal biopsy diagnostics, focusing on reproducible, quantitative nephropathological analyses and prediction of clinically relevant outcome parameters. The project will also explore macro-morphological and molecular imaging in CKD, focusing on translatable non-invasive approaches. The central feature will be the development of advanced, scalable and modular image analyses models utilizing artificial intelligence (AI), particularly machine and deep learning. Using preclinical testing and clinical validation, the main emphasis will be on accelerated or, whenever possible, direct implementation into the clinical practice. The integration of the above-mentioned tools and technologies provides a comprehensive multiscale and multiplex approach for improved diagnostics of CKD patients and facilitate future randomized clinical trials. At each level, and even more so when integrated, the results are expected to augment and transform image-based diagnostics of kidney diseases, and thereby lead to improved patient management and outcome.

System finansowania

ERC-COG - Consolidator Grant

Instytucja przyjmująca

UNIVERSITAETSKLINIKUM AACHEN
Wkład UE netto
€ 1 999 375,00
Adres
Pauwelsstrasse 30
52074 Aachen
Niemcy

Zobacz na mapie

Region
Nordrhein-Westfalen Köln Städteregion Aachen
Rodzaj działalności
Higher or Secondary Education Establishments
Linki
Koszt całkowity
€ 1 999 375,00

Beneficjenci (1)