Fact Sheet

Project Information

WATCHPLANT

Grant agreement ID: 101017899

Funded under
H2020-EU.1.2.2.

Overall budget
€ 3 744 192,50

EU contribution
€ 3 744 192,50

Coordinated by
ASOCIACION INSTITUTO TECNOLOGICO DE LA ENERGIA
Spain

Project description

Wireless sensors for healthy plants

Wireless wearable devices can track our every move and monitor our health. This technology can also be used on plants for the benefit of urban policies, the agri-food industry and forestry. The EU-funded WATCHPLANT project will develop a wireless, wearable, self-powered sensor for in-situ monitoring of urban environments. Specifically, this system equips plants with artificial intelligence to create a smart net of sensors for measuring environmental parameters and the responding physiological state of plants at a very early stage, using a barely-explored fluid, phloem sap. The project will explore how to extract sufficient sap volume in a healthy...
plant and how to make long-lasting bioelectronics to use sap for sensing and energy harvesting purposes.

Objective

WatchPlant will develop a new biohybrid system technology, a wireless wearable self-powered sensor for in-situ monitoring of urban environments. This system equips urban biological organisms -plants- with Artificial Intelligence (AI) to create a smart sensor for measuring both, environmental parameters and the responding physiological state of plants, in a very early stage by the use of a barely explored fluid, phloem sap, in combination with chemical, and physical sensors. It will be integrated into complex network that allows performing distributed information processing, decision making, modeling and data fitting, paving the way for the self-awareness or self-adaptation. Additionally, it will constitute a clean energy self-powered device due to the novel use of sap, not only for transforming plants into living sensors, but also for clean energy generation.

A consortium of EU research, technology centers and ambitious high-tech SMEs will stretch and combine the limits of plant physiology and bioelectronics with microtechnology, multiphysics modelling, sensor engineering, AI and environmental modelling, to transform plant into living autonomous and self-powered sensors. The project has the ambition to solve how to extract sufficient sap volume in a healthy plant, how to make long-lasting bioelectronics, and how create a smart self-powered wearable phytosensor in a single device. It also has the challenge of modelling urban environments using novel combinations of exiting parameters and explores the future role of sap in this sense. Thus, it is a promising tool to carry out weather/pollution/pandemics development forecasting systems up to social networks for proving an ecological/environmental feedback to citizens. Thus it will be possible to perform specific actions and apply efficient use of resources and correct policies, which can have a great impact not only in urban monitoring but a huge range of plant-related sectors such as agro-food industry or forestry.

Fields of science

Programme(s)
Call for proposal
H2020-FETPROACT-2020-2

Funding Scheme
RIA - Research and Innovation action

Coordinator

ASOCIACION INSTITUTO TECNOLOGICO DE LA ENERGIA

- **Address**: Avda Juan De La Cierva 24
 46022 Paterna
 Spain
- **Activity type**: Research Organisations
- **EU contribution**: € 405 681,25

Participants (6)

KUNGLIGA TEKNISKA HOEGSKOLAN

- **Country**: Sweden
- **EU contribution**: € 718 318,75
- **Address**: Brinellvagen 8
 100 44 Stockholm
- **Activity type**: Higher or Secondary Education Establishments

CYBRES GMBH

- **Country**: Germany
- **EU contribution**: € 654 027,50
- **Address**: Melunerstrasse 40
 70569 Stuttgart
- **Activity type**: Private for-profit entities (excluding Higher or Secondary Education)
<table>
<thead>
<tr>
<th>Establishment</th>
<th>Country</th>
<th>EU contribution</th>
<th>Address</th>
<th>Activity type</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIM-MES PROJEKT SP ZOO</td>
<td>Poland</td>
<td>€ 380 250</td>
<td>Ul. Al. Jerozolimskie 125/127, Lok 503, 02017 Warszawa</td>
<td>Private for-profit entities (excluding Higher or Secondary Education Establishments)</td>
</tr>
<tr>
<td>AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS</td>
<td>Spain</td>
<td>€ 656 680</td>
<td>Calle Serrano 117, 28006 Madrid</td>
<td>Research Organisations</td>
</tr>
<tr>
<td>SVEUCILISTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RACUNARSTVA</td>
<td>Croatia</td>
<td>€ 400 430</td>
<td>Unska 3, 10000 Zagreb</td>
<td>Higher or Secondary Education Establishments</td>
</tr>
<tr>
<td>UNIVERSITAET zu LUEBECK</td>
<td>Germany</td>
<td>€ 528 805</td>
<td>Ratzburger Allee 180</td>
<td>Higher or Secondary Education Establishments</td>
</tr>
</tbody>
</table>
Last update: 31 May 2021
Record number: 232580

Permalink: https://cordis.europa.eu/project/id/101017899

© European Union, 2021