Skip to main content
CORDIS - Forschungsergebnisse der EU
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Recentering Friction Floor Dissipater for Resilient-based Design of Steel Structures

Projektbeschreibung

Innovative Dissipation an Böden erhöht Erdbebensicherheit von Gebäuden

Erdbeben können sich anfühlen, als ob alles von einem Riese gepackt und durchgeschüttelt wird. Damit Gebäude sicher sind, ist es entscheidend wichtig, dass sie diesen seitlichen Kräften standhalten und gleichzeitig elastisch reagieren, um Brüche zu verhindern. Zu diesem Zweck kommen üblicherweise konzentrisch ausgesteifte Stahlrahmen zum Einsatz, bei denen in der vertikalen Ebene des Rahmens Diagonalstreben angeordnet sind. Deren komplexes, asymmetrisches, unelastisches Verhalten ist jedoch problematisch. Mit Unterstützung der Marie-Skłodowska-Curie-Maßnahmen entwickelt das Projekt RFFD eine innovative horizontale Ableitvorrichtung für die Böden von Gebäuden mit konzentrisch ausgesteiften Stahlrahmen. Grundlage der Arbeit ist computergestütztes Design auf der Basis von Physik und Simulationen.

Ziel

In regions of moderate and high seismicity such as Europe, steel concentrically braced frames (CBFs) are considered a cost-effective lateral force resisting system to withstand seismic and/or wind loading. Comprehensive building-specific economic loss assessment suggests that the expected annual losses of steel CBF buildings are mainly associated with repairs of acceleration-sensitive building components, which in turn results into building functionality disruption after an earthquake. Higher building vibration mode effects and the complex asymmetric inelastic behaviour of steel braces make it challenging to prevent soft-storey mechanisms that potentially lead to global collapse even in capacity-designed steel CBF buildings. The proposed project aims to address the aforementioned issues by developing an innovative dissipation device, named Recentring Friction Floor Dissipator (RFFD) to control the earthquake-induced vibration and demands in steel CBF buildings through its diaphragm response instead of the lateral load resisting system that is traditionally attempted. This will minimize the variability of the inertia force demands along with the earthquake-induced life-cycle costs. The device realization will be achieved through physics-based computational simulation-based design validated to full-scale testing. Macro-models will be developed to facilitate, for the first time, time-dependent nonlinear building simulations that will be benchmarked to a landmark system-level experiment. A graphics-based design tool will be developed that will combine in a single format economic loss metrics with multiple building performance indicators to aid decision-making for enhanced building service life in seismic regions.
After having acquired extended experience in the field of earthquake engineering in New Zealand and Japan, the applicant wants to reintegrate to Europe to consolidate his career in a leading European University.

Schlüsselbegriffe

Koordinator

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Netto-EU-Beitrag
€ 191 149,44
Adresse
BATIMENT CE 3316 STATION 1
1015 Lausanne
Schweiz

Auf der Karte ansehen

Region
Schweiz/Suisse/Svizzera Région lémanique Vaud
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten
€ 191 149,44