Projektbeschreibung
Innovative Dissipation an Böden erhöht Erdbebensicherheit von Gebäuden
Erdbeben können sich anfühlen, als ob alles von einem Riese gepackt und durchgeschüttelt wird. Damit Gebäude sicher sind, ist es entscheidend wichtig, dass sie diesen seitlichen Kräften standhalten und gleichzeitig elastisch reagieren, um Brüche zu verhindern. Zu diesem Zweck kommen üblicherweise konzentrisch ausgesteifte Stahlrahmen zum Einsatz, bei denen in der vertikalen Ebene des Rahmens Diagonalstreben angeordnet sind. Deren komplexes, asymmetrisches, unelastisches Verhalten ist jedoch problematisch. Mit Unterstützung der Marie-Skłodowska-Curie-Maßnahmen entwickelt das Projekt RFFD eine innovative horizontale Ableitvorrichtung für die Böden von Gebäuden mit konzentrisch ausgesteiften Stahlrahmen. Grundlage der Arbeit ist computergestütztes Design auf der Basis von Physik und Simulationen.
Ziel
In regions of moderate and high seismicity such as Europe, steel concentrically braced frames (CBFs) are considered a cost-effective lateral force resisting system to withstand seismic and/or wind loading. Comprehensive building-specific economic loss assessment suggests that the expected annual losses of steel CBF buildings are mainly associated with repairs of acceleration-sensitive building components, which in turn results into building functionality disruption after an earthquake. Higher building vibration mode effects and the complex asymmetric inelastic behaviour of steel braces make it challenging to prevent soft-storey mechanisms that potentially lead to global collapse even in capacity-designed steel CBF buildings. The proposed project aims to address the aforementioned issues by developing an innovative dissipation device, named Recentring Friction Floor Dissipator (RFFD) to control the earthquake-induced vibration and demands in steel CBF buildings through its diaphragm response instead of the lateral load resisting system that is traditionally attempted. This will minimize the variability of the inertia force demands along with the earthquake-induced life-cycle costs. The device realization will be achieved through physics-based computational simulation-based design validated to full-scale testing. Macro-models will be developed to facilitate, for the first time, time-dependent nonlinear building simulations that will be benchmarked to a landmark system-level experiment. A graphics-based design tool will be developed that will combine in a single format economic loss metrics with multiple building performance indicators to aid decision-making for enhanced building service life in seismic regions.
After having acquired extended experience in the field of earthquake engineering in New Zealand and Japan, the applicant wants to reintegrate to Europe to consolidate his career in a leading European University.
Wissenschaftliches Gebiet
- natural sciencesmathematicsapplied mathematicsdynamical systems
- social scienceseconomics and businessbusiness and managementbusiness models
- engineering and technologycivil engineeringstructural engineeringearthquake engineering
- natural sciencescomputer and information sciencescomputational sciencemultiphysics
- natural sciencescomputer and information sciencessoftwaresoftware applicationssimulation software
Schlüsselbegriffe
Programm/Programme
Thema/Themen
Aufforderung zur Vorschlagseinreichung
Andere Projekte für diesen Aufruf anzeigenFinanzierungsplan
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)Koordinator
1015 Lausanne
Schweiz