Descrizione del progetto
Un’innovativa dissipazione a pavimento migliora la tenuta antisismica degli edifici
I terremoti possono essere percepiti come un gigante che ci afferra e ci scuote in alto e in basso. La capacità di resistere a queste forze laterali negli edifici, e al tempo stesso favorirne l’elasticità per evitarne la rottura si dimostrano fattori determinanti per la sicurezza. A tale proposito sono comunemente impiegati i telai controventati concentricamente in acciaio, in cui i controventi diagonali sono posizionati sul piano verticale. Tuttavia, si trovano ad affrontare difficoltà a causa dei loro comportamenti inelastici asimmetrici complessi. Grazie al sostegno del programma di azioni Marie Skłodowska-Curie, il progetto RFFD sta sviluppando un dispositivo innovativo di dissipazione orizzontale per i pavimenti di edifici con telai controventati concentricamente in acciaio con l’aiuto di una progettazione computazionale basata sulla fisica e sulla simulazione.
Obiettivo
In regions of moderate and high seismicity such as Europe, steel concentrically braced frames (CBFs) are considered a cost-effective lateral force resisting system to withstand seismic and/or wind loading. Comprehensive building-specific economic loss assessment suggests that the expected annual losses of steel CBF buildings are mainly associated with repairs of acceleration-sensitive building components, which in turn results into building functionality disruption after an earthquake. Higher building vibration mode effects and the complex asymmetric inelastic behaviour of steel braces make it challenging to prevent soft-storey mechanisms that potentially lead to global collapse even in capacity-designed steel CBF buildings. The proposed project aims to address the aforementioned issues by developing an innovative dissipation device, named Recentring Friction Floor Dissipator (RFFD) to control the earthquake-induced vibration and demands in steel CBF buildings through its diaphragm response instead of the lateral load resisting system that is traditionally attempted. This will minimize the variability of the inertia force demands along with the earthquake-induced life-cycle costs. The device realization will be achieved through physics-based computational simulation-based design validated to full-scale testing. Macro-models will be developed to facilitate, for the first time, time-dependent nonlinear building simulations that will be benchmarked to a landmark system-level experiment. A graphics-based design tool will be developed that will combine in a single format economic loss metrics with multiple building performance indicators to aid decision-making for enhanced building service life in seismic regions.
After having acquired extended experience in the field of earthquake engineering in New Zealand and Japan, the applicant wants to reintegrate to Europe to consolidate his career in a leading European University.
Campo scientifico
- natural sciencesmathematicsapplied mathematicsdynamical systems
- social scienceseconomics and businessbusiness and managementbusiness models
- engineering and technologycivil engineeringstructural engineeringearthquake engineering
- natural sciencescomputer and information sciencescomputational sciencemultiphysics
- natural sciencescomputer and information sciencessoftwaresoftware applicationssimulation software
Parole chiave
Programma(i)
Argomento(i)
Meccanismo di finanziamento
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)Coordinatore
1015 Lausanne
Svizzera