Descripción del proyecto
Unas herramientas novedosas ayudan a los gestores de redes de distribución a controlar de forma óptima sistemas energéticos con múltiples vectores energéticos
Garantizar que el mundo tenga un suministro fiable de energía para calentar hogares y edificios, alimentar una nueva generación de vehículos eléctricos y suministrar electricidad a la red constituye todo un reto. Los sistemas energéticos con múltiples vectores energéticos, que interactúan entre sí de manera óptima para mejorar los servicios y la eficiencia energética, desempeñarán un papel esencial a la hora de reducir las emisiones en el futuro. El equipo del proyecto MNRG, financiado con fondos europeos, desarrolla algoritmos y tecnologías para estos sistemas que permiten llevar a cabo un control digital, distribuido y en tiempo real del calor, la movilidad y la electricidad. Gracias a estas nuevas tecnologías, los gestores de redes de distribución podrán encontrar las mejores topologías de red, así como a prever las cargas y aplicar soluciones en tiempo real a los problemas.
Objetivo
To achieve deep emission reductions in the European energy sector and in the heating sector in particular, stronger cross-sectoral linkages among the different energy carriers are needed. The main objective of proposed MNRG is improving operational flexibility by presenting a comprehensive digitalized, distributed and real-time monitoring of heat, mobility and electricity energy sectors which is required to deal with the uncertainty and variability of growing renewable resources and mobility. The main novelties of this project are: 1) MNRG provides an easy deployment and paired with unprecedented modularity for interconnected multi-energy systems by using GridEye's edge computing capabilities. 2) MNRG introduces a more practical way to manage and respond to the complex needs of the multi-energy systems in the presence of numerous energy components and devices. 3) The impact of DERs and EVs on the quality of energy sectors will be monitored in real-time and the flexibility in the operation of CHPs, use of reactive power controlling devices such as SVR and storage capacity of heat network will be considered as alternatives for technical challenges. 4) Real-time preventive and corrective actions based on dynamic feeder reconfiguration against over-voltage and congestion in the grid will be addressed. To determine network topologies optimally, methods based on machine learning or mathematical techniques will be implemented. 5) By MNRG, the behavior of feeders and transformers that are utilized by DERs and EVs will be predicted for DSO’s usage. In this regard, MNRG feeding by updated forecasts based on mathematical methods, like, ARIMA and deep learning methods, such as DRL and LSTM, will provide corrective and preventive actions. 6) MNRG can provide robust strategies for DSOs by using uncertainty modelling techniques such as robust optimization to tackle the volatility of uncertain parameters.
Ámbito científico
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectrical engineeringpower engineeringelectric power distribution
- natural sciencesmathematicsapplied mathematicsdynamical systems
- natural sciencescomputer and information sciencesartificial intelligencemachine learningdeep learning
- natural sciencesmathematicsapplied mathematicsstatistics and probability
- natural sciencesmathematicsapplied mathematicsmathematical model
Palabras clave
Programa(s)
Régimen de financiación
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)Coordinador
1070 Puidoux
Suiza
Organización definida por ella misma como pequeña y mediana empresa (pyme) en el momento de la firma del acuerdo de subvención.