Skip to main content
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Atomic vapor-based turnstile device for single photons

Descrizione del progetto

Gli atomi di rubidio potrebbero costituire sorgenti a singolo fotone

Sorgenti a singolo fotone con linee limitate della trasformata di Fourier sono considerate promettenti per l’uso nelle tecnologie fotoniche quantistiche. Tali sorgenti si basano su interazioni risonanti luce-atomo all’interno di un insieme di emettitori debolmente accoppiati. L’interferenza quantistica può modificare le statistiche dei fotoni di stati deboli coerenti quando viaggiano attraverso l’insieme. Questo meccanismo di interferenza quantistica è stato recentemente dimostrato con atomi freddi. Quando interagiscono con un determinato numero di emettitori, gli stati coerenti possono essere trasformati in flussi di singoli fotoni. Finanziato dal programma di azioni Marie Skłodowska-Curie, il progetto AVATURN intende utilizzare il vapore atomico di rubidio al posto degli atomi freddi. Ciò potrebbe portare allo sviluppo di sorgenti a singolo fotone che eliminano la necessità di ambienti criogenici.

Obiettivo

This project aims at developing a source of Fourier-transform-limited single-photons which does not require ultra-high-vacuum (UHV) or cryogenic environment. Thanks to these characteristics, such a source is ideally suited for practical applications. It relies on a novel approach based on a collectively enhanced resonant light-atom interaction within an ensemble of weakly coupled emitters. The key mechanism is a photon-number dependent quantum interference that can modify the photon-statistics of a weak coherent state, i.e. bunching or antibunching, when travelling through the ensemble. Interestingly, when interacting with a critical number of emitters, the coherent state can be transformed into a stream of antibunched single photons. In such a case the ensemble acts as a single-photon turnstile. The transmitted single photons are indistinguishable – an important feature for most quantum information applications. While this interference mechanism was recently experimentally demonstrated with cold atoms in our team, in this proposal we explore a whole new regime with thermal atomic vapor of Rubidium. Different strategies will be implemented to mitigate the effect of the much broader velocity class of the atoms in the thermal vapor. In particular, a velocity-selective excitation scheme will allow to circumvent the Doppler broadening. In addition to the remarkable feature of not requiring complex optical setups and cooling, this new source would generate single photons at telecom wavelength of 1529 nm, well-suited for long distance communication. On the other hand, it also enables integration with the mature technological platform of silicon photonics. Finally, in order to increase its practicability, the current proposal envisions to explore two different fiber-integrated designs for such a source: a nanofiber (evanescently coupled to the thermal vapor) and a hollow-core photonic crystal fiber (filled with the thermal vapor).

Coordinatore

HUMBOLDT-UNIVERSITAET ZU BERLIN
Contribution nette de l'UE
€ 174 806,40
Indirizzo
UNTER DEN LINDEN 6
10117 Berlin
Germania

Mostra sulla mappa

Regione
Berlin Berlin Berlin
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale
€ 174 806,40