Oncolipidomics: Why is lipidomic dysregulation pattern in blood similar for various cancers?

Fact Sheet

Project Information

ONCOLIPID

Grant agreement ID: 101095860

DOI

10.3030/101095860

Funded under

European Research Council (ERC)

Start date

1 August 2023

End date

31 July 2028

Total cost

€ 3,499,413.00

EU contribution

€ 3,499,413.00

Coordinated by

UNIVERZITA PARDUBICE

Czechia

Objective

Lipids are involved in numerous pathways of human metabolism that are related to pathological states. Alterations of lipid concentrations in the blood of cancer patients have been reported but the biological origin is still unknown. Deciphering the mechanisms of the lipid dysregulation mechanism could dramatically change oncology because it can open new avenues for cancer detection with subsequent effective treatment and drug development targeting dysregulated pathways. Early cancer diagnosis is one of the main unmet needs in medicine, which can improve the unfavorable prognosis of patients. The potential of lipidomics has not been fully explored yet, because analytical workflows have limitations in terms of accurate molar quantitation and insufficient coverage of the lipidome. Biologists predict up to
100,000 lipid species in nature, but current methods typically report less than 1% of this number. Here, we will develop novel approaches for quantitation of more than 2,000 lipids from >80 classes using 13C stable isotope labeled internal standards and ultrahigh-resolution methods in liquid or supercritical fluid chromatography, mass spectrometry, and ion mobility. The comprehensive characterization of lipidome will allow us to construct Cancer Lipidome Atlas (WP1). We will develop new Bayesian software for automated data processing and statistical evaluation applicable to the main lipidomic and metabolomic workflows (WP2). We will correlate lipidomics data with metabolomics, proteomics, and transcriptomics data to unravel why lipidomic dysregulation in blood has a similar pattern for various cancers (WP3). This strategy will be applied for the comparison of ten types of cancer with control samples in cell lines, animal models (mice and pigs), human samples (tissues and plasma), and extracellular vesicles. Our initial hypothesis is that the lower activity of CERS2 triggered by cancer cells can downregulate very long fatty acyl ceramides and other sphingolipids.

Fields of science

medical and health sciences > basic medicine > pharmacology and pharmacy > drug discovery

natural sciences > biological sciences > cell biology

natural sciences > biological sciences > biochemistry > biomolecules > lipids

medical and health sciences > clinical medicine > oncology

natural sciences > computer and information sciences > data science > data processing

Keywords

Cancer biomarkers Lipidomic quantitation Mass spectrometry Chromatography

Programme(s)

HORIZON.1.1 - European Research Council (ERC) MAIN PROGRAMME

Topic(s)

ERC-2022-ADG - ERC ADVANCED GRANTS
Call for proposal

ERC-2022-ADG

See other projects for this call

Funding Scheme

HORIZON-ERC - HORIZON ERC Grants

Coordinator

UNIVERZITA PARDUBICE

Net EU contribution

€ 3 499 413,00

Address

Studentska 95
532 10 Pardubice
Czechia

Region
Česko > Severovýchod > Pardubický kraj

Links

Contact the organisation Website Participation in EU R&I programmes HORIZON collaboration network

Other funding

€ 0,00

EC signature date 27 July 2023

Last update: 10 August 2023

Permalink: https://cordis.europa.eu/project/id/101095860

European Union, 2023