Descripción del proyecto
Aumentar la eficiencia de los diodos orgánicos emisores de luz para equipararla a la de los inorgánicos
Los diodos orgánicos emisores de luz (OLED, por sus siglas en inglés) utilizan una pila de capas orgánicas para convertir la electricidad en luz. A pesar de que se fabrican con materiales no tóxicos mediante procesos eficientes en materia de energía, su eficiencia de conversión energética sigue siendo muy baja en comparación con los diodos emisores de luz (LED, por sus siglas en inglés) inorgánicos. El equipo del proyecto SCOLED, financiado con fondos europeos, adoptará un enfoque radicalmente distinto para aumentar la eficiencia de los OLED. Los investigadores utilizarán conjuntos de nanopartículas plasmónicas para mejorar las interacciones luz-materia en los OLED. Al ajustar la periodicidad, el tamaño y la forma de las nanopartículas, los investigadores también podrán controlar el color, la polarización y la distribución direccional de la luz emitida.
Objetivo
We propose a radical new solution to the problem of increasing the efficiency of organic light-emitting diodes (OLEDs) based on modifying the light-matter coupling by nanostructures. All previous attempts to increase the efficiency of OLEDs to be competitive with commercial inorganic LEDs have failed. If successful, our new vision for strongly coupled organic light-emitting diodes (SCOLEDs) will bypass the existing technological bottleneck. OLEDs can be fabricated from earth-abundant non-toxic materials using energy-efficient processes, in stark contrast to the present market-leading inorganic LEDs. However, despite their much lower environmental impact, the widespread deployment of OLEDs has been blocked by their limited efficiency. To achieve the required step-change in efficiency, plasmonic nano-particle arrays will be used to enhance the coupling between light and matter within OLEDs. Our objectives are to enhance OLED efficiency to a level competitive with inorganic LEDs, and at the same time to adjust the periodicity, size and shape of the nanoparticles to control the color, polarization and directional distribution of the emitted light. Analytic theory, numerical simulations and nanofabrication will be combined with optical and electronic characterization across an interdisciplinary team with expertise ranging from materials science and electronics to photonics and quantum physics, including world-leading proficiency in nanoparticle arrays and strong light-matter coupling. Our ambitious target is the proof-of-principle demonstration of an OLED with more than 50% external quantum efficiency and tailorable control of the properties of the emitted light. SCOLEDs offer the prospect of a breakthrough technology that will dramatically reduce the environmental impact of LED technology in lighting and display applications, and will widen the palette of OLED applications to new and emerging areas such as electronic vehicles, augmented reality and urban agriculture.
Ámbito científico
Palabras clave
Programa(s)
- HORIZON.3.1 - The European Innovation Council (EIC) Main Programme
Convocatoria de propuestas
HORIZON-EIC-2022-PATHFINDEROPEN-01
Consulte otros proyectos de esta convocatoriaRégimen de financiación
HORIZON-EIC - HORIZON EIC GrantsCoordinador
02150 Espoo
Finlandia