Description du projet
Augmenter l’efficacité des OLED pour les placer au même niveau que les LED inorganiques
Les diodes électroluminescentes organiques (OLED) font appel à un empilement de couches organiques pour convertir l’électricité en lumière. Malgré le fait qu’elles soient fabriquées à partir de matériaux non toxiques et à l’aide de procédés à haut rendement énergétique, leur efficacité en matière de conversion énergétique reste très faible par rapport à leurs homologues inorganiques. Le projet SCOLED, financé par l’UE, adoptera une approche radicalement différente pour accroître l’efficacité des OLED. Les chercheurs utiliseront des réseaux de nanoparticules plasmoniques pour améliorer les interactions lumière-matière au sein des OLED. En ajustant la périodicité, la taille et la forme des nanoparticules, les chercheurs pourront également contrôler la couleur, la polarisation et la distribution directionnelle de la lumière émise.
Objectif
We propose a radical new solution to the problem of increasing the efficiency of organic light-emitting diodes (OLEDs) based on modifying the light-matter coupling by nanostructures. All previous attempts to increase the efficiency of OLEDs to be competitive with commercial inorganic LEDs have failed. If successful, our new vision for strongly coupled organic light-emitting diodes (SCOLEDs) will bypass the existing technological bottleneck. OLEDs can be fabricated from earth-abundant non-toxic materials using energy-efficient processes, in stark contrast to the present market-leading inorganic LEDs. However, despite their much lower environmental impact, the widespread deployment of OLEDs has been blocked by their limited efficiency. To achieve the required step-change in efficiency, plasmonic nano-particle arrays will be used to enhance the coupling between light and matter within OLEDs. Our objectives are to enhance OLED efficiency to a level competitive with inorganic LEDs, and at the same time to adjust the periodicity, size and shape of the nanoparticles to control the color, polarization and directional distribution of the emitted light. Analytic theory, numerical simulations and nanofabrication will be combined with optical and electronic characterization across an interdisciplinary team with expertise ranging from materials science and electronics to photonics and quantum physics, including world-leading proficiency in nanoparticle arrays and strong light-matter coupling. Our ambitious target is the proof-of-principle demonstration of an OLED with more than 50% external quantum efficiency and tailorable control of the properties of the emitted light. SCOLEDs offer the prospect of a breakthrough technology that will dramatically reduce the environmental impact of LED technology in lighting and display applications, and will widen the palette of OLED applications to new and emerging areas such as electronic vehicles, augmented reality and urban agriculture.
Champ scientifique
Mots‑clés
Programme(s)
- HORIZON.3.1 - The European Innovation Council (EIC) Main Programme
Régime de financement
HORIZON-EIC - HORIZON EIC GrantsCoordinateur
02150 Espoo
Finlande