Beyond Entangled Pairs: Quantum Correlations in Networks

Fact Sheet

Project Information

BEPQCiN

Grant agreement ID: 101106868

DOI

10.3030/101106868

Funded under

Marie Skłodowska-Curie Actions (MSCA)

Start date

1 July 2023

End date

30 June 2026

Total cost

€ 0,00

EU contribution

€ 308 746.56

Coordinated by

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS

France

Objective

This research proposal concerns the theoretical study of quantum correlations in networks. Given the current wide availability of the preparation and distribution of two-party entangled states, we propose to develop theoretical tools that enable the construction of multipartite quantum correlated networks using two-party states as building blocks. Such interconnected quantum networks would then allow for the implementation of sophisticated and secure quantum information protocols. The project is divided in three work packages (WP) with different questions and goals. The first one focuses on the generation of entanglement. It will tackle the problem of manipulating bipartite quantum states in quantum networks in order to generate genuinely multipartite entangled states. Our goals are to characterise the sets of
states that can be generated in a given network, define entanglement measures that are appropriate for network scenarios, and bound the amount of entanglement a network can produce. The second WP concerns the certification of entanglement in partly trusted star networks. Our goal is to develop a complete framework for entanglement certification with a semi-device-independent approach that is particular to networks, employing techniques from quantum steering. The final WP focuses on the problem of the equivalence between entanglement and Bell nonlocality. Our objective is to investigate whether any bipartite entangled state can lead to nonlocality in a network setting. The investigation of this fundamental, long-standing question will allow us to determine which bipartite states are and are not useful to quantum networks with the highest level of security. This research project shall be undertaken by the applicant, Dr. Jessica Bavaresco, under the mentorship of Prof. Nicolas Brunner at the University of Geneva, Switzerland, during the outgoing phase, and Dr. Cyril Branciard at the French National Centre for Scientific Research, France, during the return phase.

Keywords

- Quantum networks
- Quantum internet
- Quantum communication
- Quantum correlations
- Entanglement
- Steering
- Bell nonlocality
- Causal structures
- Causal networks
- Multipartite systems

Programme(s)

- HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)

Topic(s)

- HORIZON-MSCA-2022-PF-01-01 - MSCA Postdoctoral Fellowships 2022

Call for proposal

- HORIZON-MSCA-2022-PF-01

[See other projects for this call](#)
Funding Scheme
HORIZON-TMA-MSCA-PF-GF - HORIZON TMA MSCA Postdoctoral Fellowships - Global Fellowships

Coordinator

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Net EU contribution
€ 308 746,56
Address
Rue michel ange 3
75794 Paris
France
Region
Ile-de-France > Ile-de-France > Paris
Links
Contact the organisation
Website
Participation in EU R&I programmes
HORIZON collaboration network
Other funding
€ 0,00

Partners (1)

UNIVERSITE DE GENEVE
Switzerland
Net EU contribution
€ 0,00
Address
Rue du general dufour 24
1211 Geneve
Region
Schweiz/Suisse/Svizzera > Région lémanique > Genève
Activity type
Higher or Secondary Education Establishments
Other funding

€ 0,00

EC signature date: 13 April 2023
Last update: 29 June 2023

Permalink: https://cordis.europa.eu/project/id/101106868

European Union, 2023