Objective

Transition metal-catalysed cross-coupling reactions are considered landmark achievements in organic synthesis; thus, a modern organic chemist’s toolbox is filled with methods building C(sp2)-C(sp2) bonds. However, the myriad of tetrahedral carbon atoms in organic molecules alongside the ever-growing interest in drug discovery and development to access the tree-dimensional chemical space has encouraged chemists to develop cross-couplings that involve C(sp3) atoms. Despite their ubiquitous nature, the most available sources of functionalised C(sp3) atoms, alcohols, are underutilised in cross-coupling reactions due to the difficulty associated with the C(sp3)-O cleavage step. Their mainstream adaptation for cross-coupling reactions would unlock a previously untapped chemical space by virtue of their structural diversity, stability, and convenience. Furthermore, shifting the focus from...
halides to more environmentally benign alcohols offers a green and sustainable future by minimising manufacturing costs and toxic waste. Therefore, the overarching goal of this proposed research programme is to devise new, generally applicable, and modular methodologies in organic chemistry to address the long-standing challenge of alkyl radical generation from alcohols; thus, making the C(sp3)-OH bond a mainstream radical cross-coupling handle. Using transition metal catalysis, downstream application of these radicals would construct C(sp3)-C(sp3), C(sp3)-C(sp2), and C(sp3)-heteroatom bonds furnishing complex structures from ubiquitous precursors. In order to harness the potential of native alcohols, and to achieve the aims of this proposal, the outgoing phase of this fellowship would take place in Prof. Phil S. Baran’s laboratory at Scripps Research, La Jolla, USA. During the third, final year, the incoming phase would take place at Dr. Josep Cornella’s laboratory at Max-Planck-Institut, Mülheim an der Ruhr, Germany.

Fields of science

- medical and health sciences ➔ basic medicine ➔ pharmacology and pharmacy ➔ drug discovery
- natural sciences ➔ chemical sciences ➔ organic chemistry ➔ alcohols
- natural sciences ➔ chemical sciences ➔ catalysis

Keywords

- Radical chemistry
- Alcohol activation
- Electrosynthesis
- Transition Metal Catalysis

Programme(s)

- [HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)](#) - MAIN PROGRAMME

Topic(s)

- [HORIZON-MSCA-2022-PF-01-01 - MSCA Postdoctoral Fellowships 2022](#)

Call for proposal

- [HORIZON-MSCA-2022-PF-01](#)

[See other projects for this call](#)
Funding Scheme

HORIZON-TMA-MSCA-PF-GF - HORIZON TMA MSCA Postdoctoral Fellowships - Global Fellowships

Coordinator

MAX PLANCK INSTITUT FUER KOHLENFORSCHUNG
Net EU contribution
€ 265 647,84
Address
Kaiser wilhelm platz 1
45470 Muelheim an der ruhr
Germany
Region
Nordrhein-Westfalen > Düsseldorf > Mülheim an der Ruhr
Activity type
Research Organisations
Links
Contact the organisation Website Participation in EU R&I programmes HORIZON collaboration network
Other funding
€ 0,00

Partners (1)

THE SCRIPPS RESEARCH INSTITUTE CORPORATION
United States
Net EU contribution
€ 0,00
Address
North torrey pines road 10550
92037 1000 La jolla
Activity type
Higher or Secondary Education Establishments
EC signature date 21 April 2023
Last update: 29 June 2023

Permalink: https://cordis.europa.eu/project/id/101110288

European Union, 2023