Objective

In 2025 around 11 billion tonnes of plastic waste will pollute the environment. Therefore, a circular economy with biotransformation and biodegradation of oil-based plastics is as crucial as implementing biobased and biodegradable materials. Transforming lignocellulosic waste biomass into commercially valuable “green” materials is an emerging and promising way to minimize waste, substitute plastic and reduce our carbon footprint. As a waste resource, we suggest walnut shells, in which we discovered the interlocked 3-D puzzle cells. The homogeneity, the high surface area and the channels make these cells interesting for transformation into biodegradable bioplastic. We plan to dissolve the walnut shells in deep eutectic solvent to separate the cells, add water to regenerate lignin and recycle the solvent. The result of this closed process circle is a NUT slurry as a basis for our materials.
To tailor and functionalize the composite for different applications we propose to add bacterial cellulose pellicles, a waste from kombucha fermentation or produced in bioreactors. The pure cellulose fibrils with high tensile strength are an exciting counterpart to the high lignin content pressure optimised puzzle cells. With different ratios of the two agri-residues we will tune the material properties for NUTplastic and NUTleather. Sustainable, energy and resource efficient, biodegradable NUTmaterials with a low carbon and environmental footprint are envisaged for the packaging and textile sector. The project activities comprise 1) development and characterisation of NUTleather and NUTplastic products at the demonstration level 2) life cycle analysis, cost of goods and carbon footprint, 3) define endusers, market analysis, potential industrial partner, buisness plan and IP strategy. We have a strong project team with highly motivated and experienced members with complimentary backgrounds and a solid wish to prove the puzzle cell performance in sustainable materials.

Fields of science

- engineering and technology > environmental biotechnology > bioremediation > bioreactors
- engineering and technology > environmental engineering > energy and fuels > renewable energy
- engineering and technology > materials engineering > textiles
- engineering and technology > industrial biotechnology > biomaterials > bioplastics
- engineering and technology > industrial biotechnology > bioprocessing technologies > fermentation

Keywords

- PUZZLE MATERIALS

Programme(s)

- HORIZON.1.1 - European Research Council (ERC) MAIN PROGRAMME

Topic(s)

- ERC-2022-POC2 - ERC PROOF OF CONCEPT GRANTS2

Call for proposal
 ERC-2022-POC2

See other projects for this call

Funding Scheme

HORIZON-ERC-POC - HORIZON ERC Proof of Concept Grants

Coordinator

UNIVERSITAET FUER BODENKULTUR WIEN

Net EU contribution

€ 150 000,00

Address

Gregor mendel strasse 33
1180 Wien
Austria

Region

Östösterreich > Wien > Wien

Links

Contact the organisation Website Participation in EU R&I programmes HORIZON collaboration network

Other funding

€ 0,00

EC signature date 31 July 2023
Last update: 10 August 2023

Permalink: https://cordis.europa.eu/project/id/101113395

European Union, 2023