Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Single Atoms Immobilization on MXene-Metal-Organic Polyhedra Assemblies for Selective Reduction of CO2 to Formic Acid

Descripción del proyecto

Producción de ácido fórmico a partir de la reducción fotocatalítica de CO2: catalizadores monoatómicos mejorados

Eliminar de la atmósfera el carbono emitido desempeñará un papel fundamental en la neutralidad climática. La reducción electrocatalítica de CO2 (ECR, por sus siglas en inglés) y la reducción fotocatalítica de CO2 (PCR, por sus siglas en inglés) no solo eliminan CO2 de la atmósfera, sino que crean productos valiosos para las economías. Por ejemplo, el ácido fórmico (HCOOH) puede usarse como materia prima química, material de almacenamiento de hidrógeno, intermediario del metanol y componente de pilas de combustible. Con el apoyo de las acciones Marie Skłodowska-Curie, el equipo del proyecto SA-MXene-MOP pretende mejorar la eficiencia y selectividad de prometedores catalizadores monoatómicos para la ECR y PCR de CO2 a HCOOH. El método innovador se basará en nuevos ensamblajes poliédricos orgánicos monoatómicos de metal no noble inmovilizados o funcionalizados MXenos-metal como electrocatalizadores y fotocatalizadores.

Objetivo

The EU has set a goal of achieving climate neutrality by 2050 and has implemented an ambitious plan to reduce greenhouse gas emissions, including CO2. The most eco-friendly solutions to tackle global energy and sustainability challenges are electrocatalytic (ECR) and photocatalytic (PCR) CO2 reduction into valuable products. Among the CO2 reduction products, formic acid (HCOOH) has diverse applications as a chemical feedstock, hydrogen storage material, methanol intermediate and fuel cell component. Despite advances in the field, there are still unresolved challenges related to slow electron kinetics, unfavourable product selectivity, and high operating cost. In this respect, single-atom catalysts (SACs) have unique performance due to maximum atom efficiency, unsaturated metal coordination, and the confinement effect, making them a promising solution. However, the efficiency and selectivity of SACs for ECR and PCR to HCOOH are still experimentally scarce. Therefore, tuning the electronic structure of SAC through their immobilization on 2D nanosheets is crucial for designing new catalysts. Accordingly, I plan to prepare novel non-noble metal SA-functionalized MXene-metal-organic polyhedral (MOP) assemblies to replace the state-of-the-art catalysts for efficient CO2 reduction to HCOOH. SA-MXenes can improve electron transport and CO2 capture during ECR and PCR. However, self-stacking of SA-MXene can limit electrolyte access and reduce active site utilization. MOP acts as a spacer to increase porosity and prevent restacking. SA-MXene-MOP, with ligands coordinated SA center will act as a photocatalyst. To ensure the successful implementation of project goals, I will conduct research at IEMN (CNRS & University of Lille) under Dr. Boukherroub's guidance. I expect the research findings will elicit noteworthy attention from academic laboratories across Europe and worldwide. This project will help me to enhance my academic profile, and establish a research group.

Coordinador

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Aportación neta de la UEn
€ 195 914,88
Dirección
RUE MICHEL ANGE 3
75794 Paris
Francia

Ver en el mapa

Región
Ile-de-France Ile-de-France Paris
Tipo de actividad
Research Organisations
Enlaces
Coste total
Sin datos