Skip to main content
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Single Atoms Immobilization on MXene-Metal-Organic Polyhedra Assemblies for Selective Reduction of CO2 to Formic Acid

Descrizione del progetto

Produzione di acido formico dalla riduzione fotocatalitica della CO2: catalizzatori a singolo atomo migliorati

L’eliminazione del carbonio emesso dall’atmosfera svolgerà un ruolo fondamentale per la neutralità climatica. La riduzione elettrocatalitica della CO2 (ECR) e la riduzione fotocatalitica della CO2 (PCR) non solo rimuovono la CO2 dall’atmosfera, ma creano prodotti preziosi per l’economia. Ad esempio, l’acido formico (HCOOH) può essere utilizzato come materia prima chimica, come materiale di stoccaggio dell’idrogeno, come intermedio del metanolo e come componente delle celle a combustibile. Con il sostegno del programma di azioni Marie Skłodowska-Curie, il progetto SA-MXene-MOP mira a migliorare l’efficienza e la selettività di promettenti catalizzatori a singolo atomo per l’ECR e la PCR di CO2 a HCOOH. L’innovativo approccio si baserà su nuovi assemblaggi poliedrici organici MXene-metallo non nobile a singolo atomo immobilizzati o funzionalizzati come elettrocatalizzatori e fotocatalizzatori.

Obiettivo

The EU has set a goal of achieving climate neutrality by 2050 and has implemented an ambitious plan to reduce greenhouse gas emissions, including CO2. The most eco-friendly solutions to tackle global energy and sustainability challenges are electrocatalytic (ECR) and photocatalytic (PCR) CO2 reduction into valuable products. Among the CO2 reduction products, formic acid (HCOOH) has diverse applications as a chemical feedstock, hydrogen storage material, methanol intermediate and fuel cell component. Despite advances in the field, there are still unresolved challenges related to slow electron kinetics, unfavourable product selectivity, and high operating cost. In this respect, single-atom catalysts (SACs) have unique performance due to maximum atom efficiency, unsaturated metal coordination, and the confinement effect, making them a promising solution. However, the efficiency and selectivity of SACs for ECR and PCR to HCOOH are still experimentally scarce. Therefore, tuning the electronic structure of SAC through their immobilization on 2D nanosheets is crucial for designing new catalysts. Accordingly, I plan to prepare novel non-noble metal SA-functionalized MXene-metal-organic polyhedral (MOP) assemblies to replace the state-of-the-art catalysts for efficient CO2 reduction to HCOOH. SA-MXenes can improve electron transport and CO2 capture during ECR and PCR. However, self-stacking of SA-MXene can limit electrolyte access and reduce active site utilization. MOP acts as a spacer to increase porosity and prevent restacking. SA-MXene-MOP, with ligands coordinated SA center will act as a photocatalyst. To ensure the successful implementation of project goals, I will conduct research at IEMN (CNRS & University of Lille) under Dr. Boukherroub's guidance. I expect the research findings will elicit noteworthy attention from academic laboratories across Europe and worldwide. This project will help me to enhance my academic profile, and establish a research group.

Coordinatore

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Contribution nette de l'UE
€ 195 914,88
Indirizzo
RUE MICHEL ANGE 3
75794 Paris
Francia

Mostra sulla mappa

Regione
Ile-de-France Ile-de-France Paris
Tipo di attività
Research Organisations
Collegamenti
Costo totale
Nessun dato