In *Tarski’s Revolution* a team of philosophers and mathematicians traced (dis)continuities in ideas such as *truth* and *explanation* in two-hundred years of the history of philosophy in Central Europe. We did this by relying on a methodological interpretive framework, the Classical Model of Science. We used this framework as a kind of cognitive filter or reading schema through which we analysed and organised highly complex conceptual information contained in philosophical and scientific texts from the 18th, 19th and 20th century.

Using this method in combination with close reading, i.e. painstaking textual analysis, we were able to
shed new important light on how certain ideas interrelate which are of fundamental importance for the history of logic, mathematics and biology. We showed, for instance, that the relation among the ideas of *explanation*, *grounding* and *(logical) consequence* in the 19th century is tighter, and more modern than suspected so far. Our method also proved extremely fruitful to understand better Kant’s idea of scientific explanation, make sense of 18th century views on mathematical explanation, understand the conception of science of little known German philosophers such as Wolff and Reimarus, and gain better insight in 18th century philosophical views of the status and method of biology, and the relation of biology with other sciences.

We also shed valuable novel light on the development of the idea of *domain of (scientific) discourse* and related, highly technical ideas in early 20th century. The idea of domain is of key importance to assess profound developments in the conceptions of logic and language in this period. Our study has focused on texts by two of the most important figures in 20th century logic, Tarski and Carnap, and established, among other things, that the conception of language as *universal* lost more gradually appeal than maintained so far.

Given the valuable results of our method of investigation, we decided to give it a firmer theoretical foundation and to generalise it. The result of this effort is a new, sound and implementable methodology for the history of ideas in which ideas are seen as parts of models as cognitive schemas. This methodology, which we call ‘the model approach to the history of ideas’ solves problems which affect any enterprise concerned with tracing continuities and discontinuities among ideas (‘Lovejoy-style’ history of ideas).

We have also setup additional interpretive models to trace the development of the notions of *fact* and *truth* (in a certain sense known as ‘correspondentist’), and their interrelations with the notions of *part* and *whole*. These findings are of relevance also to contemporary metaphysics, philosophy of language and philosophy-informed linguistics.

Our results are important because, first, they show that the history of important periods in the development of sciences such as logic, mathematics and biology needs rewriting, second, because we have consolidated a general, concrete and implementable method to accomplish this and similar rewritings in a fruitful and adequate way. However, our method will only be adequate if researchers restrict themselves to relatively few key texts. Scaling up the scope of our research to a lot more texts, say all texts from two centuries, requires applying computer tools to the investigation of masses of texts. We have developed some ideas on how to do this within this project, but we will be able to develop and pursue these ideas only in a follow-up.

We have made known our findings in 40 open access contributions, including three books (plus 13 submitted or still in draft stage), 68 talks to various audiences, and three dissertations, among which a PhD thesis. We have also disseminated our results in a way accessible to a bigger public in talks, videos, and newspaper and radio interviews.

Last update: 9 March 2016
Record number: 180317